Appendix D Example 10 - Bolted Joints
 - Single Shear

Refer to Falsework Manual, Section 5-3, Timber Fasteners. This example demonstrates how to calculate the capacity of the connection between a diagonal brace and post. For this example, wind load is the governing load.

Given Information

Posts:
12×12 Rough Douglas Fir-Larch \#1 ($\mathrm{G}=0.50$)

Diagonal Braces:
2×8 S4S Douglas Fir-Larch \#2
($\mathrm{G}=0.50$)
Connectors:
$3 / 4$ " Ø Bolt

Figure D-10-1. Post and Brace Bolted Joint

Determine the connection capacity between brace and post for Wind Load

Main Member Properties
$I_{m}=12$ in thickness (12×12)
$t_{m}=I_{m}=12$ in
$\theta_{m}=45^{\circ} \quad$ angle between direction of loading \& direction of grain
$G=0.50 \quad$ Specific Gravity
NDS Table 12.3.3

Side Member Properties
$\mathrm{I}_{\mathrm{s}}=1.5$ in \quad thickness (2×8)
$\mathrm{t}_{\mathrm{s}}=\mathrm{l}_{\mathrm{s}}=1.5 \mathrm{in}$
$\theta_{\mathrm{s}}=0^{\circ} \quad$ angle between direction of loading \& direction of grain

Connector Properties

$$
\begin{aligned}
& \mathrm{D}=0.75 \mathrm{in} \\
& \mathrm{~F}_{\mathrm{yb}}=45000 \mathrm{psi} \\
& \mathrm{~F}_{\text {e.pll }}=11200 \mathrm{G} \mathrm{psi}=5600 \mathrm{psi} \\
& \mathrm{~F}_{\text {e.perp }}=\frac{6100 \mathrm{G}^{1.45}}{\sqrt{\frac{\mathrm{D}}{\mathrm{in}}}}=2578 \mathrm{psi}
\end{aligned}
$$

connector diameter
Yield Strength (See Footnote \#2 NDS
Table 12A)
Dowel Bearing Strength Parallel to Grain (NDS table 12.3.3 footnote 2)
Dowel Bearing Strength Perpendicular to Grain (NDS table 12.3.3 footnote 2)

Compare values to NDS Table 12.3.3:
$F_{\text {e.pll }}($ NDS Table 12.3.3 $)=5600 \mathrm{psi}$
$F_{\text {e.perp (NDS Table 12.3.3) }}=2600$ psi
Use calculated value for $F_{\text {perp }}=2578$ psi
Find Dowel Bearing Strength at an Angle to Grain (NDS Section 12.3.4):

$$
\begin{aligned}
& F_{\mathrm{em}}=\frac{\mathrm{F}_{\text {e.pll }} F_{\text {perp }}}{\mathrm{F}_{\mathrm{e} . \mathrm{pl\mid}}\left(\sin \left(\theta_{\mathrm{m}}\right)\right)^{2}+\mathrm{F}_{\text {perp }}\left(\cos \left(\theta_{\mathrm{m}}\right)\right)^{2}}=3531 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{es}}=\frac{\mathrm{F}_{\mathrm{e} . \mathrm{pl\mid}} \mathrm{~F}_{\text {perp }}}{\mathrm{F}_{\mathrm{e} . \mathrm{pl\mid}}\left(\sin \left(\theta_{\mathrm{s}}\right)\right)^{2}+\mathrm{F}_{\text {perp }}\left(\cos \left(\theta_{\mathrm{s}}\right)\right)^{2}}=5600 \mathrm{psi}
\end{aligned}
$$

Find Reduction Term, R_{d} (NDS Table 12.3.1B):
$\theta=\max \left(\theta_{\mathrm{m}}, \theta_{\mathrm{s}}\right)=45^{\circ} \quad$ Maximum angle between direction of load and direction of grain for any member in connection (See Table 12.3.1B)
$K_{\theta}=1+0.25 \frac{\theta}{90 \text { deg }}=1.125$
$R_{d_{_}}=4 K_{\theta}=4.50$
Reduction Term for Yield Mode I_{m} and I_{s}
$R_{d _\|}=3.6 K_{\theta}=4.05 \quad$ Reduction Term for Yield Mode II
$R_{d _ \text {IIIIIV }}=3.2 \mathrm{~K}_{\theta}=3.60$
Reduction Term for Yield Mode IIIm, IIIs, and IV

