Appendix D Example 13 - Multiple Fastener Connection - Double Shear

Refer to Falsework Manual, Section 5-3, Timber Fasteners. This example demonstrates how to calculate the capacity of a multiple fastener connection between a double diagonal brace and post. For this example, wind load is the governing load.

Given Information

Figure D-13-1. Post and Double Brace with Multiple Fasteners

Posts:
12×12 Rough Douglas Fir-Larch \#2 ($\mathrm{G}=0.50$)

Diagonal Braces:
2x8 S4S Douglas Fir-Larch \#2 each side
($\mathrm{G}=0.50$)
Connectors:
Six $5 / 8 " \varnothing$ Bolts in two rows
Center of gravity of the bolt group coincides with the center of gravity of the members.

Assume:
Temperature Exposure up to $120^{\circ} \mathrm{F}$

Determine the connection capacity between brace and post for Wind Load

Main Member Properties
$I_{m}=12$ in \quad thickness (12x12)
$t_{m}=I_{m}=12$ in
$\theta_{\mathrm{m}}=50^{\circ} \quad \begin{aligned} & \text { angle between a } \\ & \text { direction of loading \& }\end{aligned}$ direction of grain
$\mathrm{E}_{\mathrm{m}}=1300000 \mathrm{psi}$ modulus of elasticity NDS Table 4D
$G=0.50 \quad$ Specific Gravity NDS Table 12.3.3

Side Member Properties

$I_{\mathrm{s}}=1.5$ in	thickness (2×8)
$t_{\mathrm{s}}=\mathrm{I}_{\mathrm{s}}=1.5$ in	
$\theta_{\mathrm{s}}=0^{\circ}$	angle between direction of grain

$\mathrm{E}_{\mathrm{s}}=1600000 \mathrm{psi}$ Modulus of elasticity NDS Table 4A

Connector Properties

$D=0.625$ in connector diameter
$\mathrm{n}=3$ number of fasteners per row
$\mathrm{n}_{\text {rows }}=2$
$\mathrm{F}_{\mathrm{yb}}=45000 \mathrm{psi}$
$F_{\text {e.pll }}=11200 \mathrm{Gpsi}=5600 \mathrm{psi}$
number of rows
Yield Strength (NDs table 12A footnote 2)
Dowel Bearing Strength Parallel to Grain
(NDS table 12.3.3 footnote 2)
$F_{\text {e.perp }}=\frac{6100 G^{1.45}}{\sqrt{\frac{D}{\text { in }}}}=2824 \mathrm{psi}$
Dowel Bearing Strength Perpendicular to Grain (NDS table 12.3.3 footnote 2)

Compare values to NDS Table 12.3.3:
$F_{\text {e.pll (NDS Table 12.3.3) }}=5600$ psi
$F_{\text {e.perp (NDS Table 12.3.3) }}=2800$ psi
Use calculated value for $F_{\text {perp }}=2824$ psi
Find Dowel Bearing Strength at an Angle to Grain (NDS Section 12.3.4):
$F_{\text {em }}=\frac{F_{\text {e.pII }} F_{\text {perp }}}{F_{\text {e.pIII }}\left(\sin \left(\theta_{\mathrm{m}}\right)\right)^{2}+\mathrm{F}_{\text {perp }}\left(\cos \left(\theta_{\mathrm{m}}\right)\right)^{2}}=3551 \mathrm{psi}$
$F_{\text {es }}=\frac{F_{\text {e.pll }} F_{\text {perp }}}{F_{\text {e.pll }}\left(\sin \left(\theta_{\mathrm{s}}\right)\right)^{2}+F_{\text {perp }}\left(\cos \left(\theta_{\mathrm{s}}\right)\right)^{2}}=5600$ psi
Find Reduction Term, R_{d} (NDS Table 12.3.1B):
$\theta=\max \left(\theta_{\mathrm{m}}, \theta_{\mathrm{s}}\right)=50^{\circ} \quad$ Maximum angle between direction of load and direction of grain for any member in connection (See Table 12.3.1B)
$K_{\theta}=1+0.25 \frac{\theta}{90 \text { deg }}=1.14$
Rdı $=4 \mathrm{~K}_{\theta}=4.56 \quad$ Reduction Term for Yield Mode I_{m} and I_{s}
$R_{d _\|}=3.6 K_{\theta}=4.10 \quad$ Reduction Term for Yield Mode II
$R_{d _I I I . I v}=3.2 \mathrm{~K}_{\theta}=3.64 \quad$ Reduction Term for Yield Mode IIIm, IIIs, and IV

