

Appendix D Example 13 – Multiple Fastener Connection – Double Shear

Refer to *Falsework Manual*, Section 5-3, *Timber Fasteners*. This example demonstrates how to calculate the capacity of a multiple fastener connection between a double diagonal brace and post. For this example, wind load is the governing load.

Given Information

Figure D-13-1. Post and Double Brace with Multiple Fasteners

Posts:

12 x 12 Rough Douglas Fir-Larch #2 (G=0.50)

Diagonal Braces:

2x8 S4S Douglas Fir-Larch #2 each side (G=0.50)

Connectors:

Six 5/8" Ø Bolts in two rows Center of gravity of the bolt group coincides with the center of gravity of the members.

Assume:

Temperature Exposure up to 120°F

Determine the connection capacity between brace and post for Wind Load

Main Member Properties		Side Member Properties	
$I_{m} = 12 \text{ in}$ $t_{m} = I_{m} = 12 \text{ in}$	thickness (12x12)	$I_s = 1.5 \text{ in}$ $t_s = I_s = 1.5 \text{ in}$	thickness (2x8)
θ _m = 50°	angle between a direction of loading & direction of grain	θ _s = 0°	angle between direction of loading & direction of grain
E _m = 1300000 psi	modulus of elasticity NDS Table 4D	E _s = 1600000 psi	Modulus of elasticity NDS Table 4A
G = 0.50	Specific Gravity NDS Table 12.3.3		

Connector Properties

D = 0.625 in	connector diameter
n = 3	number of fasteners per row
n _{rows} = 2	number of rows
F _{yb} = 45000 psi	Yield Strength (NDs table 12A footnote 2)
F _{e.pll} = 11200G psi = 5600 psi	Dowel Bearing Strength Parallel to Grain (NDS table 12.3.3 footnote 2)
$F_{e,perp} = \frac{6100G^{1.45}}{\sqrt{\frac{D}{in}}} = 2824 \text{ psi}$	Dowel Bearing Strength Perpendicular to Grain (NDS table 12.3.3 footnote 2)

Compare values to NDS Table 12.3.3:

 $F_{e.pll (NDS Table 12.3.3)} = 5600 psi$

 $F_{e,perp (NDS Table 12.3.3)} = 2800 psi$

Use calculated value for F_{perp} = 2824 psi

Find Dowel Bearing Strength at an Angle to Grain (NDS Section 12.3.4):

$$F_{em} = \frac{F_{e.pll}F_{perp}}{F_{e.pll}(sin(\theta_m))^2 + F_{perp}(cos(\theta_m))^2} = 3551 \text{ psi}$$

$$F_{es} = \frac{F_{e.pll}F_{perp}}{F_{e.pll}(\sin(\theta_s))^2 + F_{perp}(\cos(\theta_s))^2} = 5600 \text{ psi}$$

Find Reduction Term, R_d (NDS Table 12.3.1B):

 $\theta = \max(\theta_m, \theta_s) = 50^\circ$ Maximum angle between direction of load and direction of grain for any member in connection (See Table 12.3.1B)

 $K_{\theta} = 1 + 0.25 \frac{\theta}{90 \text{ deg}} = 1.14$

 $R_{d_l} = 4 K_{\theta} = 4.56$ Reduction Term for Yield Mode I_m and I_s

 $R_{d \parallel} = 3.6 K_{\theta} = 4.10$ Reduction Term for Yield Mode II

 $R_{d \parallel \parallel \parallel \parallel V} = 3.2 \text{ K}_{\theta} = 3.64$ Reduction Term for Yield Mode III_m , III_s , and IV