Find Yield Limit Equations for Single Shear (NDS Table 12.3.1A):
$\mathrm{R}_{\mathrm{e}}=\frac{\mathrm{F}_{\mathrm{em}}}{\mathrm{F}_{\mathrm{es}}}=0.6305$
$\mathrm{R}_{\mathrm{t}}=\frac{\mathrm{I}_{\mathrm{m}}}{\mathrm{I}_{\mathrm{s}}}=8$

$$
\begin{aligned}
& k_{1}=\frac{\sqrt{R_{e}+2 R_{e}^{2}\left(1+R_{t}+R_{t}^{2}\right)+R_{t}^{2} R_{e}^{3}}-R_{e}\left(1+R_{t}\right)}{\frac{\left(1+R_{e}\right)}{}}=1.8210 \\
& k_{2}=-1+\sqrt{2\left(1+R_{e}\right)+\frac{2 F_{y b}\left(1+2 R_{e}\right) D^{2}}{3 F_{e m m}^{\prime 2}}}=0.8265
\end{aligned}
$$

$$
\mathrm{k}_{3}=-1+\sqrt{ } \frac{2\left(1+\mathrm{R}_{\mathrm{e}}\right)}{\mathrm{R}_{\mathrm{e}}}+\frac{2 \mathrm{~F}_{\mathrm{yb}}\left(2+\mathrm{R}_{\mathrm{e}}\right) \mathrm{D}^{2}}{3 \mathrm{~F}_{\mathrm{em}} \mathrm{I}_{\mathrm{s}}^{2}}=2.2801
$$

$$
\mathrm{Z}_{\mathrm{lm}}=\frac{\mathrm{D} \mathrm{I}_{\mathrm{m}} \mathrm{~F}_{\mathrm{em}}}{\mathrm{R}_{\mathrm{d} _} \mathrm{I}}=7062 \mathrm{lb}
$$

NDS Eqn 12.3-1

$$
\mathrm{Z}_{\mathrm{ls}}=\frac{\mathrm{Dl}_{\mathrm{s}} \mathrm{~F}_{\mathrm{es}}}{\mathrm{R}_{\mathrm{d} _} \mathrm{l}}=1400 \mathrm{lb}
$$

NDS Eqn 12.3-2

$$
Z_{\| I}=\frac{k_{1} \mathrm{DI}_{\mathrm{s}} \mathrm{~F}_{\mathrm{es}}}{\mathrm{R}_{\mathrm{d} _} \|}=2833 \mathrm{lb}
$$

NDS Eqn 12.3-3

$$
\mathrm{Z}_{\mathrm{IIIm}}=\frac{\mathrm{k}_{2} \mathrm{DI}_{\mathrm{m}} \mathrm{~F}_{\mathrm{em}}}{\left(1+2 \mathrm{R}_{\mathrm{e}}\right) \mathrm{R}_{\mathrm{d} _} \mathrm{IIIIV}}=3227 \mathrm{lb}
$$

NDS Eqn 12.3-4

$$
Z_{\text {IIIIs }}=\frac{\mathrm{k}_{3} D I_{\mathrm{s}} F_{\mathrm{em}}}{\left(2+\mathrm{R}_{\mathrm{e}}\right) \mathrm{R}_{\mathrm{d}_{\text {IIIIIV }}}}=956 \mathrm{lb}
$$

NDS Eqn 12.3-5

$$
Z_{\mathrm{IV}}=\frac{\mathrm{D}^{2}}{R_{\mathrm{d}_{\text {IIIIIIV }}}} \sqrt{\frac{\overline{2 F_{\mathrm{em}} \mathrm{~F}_{\mathrm{yb}}}}{3\left(1+\mathrm{R}_{\mathrm{e}}\right)}}=1259 \mathrm{lb}
$$

NDS Eqn 12.3-6

The controlling value is the minimum single shear capacity from the above equations.
$Z_{\text {control }}=\min \left(Z_{\mathrm{Im}}, Z_{\mathrm{Is}}, Z_{\mathrm{II}}, Z_{\mathrm{IIIm}}, Z_{\mathrm{IIIs}}, Z_{\mathrm{IV}}\right)=956 \mathrm{lb} \quad$ (Yield Mode IIIs controls)

Find Adjusted Lateral Design Value, Z^{\prime} :
Adjustment factors from NDS Table 11.3.1:
$C_{D}=1.60 \quad$ Duration Factor for wind load
$\mathrm{C}_{\mathrm{M}}=1.0 \quad$ Wet Service Factor NDS 11.3 .3 (Assume < 19\% moisture content)
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS 11.3.4 (Temp up to $100^{\circ} \mathrm{F}$)
$\mathrm{C}_{\mathrm{g}}=1.0 \quad$ Group Action Factor NDS 11.3.6 (Single Fastener)
$C_{\Delta}=1.0 \quad$ Geometry Factor NDS 12.5.1 (Assume End Dist. \& Spacing meet NDS Tables 12.5.1A and 12.5.1B)
$C_{\text {eg }}=1.0 \quad$ End Grain Factor NDS 12.5.2 (Does not apply)
$\mathrm{C}_{\mathrm{di}}=1.0 \quad$ Diaphragm Factor NDS 12.5.3 (Does not apply)
$\mathrm{C}_{\mathrm{tn}}=1.0 \quad$ Toe Nail Factor NDS 12.5.4 (Does not apply)
Adjusted lateral design value $Z^{\prime}=Z\left(C_{D}\right)\left(C_{m}\right)\left(C_{t}\right)\left(C_{g}\right)\left(C_{\Delta}\right)=1530 \mathrm{lb}$