Find Yield Limit Equations for Single Shear (NDS Table 12.3.1A):

$\mathrm{R}_{\mathrm{e}}=\frac{\mathrm{F}_{\mathrm{em}}}{\mathrm{F}_{\mathrm{es}}}=0.634$
$R_{\mathrm{t}}=\frac{\mathrm{l}_{\mathrm{m}}}{\mathrm{l}_{\mathrm{s}}}=8$
Note: Values for k_{1} and k_{2} not required for double shear

$$
\begin{array}{ll}
\mathrm{k}_{3}=-1+\sqrt{\frac{2\left(1+\mathrm{R}_{\mathrm{e}}\right)}{\mathrm{R}_{\mathrm{e}}}+\frac{2 \mathrm{~F}_{\mathrm{yb}}\left(2+\mathrm{R}_{\mathrm{e}}\right) \mathrm{D}^{2}}{3 \mathrm{~F}_{\mathrm{em} \mathrm{I}_{\mathrm{s}}}{ }^{2}}}=2.00 & \\
\mathrm{Z}_{\mathrm{lm}}=\frac{\mathrm{D}_{\mathrm{m}} \mathrm{~F}_{\mathrm{em}}}{\mathrm{R}_{\mathrm{d} _} \mathrm{I}}=5846 \mathrm{lb} & \text { NDS Eqn 12.3-7 } \\
\mathrm{Z}_{\mathrm{ls}}=\frac{2 \mathrm{D}_{\mathrm{s}} \mathrm{~F}_{\mathrm{es}}}{\mathrm{R}_{\mathrm{d} _} \mathrm{I}}=2305 \mathrm{lb} & \text { NDS Eqn 12.3-8 } \\
\mathrm{Z}_{\mathrm{IIIs}}=\frac{2 \mathrm{k}_{3} \mathrm{DI}_{\mathrm{s}} \mathrm{~F}_{\mathrm{em}}}{\left(2+\mathrm{R}_{\mathrm{e}}\right) \mathrm{R}_{\mathrm{d} _I I I I \mathrm{IV}}}=1389 \mathrm{lb} & \text { NDS Eqn 12.3-9 } \\
\mathrm{Z}_{\mathrm{lv}}=\frac{2 \mathrm{D}^{2}}{\mathrm{R}_{\mathrm{d} _} \mathrm{IIIIV}} \sqrt{\frac{2 \mathrm{~F}_{\mathrm{em}} \mathrm{~F}_{\mathrm{yb}}}{3\left(1+\mathrm{R}_{\mathrm{e}}\right)}}=1731 \mathrm{lb} & \text { NDS Eqn 12.3-10 }
\end{array}
$$

NDS Eqn 12.3-7
NDS Eqn 12.3-8
NDS Eqn 12.3-9

The controlling value is the minimum single shear capacity from the above equations.

$$
Z_{\text {control }}=\min \left(Z_{\mathrm{lm}}, Z_{\mid \mathrm{s}}, Z_{\mathrm{IIIs}}, Z_{\mathrm{iv}}\right)=1389 \mathrm{lb}
$$

(Yield Mode IIIs controls)

Find Adjusted Lateral Design Value, Z':