Find Yield Limit Equations for Single Shear (NDS Table 12.3.1A):

$$R_e = \frac{F_{em}}{F_{es}} = 0.634$$

$$R_t = \frac{I_m}{I_s} = 8$$

Note: Values for k₁ and k₂ not required for double shear

$$k_3 = -1 + \sqrt{\frac{2(1 + R_e)}{R_e} + \frac{2F_{yb}(2 + R_e)D^2}{3F_{em}l_s^2}} = 2.00$$

$$Z_{lm} = \frac{DI_m F_{em}}{R_{d}} = 5846 \text{ lb}$$
 NDS Eqn 12.3-7

$$Z_{ls} = \frac{2Dl_sF_{es}}{R_{d.l.}} = 2305 \text{ lb}$$
 NDS Eqn 12.3-8

$$Z_{\text{IIIs}} = \frac{2k_3DI_sF_{em}}{(2 + R_e)R_{d_III.IV}} = 1389 \text{ lb}$$
 NDS Eqn 12.3-9

$$Z_{IV} = \frac{2D^2}{R_{d_III.IV}} \sqrt{\frac{2F_{em}F_{yb}}{3(1 + R_e)}} = 1731 \text{ lb}$$
 NDS Eqn 12.3-10

The controlling value is the minimum single shear capacity from the above equations.

$$Z_{control} = min (Z_{lm}, Z_{ls}, Z_{llls}, Z_{lV}) = 1389 lb$$
 (Yield Mode IIIs controls)

Find Adjusted Lateral Design Value, Z':

Adjustment factors from NDS Table 11.3.1:

 $C_D = 1.6$ Duration Factor for wind load

C_M = 1.0 Wet Service Factor NDS 11.3.3 (Assume < 19% moisture content)

C_t = 1.0 Temperature Factor NDS 11.3.4 (Temp up to 120°F)

C_{eg} = 1.0 End Grain Factor NDS 12.5.2 (Does not apply)

C_{di} = 1.0 Diaphragm Factor NDS 12.5.3 (Does not apply)

C_{tn} = 1.0 Toe Nail Factor NDS 12.5.4 (Does not apply)

Find the Group Action Factor C_g (NDS Section 11.3.6):

The Group Action Factor, Cg, accounts for load distribution within a fastener group.

$$C_g = \left[\frac{m(1 - m^{2n})}{n \left[(1 + R_{EA}m^n)(1 + m) - 1 + m^{2n}\right]}\right] \left(\frac{1 + R_{EA}}{1 - m}\right) = 0.99 \quad \begin{array}{l} \textit{Group Action Factor} \\ \textit{NDS Eqn. 11.3-1} \end{array}$$

where:

$$A_m = t_m^2 = 144 \text{ in}^2$$

$$A_s = 2 x t_s x \text{ brace width} = 21.75 \text{ in}^2$$

$$E_{\rm m} = 1300000 \, \text{psi}$$

$$E_s = 1600000 \text{ psi}$$

$$R_{EA} = \min \left(\frac{E_s A_s}{E_m A_m}, \frac{E_m A_m}{E_s A_s} \right) = 0.19$$

$$D = 0.625 in$$

$$Y = 180000 \frac{lb}{in} \left(\frac{D}{in}\right)^{1.5} = 88939 \frac{lb}{in}$$

$$s_{bolt}$$
 = spacing_{in.a.row_actual} = 2.5 in

$$u = 1 + \gamma \frac{s_{bolt}}{2} \left(\frac{1}{E_m A_m} + \frac{1}{E_s A_s} \right) = 1.004$$

$$m = u - \sqrt{u^2 - 1} = 0.9145$$

Number of fasteners in a row

Area of post

Area of brace

Modulus of elasticity NDS Table

4D

Modulus of elasticity NDS Table

4A

connector diameter

Load/Slip modulus for connection

Dowel-type fasteners in wood-to-

wood connections

Center to center spacing between adjacent fasteners in a row

Find the Geometry Factor C_△ (NDS Section 12.5.1):

The Geometry Factor, C_{Δ} , is based on the end distance, edge distance and spacing of the dowel-type fasteners. To find if $C_{\Delta} = 1.0$, check for the following requirements:

