Appendix D Example 11 - Bolted Joints - Double Shear

Refer to Falsework Manual, Section 5-3, Timber Fasteners. This example demonstrates how to calculate the capacity of the connection between a double diagonal brace and post. For this example, 2 \% dead load is the governing load.

Given Information

Posts:
12" Diameter Pole
Diagonal Braces:
2x8 S4S Douglas Fir-Larch \#2 ($\mathrm{G}=0.50$)

Connectors:
$3 / 4$ " \varnothing Bolt

ELEVATION VIEW

Figure D-11-1. Post and Double Brace Bolted Joint

Determine the connection capacity between brace and post for 2\% Dead Load

Main Member Properties
$\mathrm{d}_{\text {pole }}=12$ in diameter
$\theta_{m}=\tan ^{-1}\left(\frac{4}{3}\right)=53.13^{\circ}$
angle between
direction of loading \& direction of grain
$\mathrm{G}=0.50 \quad$ Specific Gravity $\quad \theta_{\mathrm{s}}=0^{\circ} \quad$ angle between NDS Table 12.3.3

Side Member Properties
$\mathrm{I}_{\mathrm{s}}=1.5$ in thickness (2x8)
$\mathrm{t}_{\mathrm{s}}=\mathrm{l}_{\mathrm{s}}=1.5 \mathrm{in}$
direction of loading \& direction of grain

Connector Properties

$\mathrm{D}=0.75$ in connector diameter
$\mathrm{F}_{\mathrm{yb}}=45000 \mathrm{psi} \quad$ Yield Strength (NDS table 12A footnote 2)

Find equivalent square section width of pole:

$I_{m}=\sqrt{\pi\left(\frac{d_{\text {pole }}}{2}\right)^{2}}=10.63$ in (NDS 3.7.3)
$\mathrm{t}_{\mathrm{m}}=\mathrm{I}_{\mathrm{m}}=10.63 \mathrm{in}$

Find Dowel Bearing Strength at an Angle to Grain (NDS Section 12.3.4):

$F_{\text {e.pll }}=11200 \mathrm{G} p \mathrm{si}=5600 \mathrm{psi} \quad$ Dowel Bearing Strength Parallel to Grain (NDS table 12.3.3 footnote 2)
$F_{\text {e.perp }}=\frac{6100 \mathrm{G}^{1.45}}{\sqrt{\mathrm{D}}}=2578 \mathrm{psi}$

Compare values to NDS Table 12.3.3:
$F_{\text {e.pll (NDS Table 12.3.3) }}=5600 \mathrm{psi}$
$F_{\text {e.perp }(\text { NDS Table 12.3.3 })}=2600$ psi
Use calculated value for $F_{\text {perp }}=2578$ psi

Find Dowel Bearing Strength at an Angle to Grain (NDS Section 12.3.4):

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{em}}=\frac{\mathrm{F}_{\mathrm{e} . \mathrm{pl\mid}} \mathrm{~F}_{\text {perp }}}{\mathrm{F}_{\mathrm{e} . \mathrm{pll}}\left(\sin \left(\theta_{\mathrm{m}}\right)\right)^{2}+\mathrm{F}_{\text {perp }}\left(\cos \left(\theta_{\mathrm{m}}\right)\right)^{2}}=3200 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{es}}=\frac{\mathrm{F}_{\mathrm{e} . \mathrm{plI}} \mathrm{~F}_{\text {perp }}}{\mathrm{F}_{\mathrm{e} . \mathrm{pll}}\left(\sin \left(\theta_{\mathrm{s}}\right)\right)^{2}+\mathrm{F}_{\text {perp }}\left(\cos \left(\theta_{\mathrm{s}}\right)\right)^{2}}=5600 \mathrm{psi}
\end{aligned}
$$

Find Reduction Term, R (NDS Table 12.3.1B):
$\theta=\max \left(\theta_{\mathrm{m}}, \theta_{\mathrm{s}}\right)=53.13^{\circ}$
Maximum angle between direction of load and direction of grain for any member in connection (See Table 12.3.1B)
$\mathrm{K}_{\theta}=1+0.25 \frac{\theta}{90 \mathrm{deg}}=1.15$
$R_{d_{-}}=4 K_{\theta}=4.59$
Reduction Term for Yield Mode I_{m} and I_{s}
$R_{d _\|}=3.6 \mathrm{~K}_{\theta}=4.13$
$R_{d_{\text {_IIIIIV }}}=3.2 \mathrm{~K}_{\theta}=3.67$
Reduction Term for Yield Mode II
Reduction Term for Yield Mode IIIm, IIIs, and IV

Find Yield Limit Equations for Single Shear (NDS Table 12.3.1A):
$\mathrm{R}_{\mathrm{e}}=\frac{\mathrm{F}_{\mathrm{em}}}{\mathrm{F}_{\mathrm{es}}}=0.571$
$R_{t}=\frac{l_{\mathrm{m}}}{\mathrm{I}_{\mathrm{s}}}=7.09$
Note: Values for k_{1} and k_{2} not required for double shear

$$
\begin{aligned}
& Z_{I m}=\frac{D I_{m} F_{e m}}{R_{d_{-} I}}=5558 \mathrm{lb} \\
& \text { NDS Eqn 12.3-7 } \\
& Z_{\mathrm{ls}}=\frac{2 \mathrm{DI}_{\mathrm{s}} \mathrm{~F}_{\mathrm{es}}}{\mathrm{R}_{\mathrm{d}_{-} \mathrm{I}}}=2745 \mathrm{lb} \\
& Z_{\text {IIIs }}=\frac{2 k_{3} D I_{s} F_{e m}}{\left(2+R_{e}\right) R_{d_{-} I I I I I V}}=1826 \mathrm{lb} \\
& Z_{\text {IV }}=\frac{2 D^{2}}{R_{d_{-} \text {III.IV }}} \sqrt{\frac{2 F_{e m} F_{y b}}{3\left(1+R_{e}\right)}}=2394 \mathrm{lb} \\
& \text { NDS Eqn 12.3-10 }
\end{aligned}
$$

The controlling value is the minimum double shear capacity from the above equations.

$$
Z_{\text {control }}=\min \left(Z_{\mathrm{Im}}, Z_{\mathrm{Is}}, Z_{\mathrm{IIIs}}, Z_{\mathrm{IV}}\right)=1826 \mathrm{lb}
$$

(Yield Mode IIIs controls)

Find Adjusted Lateral Design Value, Z':

Adjustment factors from NDS Table 11.3.1:	
$C_{D}=1.25$	Duration Factor for 2\% lateral loading
$C_{M}=1.0$	Wet Service Factor NDS 11.3.3 (Assume < 19\% moisture content)
$C_{t}=1.0$	Temperature Factor NDS 11.3.4 (Temp up to 100° F)
$C_{g}=1.0$	Group Action Factor NDS 11.3.6 (Single Fastener)
$C_{\Delta}=1.0$	Geometry Factor NDS 12.5.1 (Assume End Dist. \& spacing meet
	NDS Tables 12.5.1A and 12.5.1B)
$C_{e g}=1.0$	End Grain Factor NDS 12.5.2 (Does not apply)
$C_{d i}=1.0$	Diaphragm Factor NDS 12.5.3 (Does not apply)
$C_{t n}=1.0$	Toe Nail Factor NDS 12.5.4 (Does not apply)

Adjusted lateral design value $Z^{\prime}=Z\left(C_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{m}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)=2283 \mathrm{lb}$

