Bridge Design Details 6.13 February 2020 Edge Distance Calculation for Bearing Pad

Figure 6.13.1 Bearing Layout

Formulas:
$Y=V+\frac{a}{2} \cos \alpha+\frac{b}{2} \sin \alpha$
$X=U+\frac{a}{2} \sin \alpha+\frac{b}{2} \cos \alpha$

$$
\begin{aligned}
y & =v+y_{1}+y_{2} \\
y_{1} & =\frac{a}{2} \cos \alpha \\
y_{2} & =\frac{b}{2} \sin \alpha \\
x & =u+y_{1}+y_{2} \\
x_{1} & =\frac{a}{2} \sin \alpha \\
x_{2} & =\frac{b}{2} \cos \alpha
\end{aligned}
$$

Example: $\quad 10^{\prime \prime} \times 22^{\prime \prime}$ Bearing Pad ($\left.a=10^{\prime \prime}, b=22^{\prime \prime}\right)$
Minimum Skew Angle (α) $=27^{\circ} 10^{\prime} 30^{\prime \prime}$
Clearance ($\mathrm{U}=3$ ", $\mathrm{V}=3$ ")

Calculate: $\quad Y=3 "+10^{\prime \prime} / 2(0.8896)+22^{\prime \prime} / 2(0.4567)$ $Y=3 "+4.45^{\prime \prime}+5.02^{\prime \prime}=12.47^{\prime \prime}$, use $121 / 2^{\prime \prime}$ minimum
$X=3 "+10^{\prime \prime} / 2(0.4567)+22^{\prime \prime} / 2(0.8896)$ $X=3 "+2.28^{\prime \prime}+9.78^{\prime \prime}=15.06 "$, use $15^{\prime \prime}$ minimum

