Appendix D Example 14 - Diagonal Bracing of Single Tier Framed Bent Nailed Connections

Refer to Falsework Manual, Section 6-3, Diagonal Bracing and Section 5-3, Timber Fasteners. This example demonstrates how to determine if the bracing system of a single tier framed bent is adequate. All connections are nailed.

Given Information

Figure D-14-1. Single Tier Framed Bent with Diagonal Bracing

2\% Dead Load = 1900 lb
Wind Load $=1800 \mathrm{lb}$

Posts:
12×12 Rough Douglas Fir-Larch \#1 ($\mathrm{G}=0.50$)

Diagonal Braces:
$2 x 8$ Douglas Fir-Larch \#2 ($\mathrm{G}=0.50$)
Connectors:
Brace to Post 10-20d common nails Intersection of Brace 4-16d common nails

Determine if the Bracing System is Adequate

1. Determine the connection capacity between the brace and post:

10-20d Common Wire Nails
Length $=4$ "
Diameter (D) $=0.192^{\prime \prime}$
Penetration $=4 "-1.5^{\prime \prime}=2.5^{\prime \prime}$
Minimum penetration for full tabular value $=10 \mathrm{D}=10\left(0.192^{\prime \prime}\right)=1.92^{\prime \prime}$
Minimum penetration = 6D $=6(0.192 ")=1.15$ "
Reference lateral design value (Z) from NDS table 12N = 170 lb

Adjustment factors from NDS Table 11.3.1:
$C_{D}=1.25 \quad$ Duration Factor for 2\% lateral loading
$\mathrm{C}_{\mathrm{m}}=1.0 \quad$ Wet Service Factor NDS 11.3.3 (Assume < 19\% moisture content)
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS 11.3 .4 (Temp up to $100^{\circ} \mathrm{F}$)
$\mathrm{C}_{\mathrm{g}}=1.0 \quad$ Group Action Factor NDS 11.3.6
$C_{\Delta}=1.0 \quad$ Geometry Factor NDS 12.5.1
$\mathrm{C}_{\mathrm{eg}}=1.0 \quad$ End Grain Factor NDS 12.5.2
$\mathrm{C}_{\mathrm{di}}=1.0 \quad$ Diaphragm Factor NDS 12.5.3
$\mathrm{C}_{\mathrm{tn}}=1.0 \quad$ Toe Nail Factor NDS 12.5.4
Adjusted lateral design value $Z^{\prime}=Z\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{m}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)\left(\mathrm{C}_{\text {eg }}\right)\left(\mathrm{C}_{\text {di }}\right)\left(\mathrm{C}_{\text {tn }}\right)=213 \mathrm{lb}$
Connection capacity $=n Z^{\prime}=10(213 \mathrm{lb})=2130 \mathrm{lb}$ (n equals number of nails)
2. Determine the capacity of the diagonal brace in tension:

Reference design value in tension $F_{t}=575$ psi (NDS supplement table 4A)
Adjustment factors from NDS table 4.3.1:
$C_{D}=1.25 \quad$ Duration Factor for 2\% lateral loading
$\mathrm{C}_{\mathrm{M}}=1.0 \quad$ Wet Service Factor NDS table $4 A$ (Assume $<19 \%$ moisture content)
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS table 2.3.3 (Temp up to $100^{\circ} \mathrm{F}$)
$C_{F}=1.2 \quad$ Size Factor NDS Table 4A
$\mathrm{C}_{\mathrm{i}}=1.0 \quad$ Incising Factor NDS 4.3.8
Adjusted design value $\mathrm{Ft}^{\prime}=\mathrm{F}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{m}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)=863 \mathrm{psi}$
Tension capacity $=863 \mathrm{psi}\left(1.5^{\prime \prime}\right)\left(7.25^{\prime \prime}\right)=9385 \mathrm{lb}$
3. Determine the strength value of the tension members:
$9385 \mathrm{lb}>2130 \mathrm{lb} \quad \therefore$ Connection strength controls
4. Calculate the horizontal component of the strength value for the tension members

10
Figure D-14-2. Geometric Components of Tension Strength Value
5. Determine the capacity of diagonal brace in compression:

First check adequacy of the connection to reduce the unsupported length of compression member (See section 6-3.02 Wood cross bracing):