1. End Distance Requirements (NDS Table 12.5.1A):

For softwood (DF-L) with the force acting Parallel to Grain in Tension, for $C_{\Delta \text{ end}}$ = 1.0, the minimum end distance must be 7D.

$$dist_{end}$$
 = 7D = 7(0.625 in) = 4.38 in
 $dist_{end_actual}$ = 5 in
 $dist_{end}$ < $dist_{end}$ actual \therefore $C_{\Delta \, end}$ = 1.0

Note: If dist_{end_actual} was between the minimum end distances for $C_{\Delta \text{ end}} = 0.5$ and 1.0, $C_{\Delta \text{ end}}$ would be determined as follows:

$$C_{\Delta \text{ end}} = \frac{\text{dist}_{\text{end_actual}}}{\text{minimum end distance for } C_{\Delta \text{ end}} = 1.0}$$

2. Shear Area Requirements (NDS Section 12.5.1.2(b)): In this case, the dowel-type fastener is not being loaded at an angle as shown in NDS Figure 12E. Therefore, the shear area factor is $C_{\Delta \, \text{shear} \, \text{area}} = 1.0$.

2018 National Design Specification (NDS) for Wood construction Figure 12E

Note: Similar to End Distance, if shear area_{actual} was between the minimum shear

3. Spacing Requirements for Fasteners in a Row (NDS Table 12.5.1B):

Similar to the end distance requirements, the brace member is loaded parallel to grain. According to NDS Table 12.5.1B, the minimum spacing between fasteners in a row for $C_{\Delta \, in.a.row}$ = 1.0 is 4D.

spacing_{in.a.row} = 4D = 4(0.625 in) = 2.5 in spacing_{in.a.row_actual} = 2.5 in
$$spacingin.a.row_actual = 2.5 in$$
$$spacingin.a.row = spacingin.a.row_actual :: $C_{\Delta in.a.row} = 1.0$$$

4. Edge Distance Requirements (NDS Table 12.5.1C):

The edge distance requirement is determined by $\frac{l_s}{D}$ or $\frac{l_m}{D}$, whichever is smaller. For this case, $\frac{l_s}{D}$ is the smaller ratio. For the parallel to grain loading on the brace:

$$\frac{l_s}{D}$$
 = 2.4 ≤ 6 \Rightarrow the minimum edge distance is 1.5D

$$dist_{edge} = 1.5D = 1.5(.625 \text{ in}) = 0.94 \text{ in}$$

 $dist_{edge._actual} = 1 1/4 \text{ in}$

$$dist_{edge} < dist_{edge}$$
 actual $: C_{\Delta edge} = 1.0$

5. Spacing Requirements Between Rows (NDS Table 12.5.1D):

Similar to edge distance requirements, the ratio of $\frac{I_s}{D}$ is used to determine the minimum spacing between rows. For the parallel to grain loading on the brace, the minimum spacing is 1.5D.

$$dist_{row}$$
 = 1.5D = 1.5(.625 in) = 0.94 in
 $dist_{row_actual}$ = 4.75 in
 $dist_{row}$ < $dist_{row}$ actual \therefore $C_{\triangle row}$ = 1.0

The Geometry Factor is the minimum factor of all the conditions.

$$C_{\Delta} = min (C_{\Delta \text{ end}}, C_{\Delta \text{ shear_area}}, C_{\Delta \text{ in.a.row}}, C_{\Delta \text{ edge}}, C_{\Delta \text{ row}}) = 1.0$$

Adjusted lateral design value Z'

$$Z' = (n_{rows})(n)Z_{control}(C_D)(C_M)(C_t)(C_g)(C_\Delta)$$

$$= (2 \text{ rows})(3)(1389 \text{ lb})(1.6)(1.0)(1.0)(0.99)(1.0) = \mathbf{13201 \text{ lb}}$$