

ATTACHMENT 5

4-1 SPREAD FOOTING DATA TABLES

Format for the Foundation Report:

Table 1. Summary of Controlling Loads

Support Location	L (ft)	B (ft)	Controlling Loads ¹						
		(-1)	M_X (kip-ft)	M_Y (kip-ft)	V _X (kips)	V _Y (kips)	P _{Total} (kips)	P _{Perm} (kips)	Load Combination
Abutment 1				N/A	N/A				
Bent 2									
Abutment 3				N/A	N/A				

Table 2. Foundation Design Recommendations for Spread Footing

Support Location	_		Bottom of Minimum Footing Footing Elevation (ft) Depth		Total Permissible Support Settlement	Service Limit State	Strength or Construction Limit State $\varphi_b = X$	Extreme Event Limit State $\Phi_b = 1.00$
	L	В		(ft)	(inches)	Permissible Net Contact Stress ² (ksf)	Factored Gross Nominal Bearing Resistance ³ (ksf)	Factored Gross Nominal Bearing Resistance ³ (ksf)
Abut 1								N/A
Bent 2							_	
Abut 3							·	N/A

^{1.} Controlling load combination is the one resulting in the highest ratio of $q_{g,u}/q_R$ for foundations on soil, or $q_{g,max}/q_R$ for foundation on rock.

^{2.} For Service-I Limit State, controlling load combination is the one resulting in the highest ratio of $q_{n.u}/q_{pn}$ for foundations on soil, or $q_{g.max}/q_R$ for foundations on rock. Permissible Net Contact Stresses were calculated for controlling load combinations.

^{3.} For Strength, Construction, and Extreme Event limit State, controlling load combination is the one resulting in the highest ratio of $q_{g,u}/q_R$ for foundations on soil, or $q_{g,max}/q_R$ for foundations on rock, Factored Gross Nominal Bearing Resistances were calculated for controlling load combinations.

Format for the Contract Plans:

Table 3. Spread Footing Date Table¹

Support Location	Service ² Permissible Net Contact Stress (Settlement) (ksf)	Strength/Construction ³ Factored Gross Nominal Bearing Resistance $\phi_b = X$ (ksf)	Extreme Event ³ Factored Gross Nominal Bearing Resistance $\phi_b = 1.00$ (ksf)
Abutment 1			N/A
Bent 2			
Abutment 3			N/A

^{1.} Controlling load combination is the one resulting in the highest ratio of $q_{g,u}/q_R$ for foundations on soil, or $q_{g,max}/q_R$ for foundation on rock.

^{2.} Controlling load combination for Service Limit State is is the one resulting in the highest ratio of $q_{n,u}/q_{pn}$ for foundations on soil, or $q_{g,max}/q_R$ for foundations on rock.

^{3.} Controlling load combination for Strength, Construction, and Extreme Event is the one resulting in the highest ratio of $q_{g,u}/q_R$ for foundations on soil, or $q_{g,max}/q_R$ for foundations on rock.