4-16d Common Wire Nails

Reference withdrawal design value $\mathrm{W}=40 \mathrm{lb} / \mathrm{inch}$ of penetration (NDS table 12.2C)

Adjustment factors from NDS Table 11.3.1:
$C_{D}=1.25 \quad$ Duration Factor for 2\% lateral loading
$\mathrm{C}_{\mathrm{M}}=1.0 \quad$ Wet Service Factor NDS 11.3.3 (Assume < 19\% moisture content)
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS 11.3 .4 (Temp up to $100^{\circ} \mathrm{F}$)
$C_{\text {eg }}=1.0 \quad$ End Grain Factor NDS 12.5.2
$\mathrm{C}_{\mathrm{tn}}=1.0 \quad$ Geometry Factor NDS 12.5.4
Adjusted withdrawal design value $\mathrm{W}^{\prime}=\mathrm{W}\left(\mathrm{CD}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{m}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\text {eg }}\right)\left(\mathrm{C}_{\text {tn }}\right)=50 \mathrm{lb} / \mathrm{inch}$

Penetration $p=1.5 "$
Connection capacity $=n(p)\left(Z^{\prime}\right)=4(1.5 ")(50 \mathrm{lb} / \mathrm{inch})=300 \mathrm{lb}(\mathrm{n}$ equals number of nails)
$300 \mathrm{lb}>250 \mathrm{lb}$ (minimum required per section 6-3.02)
Check cross brace capacity in compression:

Reference design value in compression $\mathrm{F}_{\mathrm{c}}=1350$ psi (NDS supplement table 4A)

Adjustment factors from NDS table 4.3.1:
$C_{D}=1.25 \quad$ Duration Factor for 2\% lateral loading
$\mathrm{C}_{\mathrm{M}}=1.0 \quad$ Wet Service Factor NDS table 4 (Assume $<19 \%$ moisture content)
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS table 2.3.3 (Temp up to $100^{\circ} \mathrm{F}$)
$C_{F}=1.05 \quad$ Size Factor NDS Table 4A
$\mathrm{C}_{\mathrm{i}}=1.0 \quad$ Incising Factor NDS 4.3.8
$C_{P}=0.083$ Column Stability Factor NDS 3.7.1 (unsupported length $=\frac{14.14}{2}=$ 7.07')

Adjusted design compression value $\mathrm{F}_{\mathrm{C}}{ }^{\prime}=\mathrm{F}_{\mathrm{C}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)\left(\mathrm{C}_{\mathrm{P}}\right)=147 \mathrm{psi}$
Compression brace capacity $=147 \mathrm{psi}(1.5 ")(7.25 ")=1599 \mathrm{lb}$

6. Determine the strength value of the compression members:

Connection capacity $=2130 \mathrm{lb}$
(See step 1. Capacity in tension and compression are the same)
$1599 \mathrm{lb}<2130 \mathrm{lb}: 2 \times 8$ brace controls compression
Limit to $1 / 2$ theoretical strength for compression values: See section 6-3.02, Wood Cross Bracing.

Reduced compression brace capacity $=\frac{1599 \mathrm{lb}}{2}=800 \mathrm{lb}$

7. Calculate the horizontal component of the strength value for the compression member:

Figure D-14-3. Geometric Components of Compression Strength Value
8. Calculate the total resisting capacity of the diagonal bracing system:

Summarize Result for 2\% Dead Load

Total resisting capacity $=\mathrm{C}+\mathrm{T}=566 \mathrm{lb}+1506 \mathrm{lb}=2072 \mathrm{lb}$
Resisting Capacity $=2072 \mathrm{lb}>$ Horizontal Demand Force $=1900 \mathrm{lb}$
Bracing system is adequate for 2% Dead Load

Summarize Result for Wind Load

Repeat above process for wind load to calculate the Resisting Capacity, using C_{D} $=1.6$ rather than 1.25 . All other factors are the same.

The Resisting Capacity for wind load can also be derived by multiplying the resisting capacity for 2% Dead Load (above) by the ratio $\frac{C_{D} \text { wind }}{C_{D} 2 \%}=\frac{1.6}{1.25}$

Resisting Capacity $=2072 \mathrm{lb}\left(\frac{1.6}{1.25}\right)=2652 \mathrm{lb}>$ Horizontal Demand Force $=$ 1800 lb

Bracing system is adequate for Wind Load

