Bridge Design Details 2E October 2019
 Horizontal Curve Equations

$\mathrm{BC}=$ Beginning of Curve
EC = End of Curve
d = Deflection Angle for point on curve
$\Delta=$ Delta or Central Angle
$\mathrm{L}=$ Length along Curve (BC to POC)
$\mathrm{L}=$ Length of Curve $=\frac{2 \pi R}{360^{\circ}} \Delta$
LC $=$ Long Chord $=2 \mathrm{R}\left(1-\sin \frac{\Delta}{2}\right)$
$\mathrm{M}=$ Middle Ordinate $=\mathrm{R}\left(1-\cos \frac{\Delta}{2}\right)$
$\mathrm{PC}=$ Point of Curvature
$\mathrm{PI}=$ Point of Intersection
POC = Point on Curve
PT = Point of Tangency
$\mathrm{R}=$ Radius
$\mathrm{T}=$ Tangent Distance $=\mathrm{R} \tan \frac{\Delta}{2}$
Ex $=$ External $=\left(\frac{R}{\cos \frac{\Lambda}{2}}-R\right)$

Figure 2A.E. 1 Horizontal Curve Functions

All Curve Data may be obtained with two of the following curve parameters:

- Delta (Δ)
- Radius
- Tangent
- Length
- External

Example:

Given Length and Radius, solve for Delta Δ.
$\mathrm{T}=\mathrm{R} \tan \frac{\Delta}{2} \quad \mathrm{~L}=\frac{2 \pi R}{360^{\circ}} \Delta$
$\tan \frac{\Delta}{2}=\frac{T}{R} \Rightarrow 2 \tan ^{-1}\left(\frac{T}{R}\right), \Delta$ in degrees
Δ in degrees $=\frac{L \times 3,437.7467}{R}$

Example:

Given Radius and Delta Δ, solve for L.
$L=\frac{2 \pi R \Delta}{360^{\circ}}$ or $L=R$ func $\Delta \Rightarrow \frac{L}{2 \pi R}=\frac{\Delta}{360^{\circ}} \Rightarrow L=\frac{2 \pi R}{360^{\circ}} \Delta \quad$ where Δ is in degrees
$d=\frac{\Delta d}{2}$ where $\frac{\Delta d}{360^{\circ}}=\frac{\ell}{2 \pi R} \Rightarrow d=\frac{180 \ell}{2 \pi R}$ (in degrees)
$E x=\frac{R}{\cos \frac{\Delta}{2}}-R \Rightarrow R\left(\frac{1}{\cos \frac{\Delta}{2}}-1\right)$
$R-R \cos \frac{\Delta}{2} \Rightarrow R\left(1-\cos \frac{\Delta}{2}\right)$