Adjustment factors from NDS Table 11.3.1:

$$
\begin{array}{ll}
\mathrm{C}_{\mathrm{D}}=1.6 & \text { Duration Factor for wind load } \\
\mathrm{C}_{\mathrm{M}}=1.0 & \text { Wet Service Factor NDS 11.3.3 (Assume < 19\% moisture content) } \\
\mathrm{C}_{\mathrm{t}}=1.0 & \text { Temperature Factor NDS 11.3.4 (Temp up to } 120^{\circ} \text { F) } \\
\mathrm{C}_{\mathrm{eg}}=1.0 & \text { End Grain Factor NDS 12.5.2 (Does not apply) } \\
\mathrm{C}_{\mathrm{di}}=1.0 & \text { Diaphragm Factor NDS 12.5.3 (Does not apply) } \\
\mathrm{C}_{\mathrm{tn}}=1.0 & \text { Toe Nail Factor NDS 12.5.4 (Does not apply) }
\end{array}
$$

Find the Group Action Factor C_{g} (NDS Section 11.3.6):

The Group Action Factor, Cg , accounts for load distribution within a fastener group.

$$
\mathrm{C}_{\mathrm{g}}=\left[\frac{\mathrm{m}\left(1-\mathrm{m}^{2 \mathrm{n}}\right)}{\mathrm{n}\left[\left(1+\mathrm{R}_{\mathrm{EA}} \mathrm{~m}^{\mathrm{n}}\right)(1+\mathrm{m})-1+\mathrm{m}^{2 \mathrm{n}}\right]}\right]\left(\frac{1+\mathrm{R}_{\mathrm{EA}}}{1-\mathrm{m}}\right)=0.99 \quad \begin{aligned}
& \text { Group Action Factor } \\
& \text { NDS Eqn. } 11.3-1
\end{aligned}
$$

where:

$$
\begin{aligned}
& \mathrm{n}=3 \\
& A_{m}=t_{m}{ }^{2}=144 \mathrm{in}^{2} \\
& \text { As } \quad=2 \times t_{s} \times \text { brace } \text { width }=21.75 \mathrm{in}^{2} \\
& \mathrm{Em}_{\mathrm{m}}=1300000 \mathrm{psi} \\
& E_{s} \quad=1600000 \mathrm{psi} \\
& R_{E A}=\min \left(\frac{E_{s} A_{s}}{E_{m} A_{m}}, \frac{E_{m} A_{m}}{E_{s} A_{s}}\right)=0.19 \\
& \text { D } \quad=0.625 \mathrm{in} \\
& Y=180000 \frac{\mathrm{lb}}{\mathrm{in}}\left(\frac{\mathrm{D}}{\mathrm{in}}\right)^{1.5}=88939 \frac{\mathrm{lb}}{\mathrm{in}} \\
& \mathrm{~s}_{\text {bolt }}=\text { spacing }_{\text {in.a.row_actual }}=2.5 \mathrm{in} \\
& u \quad=1+p \frac{s_{\text {bolt }}}{2}\left(\frac{1}{E_{m} A_{m}}+\frac{1}{E_{s} A_{s}}\right)=1.004 \\
& \mathrm{~m}=u-\sqrt{u^{2}-1}=0.9145
\end{aligned}
$$

Number of fasteners in a row
Area of post
Area of brace
Modulus of elasticity NDS Table 4D

Modulus of elasticity NDS Table 4A
connector diameter
Load/Slip modulus for connection Dowel-type fasteners in wood-towood connections
Center to center spacing between adjacent fasteners in a row

Find the Geometry Factor C_{Δ} (NDS Section 12.5.1):

The Geometry Factor, C_{Δ}, is based on the end distance, edge distance and spacing of the dowel-type fasteners. To find if $\mathrm{C}_{\Delta}=1.0$, check for the following requirements:

1. End Distance Requirements (NDS Table 12.5.1A):

For softwood (DF-L) with the force acting Parallel to Grain in Tension, for C_{Δ} end $=1.0$, the minimum end distance must be 7D.

$$
\begin{aligned}
& \text { distend }=7 \mathrm{D}=7(0.625 \mathrm{in})=4.38 \text { in } \\
& \text { distend_actual }=5 \text { in } \\
& \text { distend }<\text { distend_actual }: C_{\Delta \text { end }}=1.0
\end{aligned}
$$

Note: If distend_actual was between the minimum end distances for $C_{\Delta \text { end }}=0.5$ and $1.0, C_{\Delta}$ end would be determined as follows:

$$
C_{\Delta \text { end }}=\frac{\text { distend_actual }}{\text { minimum end distance for } C_{\Delta \text { end }}=1.0}
$$

2. Shear Area Requirements (NDS Section 12.5.1.2(b)):

In this case, the dowel-type fastener is not being loaded at an angle as shown in NDS Figure 12E. Therefore, the shear area factor is C_{Δ} shear_area $=1.0$.

