

Dist	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No.	TOTAL SHEETS					
PLANS APPROVAL DATE										
THE STATE OF CALIFORNIA OR ITS OFFICERS OR AGENTS SHALL NOT BE RESPONSIBLE FOR THE ACCURACY OR COMPLETENESS OF SCANNED COPIES OF THIS PLAN SHEET.										
THE REGISTERED CIVIL ENGINEER FOR THE PROJECT IS RESPONSIBLE FOR THE SELECTION AND PROPER APPLICATION OF THE COMPONENT DESIGN AND ANY MODIFICATIONS SHOWN.										

GENERAL NOTES LOAD AND RESISTANCE FACTOR DESIGN

DESIGN: AASHTO LRFD Bridge Design Specifications, 8th edition with California Amendments, Preface dated April 2019

PRESTRESSING STEEL (GROUND ANCHORS):

- BARS fpu = 150 ksi FTL = Factored test load per tendon (Kips) fpu = Minimum tensile strength of prestressing steel (ksi)
- As = Minimum cross sectional area of prestressing steel in tendon (square inches)

As (Min) = $\frac{1.0 \text{ FTL}}{0.75 \text{ fpu}}$ (Bars)

NOTES:

- Anchorage enclosure shall have provisions to allow injecting grout at low end and venting at high end. Galvanize enclosure after fabrication.
- 2. For unbound length, see Project Plans elsewhere.
- () Level of initial grouting inside corrugated sheathing.
- 2 Level of initial grouting in drilled hole.
- (3) Level of secondary grouting in drilled hole.

E No.			v							
(XXX	X									
MILE							•			
.х	VERTICA	L GROUND	ANCHO	DR DET	AILS	NO	. 2			
UNTY/ROUTE: XXX/XXX		DISREGARD PRINTS BEARING EARLIER REVISION DATES		REVISION DA	TES	SHEET	OF			
NTRACT No.: XX-XXXXX4				6-28-14 12-06-21 9-26	-21 10-06-21	Х	Х			