

Appendix D Example 14 – Diagonal Bracing of Single Tier Framed Bent – Nailed Connections

Refer to *Falsework Manual*, Section 6-3, *Diagonal Bracing* and Section 5-3, *Timber Fasteners*. This example demonstrates how to determine if the bracing system of a single tier framed bent is adequate. All connections are nailed.

Given Information

Figure D-14-1. Single Tier Framed Bent

with Diagonal Bracing

2% Dead Load = 1900 lb Wind Load = 1800 lb

Posts: 12 x 12 Rough Douglas Fir-Larch #1 (G=0.50)

Diagonal Braces: 2x8 Douglas Fir-Larch #2 (G=0.50)

Connectors: Brace to Post 10-20d common nails Intersection of Brace 4-16d common nails

Determine if the Bracing System is Adequate

1. Determine the connection capacity between the brace and post:

 $\begin{array}{l} \underline{10\text{-}20d \ Common \ Wire \ Nails} \\ \text{Length} = 4" \\ \text{Diameter (D)} = 0.192" \\ \text{Penetration} = 4"\text{-}1.5" = 2.5" \\ \text{Minimum penetration for full tabular value} = 10D = 10(0.192") = 1.92" \\ \text{Minimum penetration} = 6D = 6(0.192") = 1.15" \\ \text{Reference lateral design value (Z) from NDS table 12N = 170 lb} \end{array}$

Adjustment factors from NDS Table 11.3.1:

- C_D = 1.25 Duration Factor for 2% lateral loading
- C_M = 1.0 Wet Service Factor NDS 11.3.3 (Assume < 19% moisture content)
- Ct = 1.0 Temperature Factor NDS 11.3.4 (Temp up to 100°F)
- C_g = 1.0 Group Action Factor NDS 11.3.6
- $C_{\Delta} = 1.0$ Geometry Factor NDS 12.5.1
- C_{eg} = 1.0 End Grain Factor NDS 12.5.2
- C_{di} = 1.0 Diaphragm Factor NDS 12.5.3
- C_{tn} = 1.0 Toe Nail Factor NDS 12.5.4

Adjusted lateral design value $Z' = Z(C_D)(C_M)(C_t)(C_g)(C_{\Delta})(C_{eg})(C_{di})(C_{tn}) = 213$ lb

Connection capacity = nZ' = 10(213 lb) = 2130 lb (n equals number of nails)

2. Determine the capacity of the diagonal brace in tension:

Reference design value in tension $F_t = 575$ psi (NDS supplement table 4A)

Adjustment factors from NDS table 4.3.1:

C _D = 1.25	Duration Factor for 2% lateral loading
C _M = 1.0	<i>Wet Service Factor NDS table 4A (Assume < 19% moisture content)</i>
$C_t = 1.0$	Temperature Factor NDS table 2.3.3 (Temp up to 100°F)
C _F = 1.2	Size Factor NDS Table 4A
C _i = 1.0	Incising Factor NDS 4.3.8

Adjusted design value F_t = $F_t (C_D)(C_M)(C_t)(C_F)(C_i)$ = 863 psi

Tension capacity = 863 psi(1.5")(7.25") = 9385 lb

3. Determine the strength value of the tension members:

9385 lb > 2130 lb .: Connection strength controls

4. Calculate the horizontal component of the strength value for the tension members

5. Determine the capacity of diagonal brace in compression:

First check adequacy of the connection to reduce the unsupported length of compression member (See section 6-3.02 Wood cross bracing):

4-16d Common Wire Nails

Reference withdrawal design value W = 40 lb/inch of penetration (NDS table 12.2C)

Adjustment factors from NDS Table 11.3.1:

C _D = 1.25	Duration Factor for 2% lateral loading
См = 1.0	Wet Service Factor NDS 11.3.3 (Assume < 19% moisture content)
$C_t = 1.0$	Temperature Factor NDS 11.3.4 (Temp up to 100°F)
C _{eg} = 1.0	End Grain Factor NDS 12.5.2
C _{tn} = 1.0	Geometry Factor NDS 12.5.4

Adjusted withdrawal design value W' = $W(C_D)(C_M)(C_t)(C_{eg})(C_{tn})$ = 50 lb/inch

Penetration p = 1.5"

Connection capacity = n(p)(Z') = 4(1.5")(50 lb/inch) = 300 lb (n equals number of nails)

300 lb > 250 lb (minimum required per section 6-3.02)

Check cross brace capacity in compression:

Reference design value in compression $F_c = 1350$ psi (NDS supplement table 4A)

Adjustment factors from NDS table 4.3.1:

C _D = 1.25	Duration Factor for 2% lateral loading
См = 1.0	Wet Service Factor NDS table 4A (Assume < 19% moisture content)
$C_t = 1.0$	Temperature Factor NDS table 2.3.3 (Temp up to 100°F)
C _F = 1.05	Size Factor NDS Table 4A
$C_i = 1.0$	Incising Factor NDS 4.3.8
C _P = 0.083	Column Stability Factor NDS 3.7.1 (unsupported length = $\frac{14.14}{2}$ =
	7.07')

Adjusted design compression value F_c ' = $F_c (C_D)(C_M)(C_t)(C_F)(C_i)(C_P)$ = 147 psi

Compression brace capacity = 147 psi (1.5")(7.25") = 1599 lb

6. Determine the strength value of the compression members:

Connection capacity = 2130 lb

(See step 1. Capacity in tension and compression are the same)

1599 lb < 2130 lb : 2x8 brace controls compression

Limit to ½ theoretical strength for compression values: See section 6-3.02, *Wood Cross Bracing.*

Reduced compression brace capacity = $\frac{1599 \text{ lb}}{2}$ = 800 lb

7. Calculate the horizontal component of the strength value for the compression member:

8. Calculate the total resisting capacity of the diagonal bracing system:

Summarize Result for 2% Dead Load

Total resisting capacity = C + T = 566 lb + 1506 lb = 2072 lb

Resisting Capacity = 2072 lb > Horizontal Demand Force = 1900 lb

Bracing system is adequate for 2% Dead Load

Summarize Result for Wind Load

Repeat above process for wind load to calculate the Resisting Capacity, using C_D = 1.6 rather than 1.25. All other factors are the same.

The Resisting Capacity for wind load can also be derived by multiplying the resisting capacity for 2% Dead Load (above) by the ratio $\frac{C_D \text{ wind}}{C_D 2\%} = \frac{1.6}{1.25}$

Resisting Capacity = 2072 lb $\left(\frac{1.6}{1.25}\right)$ = 2652 lb > Horizontal Demand Force = 1800 lb

Bracing system is adequate for Wind Load