2018 National Design Specification (NDS) for Wood construction
Figure 12E
Note: Similar to End Distance, if shear areaactual was between the minimum shear
3. Spacing Requirements for Fasteners in a Row (NDS Table 12.5.1B):

Similar to the end distance requirements, the brace member is loaded parallel to grain. According to NDS Table 12.5.1B, the minimum spacing between fasteners in a row for $\mathrm{C}_{\Delta \text { in.a.row }}=1.0$ is 4 D .

$$
\begin{aligned}
& \text { spacing }_{\text {in.a.row }}=4 \mathrm{D}=4(0.625 \mathrm{in})=2.5 \mathrm{in} \\
& \text { spacing }_{\text {in.a.row_actual }}=2.5 \mathrm{in}
\end{aligned}
$$

$$
\text { spacing }_{i n . a . r o w}=\operatorname{spacing}_{i n . a . r o w _a c t u a l ~} \therefore \mathrm{C}_{\Delta \text { in.a.row }}=1.0
$$

4. Edge Distance Requirements (NDS Table 12.5.1C):

The edge distance requirement is determined by $\frac{\mathrm{I}_{\mathrm{s}}}{\mathrm{D}}$ or $\frac{\mathrm{lm}}{\mathrm{D}}$, whichever is smaller. For this case, $\frac{I_{s}}{\mathrm{D}}$ is the smaller ratio. For the parallel to grain loading on the brace:
$\frac{\mathrm{I}_{\mathrm{s}}}{\mathrm{D}}=2.4 \leq 6 \rightarrow$ the minimum edge distance is 1.5 D

$$
\begin{aligned}
& \text { distedge }=1.5 \mathrm{D}=1.5(.625 \mathrm{in})=0.94 \mathrm{in} \\
& \text { distedge._actual }=11 / 4 \mathrm{in} \\
& \qquad \text { distedge }<\text { distedge_actual }_{\therefore} C_{\Delta \text { edge }}=1.0
\end{aligned}
$$

5. Spacing Requirements Between Rows (NDS Table 12.5.1D):

Similar to edge distance requirements, the ratio of $\frac{I_{s}}{D}$ is used to determine the minimum spacing between rows. For the parallel to grain loading on the brace, the minimum spacing is 1.5 D .

$$
\begin{aligned}
& \text { distrow }=1.5 \mathrm{D}=1.5(.625 \mathrm{in})=0.94 \mathrm{in} \\
& \text { distrow_actual }=4.75 \mathrm{in} \\
& \quad \text { distrow }<\text { distrow_actual } \therefore \mathrm{C}_{\Delta \text { row }}=1.0
\end{aligned}
$$

The Geometry Factor is the minimum factor of all the conditions.

$$
\mathrm{C}_{\Delta}=\min \left(\mathrm{C}_{\Delta \text { end }}, \mathrm{C}_{\Delta \text { shear_area, }}, \mathrm{C}_{\Delta \text { in.a.row, }} \mathrm{C}_{\Delta \text { edge }}, \mathrm{C}_{\Delta \text { row }}\right)=1.0
$$

Adjusted lateral design value Z^{\prime}

$$
\begin{aligned}
Z^{\prime} & =\left(n_{\text {rows }}\right)(n) Z_{\text {control }}\left(C_{\text {р }}\right)\left(C_{м}\right)\left(C_{t}\right)\left(C_{g}\right)\left(C_{\Delta}\right) \\
& =(2 \text { rows })(3)(1389 \mathrm{lb})(1.6)(1.0)(1.0)(0.99)(1.0)=\underline{13201 ~ \mathrm{lb}}
\end{aligned}
$$

