Appendix D Example 15 - Diagonal Bracing of Single Tier Framed Bent Bolted Connections

Refer to Falsework Manual, Section 6-3, Diagonal Bracing and Section 5-3, Timber Fasteners. This example demonstrates how to determine if the bracing system of a single tier framed bent is adequate. All connections are bolted.

Given Information

Figure D-15-1. Single Tier Framed Bent with Multiple Diagonal Bracing

2\% Dead Load = 4200 lb
Wind Load $=4100 \mathrm{lb}$
Posts:
12×12 Rough Douglas Fir-Larch \#1 (G=0.50)

Diagonal Braces:
2x8 Douglas Fir-Larch \#2 ($\mathrm{G}=0.50$)

Connectors:
End of brace to post: $3 / 4$ " \emptyset Bolt Center of brace to post: $3 / 4$ " \varnothing Bolt
(All bolts in single shear)

Determine if the Bracing System is Adequate

1. Determine the strength of the bolted connection between brace and post:
(See Example Problem \#10 for additional information)
Adjusted connection capacity $\left(Z^{\prime}\right)=1530 \mathrm{lb}$
2. Determine strength of diagonal braces in tension:

Reference design value in tension $F_{t}=575$ psi (NDS supplement table 4A)
Adjustment factors from NDS table 4.3.1:
$C_{D}=1.25 \quad$ Duration Factor for 2\% lateral loading
$\mathrm{C}_{\mathrm{M}}=1.0 \quad$ Wet Service Factor NDS table 4A (Assume $<19 \%$ moisture content)
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS table 2.3.3 (Temp up to $100^{\circ} \mathrm{F}$)
$\mathrm{C}_{\mathrm{F}}=1.2 \quad$ Size Factor NDS Table 4A
$\mathrm{C}_{\mathrm{i}}=1.0 \quad$ Incising Factor NDS 4.3.8
Adjusted design value $\mathrm{Ft}^{\prime}=\mathrm{Ft}(\mathrm{CD})(\mathrm{CM})(\mathrm{Ct})(\mathrm{CF})(\mathrm{Ci})=863 \mathrm{psi}$
Tension capacity $=863 \mathrm{psi}(1.5 ")(7.25 ")=9385 \mathrm{lb}$
3. Determine strength value of the tension members:
$9385 \mathrm{lb}>1530 \mathrm{lb} . \therefore$ Connection controls tension
4. Calculate the horizontal component of the strength value for tension members:

$$
\mathrm{T}=1530 \mathrm{lb}\left(\frac{10}{14.14}\right)=1082 \mathrm{lb}
$$

Figure D-15-2. Geometric Components of Tension Strength Value
5. Determine the capacity of diagonal brace in compression:

Determine connection capacity of diagonal brace in compression:

Connection capacity $=1530 \mathrm{lb}$ (from step 1 above.)
Determine the capacity of diagonal brace in compression:

Reference design value in compression $\mathrm{F}_{\mathrm{C}}=1350$ psi (NDS supplement table 4A)

Adjustment factors from NDS table 4.3.1:
$C_{D}=1.25 \quad$ Duration Factor for 2\% lateral loading
$\mathrm{C}_{\mathrm{M}}=1.0 \quad$ Wet Service Factor NDS table $4 A$ (Assume $<19 \%$ moisture content)
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS table 2.3.3 (Temp up to $100^{\circ} \mathrm{F}$)
$C_{F}=1.05 \quad$ Size Factor NDS Table 4A
$\mathrm{C}_{\mathrm{i}}=1.0 \quad$ Incising Factor NDS 4.3.8
$C_{P}=0.083$ Column Stability Factor NDS 3.7.1 (unsupported length $=\frac{14.14}{2}=$ 7.07')

Adjusted design compression value $\mathrm{F}^{\prime}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{CD}_{\mathrm{D}}\right)\left(\mathrm{Cm}_{\mathrm{M}}\right)\left(\mathrm{C}_{t}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)\left(\mathrm{C}_{\mathrm{P}}\right)=147 \mathrm{psi}$
Compression brace capacity $=147 \mathrm{psi}(1.5 ")(7.25 ")=1599 \mathrm{lb}$

6. Determine the strength value of the compression members

$1599 \mathrm{lb}>1530 \mathrm{lb} \therefore$ connection controls compression
Limit to $1 / 2$ theoretical strength for compression values: See section 6-3.02 Wood Cross Bracing.

Reduced compression brace capacity $=\frac{1530 \mathrm{lb}}{2}=765 \mathrm{lb}$
7. Calculate the horizontal component of the strength value for the compression member

Figure D-15-3. Geometric Components of Compression Strength Value
8. Calculate the total resisting capacity of the diagonal bracing system:

Summarize Result for 2\% Dead Load

or

Figure D-15-4. Total Resisting Capacity for 2\% Dead Load
Total resisting capacity $=\Sigma(\mathrm{C}+\mathrm{T})=541+1082+541+1082=3246 \mathrm{lb}$
Resisting capacity $=3246 \mathrm{lb}<$ Horizontal demand force $=4200 \mathrm{lb}$
Bracing system is inadequate for 2\% Dead Load

Summarize Result for Wind Load

Repeat above process for wind load to calculate the Resisting Capacity, using $C_{D}=1.6$ rather than 1.25. All other factors are the same.

Figure D-15-5. Total Resisting Capacity for Wind Load
The Resisting Capacity for wind load can also be derived by multiplying the resisting capacity for 2% Dead Load (above table) by the ratio $\frac{C_{D} \text { wind }}{C_{D} 2 \%}=\frac{1.6}{1.25}$

Resisting Capacity $=3246 \mathrm{lb}\left(\frac{1.6}{1.25}\right)=4155 \mathrm{lb}>$ Horizontal Demand Force $=4100 \mathrm{lb}$

Bracing system is adequate for Wind Load

Bracing system does not have enough capacity to resist both 2\% Dead Load and Wind Load.

Bracing system is inadequate.

