Appendix D Example 16 - Diagonal Bracing of Multi-Tiered Framed Bents Two Posts

Refer to Falsework Manual, Section 6-3, Diagonal Bracing and Section 5-3, Timber Fasteners. This example demonstrates how to determine if the bracing system of a multi-tiered framed bent is adequate. The tiers are different heights. The brace to post connections are bolted, and the mid brace connections are nailed.

Given Information

2% Dead load $=2700 \mathrm{lb}$
Wind load $=2800 \mathrm{lb}$

Posts:
12×12 Rough Douglas Fir-Larch \#1 ($\mathrm{G}=0.50$)
Diagonal Braces:
$2 x 8$ S4S Douglas Fir-Larch \#2 (G=0.50)
Connectors:
Brace to Post (Top Brace): $1 \times 7 / 8^{\prime \prime} \varnothing$ Bolt
Brace to Post (Middle Brace): $1 \times 1 " \varnothing$ Bolt
Brace to Post (Bottom Brace): $1 \times 1 " \varnothing$ Bolt
Mid Brace Connections (All): 4-16d common nails
(All bolts in single shear)

Figure D-16-1. Multi-Tiered Framed
Bent

Determine if the Bracing System is Adequate

ANALYZE THE TOP TIER

1. Determine the connection capacity between brace and post:

Figure D-16-2. Top Tier Member Lengths and Orientation

Main Member Properties

$I_{m}=12$ in thickness (12x12)
$t_{m}=I_{m}=12$ in
$\theta_{\mathrm{m}}=51.34^{\circ} \quad$ angle between direction of loading \& direction of grain
$G=0.50 \quad$ Specific Gravity
NDS Table 12.3.3

Side Member Properties

$\mathrm{I}_{\mathrm{s}}=1.5$ in thickness (2x8)
$\mathrm{t}_{\mathrm{s}}=\mathrm{l}_{\mathrm{s}}=1.5 \mathrm{in}$
$\theta_{\mathrm{s}}=0^{\circ} \quad$ angle between direction of loading \& direction of grain

Connector Properties

$\mathrm{D}=0.875$ in connector diameter
$F_{y b}=45000$ psi Yield Strength (See Footnote \#2 NDS table 12A)
$F_{\text {e.pll }}=11200 \mathrm{Gpsi}=5600$ psi \quad Dowel Bearing Strength Parallel to Grain (NDS table 12.3.3 footnote 2)
$F_{\text {e.perp }}=\frac{6100 G^{1.45}}{\sqrt{D}}=2387$ psi $\begin{aligned} & \text { Dowel Bearing Strength Perpendicular to Grain } \\ & \text { (NDS table 12.3.3 Footnote 2) }\end{aligned}$
Compare values to NDS Table 12.3.3:
$F_{\text {e.pll }}($ NDS Table 12.3.3 $)=5600 \mathrm{psi}$
$F_{\text {e.perp }}($ NDS Table 12.3.3 $)=2400$ psi
Use calculated value for $F_{\text {perp }}=2387$ psi

Find Dowel Bearing Strength at an Angle to Grain (NDS Section 12.3.4):

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{em}}=\frac{\mathrm{F}_{\mathrm{e} . \mathrm{pII}} F_{\text {perp }}}{\mathrm{F}_{\mathrm{e} . \mathrm{pll}}\left(\sin \left(\theta_{\mathrm{m}}\right)\right)^{2}+\mathrm{F}_{\text {perp }}\left(\cos \left(\theta_{\mathrm{m}}\right)\right)^{2}}=3076 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{es}}=\frac{\mathrm{F}_{\mathrm{e} . \mathrm{pII}} F_{\text {perp }}}{\mathrm{F}_{\mathrm{e} . \mathrm{pII}}\left(\sin \left(\theta_{\mathrm{s}}\right)\right)^{2}+\mathrm{F}_{\text {perp }}\left(\cos \left(\theta_{\mathrm{s}}\right)\right)^{2}}=5600 \mathrm{psi}
\end{aligned}
$$

Find Reduction Term, R_{d} (NDS Table 12.3.1B):
$\theta=\max \left(\theta_{\mathrm{m}}, \theta_{\mathrm{s}}\right)=51.34^{\circ}$
Maximum angle between direction of load and direction of grain for any member in connection (See Table 12.3.1B)
$K_{\theta}=1+0.25 \frac{\theta}{90 \mathrm{deg}}=1.1426$
$R_{d_{-}}=4 K_{\theta}=4.57$
Reduction Term for Yield Mode I_{m} and I_{s}
$R_{d _\|}=3.6 K_{\theta}=4.11$
Reduction Term for Yield Mode II
$R_{\text {d_IIIIIV }}=3.2 \mathrm{~K}_{\theta}=3.66$
Reduction Term for Yield Mode III ${ }_{m}$ IIIs, and IV

Find Yield Limit Equations for Single Shear (NDS Table 12.3.1A):
$R_{e}=\frac{F_{\mathrm{em}}}{F_{\mathrm{es}}}=0.5492$
$R_{t}=\frac{l_{m}}{I_{s}}=8$
$\mathrm{k}_{1}=\frac{\sqrt{R_{e}+2 R_{e}^{2}\left(1+R_{t}+R_{t}^{2}\right)+R_{t}^{2} R_{e}^{3}}-R_{e}\left(1+R_{t}\right)}{\left(1+R_{e}\right)}=1.6047$
$\mathrm{k}_{2}=-1+\sqrt{2\left(1+\mathrm{R}_{\mathrm{e}}\right)+\frac{2 \mathrm{~F}_{\mathrm{yb}}\left(1+2 \mathrm{R}_{\mathrm{e}}\right) \mathrm{D}^{2}}{3 \mathrm{~F}_{\mathrm{em}} \mathrm{m}^{2}}}=0.7909$
$k_{3}=-1+\sqrt{\frac{2\left(1+R_{e}\right)}{R_{e}}+\frac{2 F_{y b}\left(2+R_{e}\right) D^{2}}{3 F_{e m l_{s}}{ }^{2}}}=2.7554$
$Z_{I m}=\frac{D I_{m} F_{e m}}{R_{d_{-}}}=7066 \mathrm{lb}$
NDS Eqn 12.3-1
$Z_{\mathrm{ls}}=\frac{D \mathrm{I}_{\mathrm{s}} \mathrm{F}_{\mathrm{es}}}{\mathrm{R}_{\mathrm{d}_{-} \mathrm{I}}}=1608 \mathrm{lb}$
NDS Eqn 12.3-2
$Z_{\| I}=\frac{k_{1} D_{I_{s}} F_{e s}}{R_{d_{-} \|}}=2867 \mathrm{lb}$
NDS Eqn 12.3-3
$Z_{\text {IIIm }}=\frac{k_{2} D_{m} F_{e m}}{\left(1+2 R_{e}\right) R_{d_{\text {_IIIIIV }}}}=3329 \mathrm{lb}$
$Z_{\text {IIIs }}=\frac{k_{3} D I_{s} F_{e m}}{\left(2+R_{e}\right) R_{d_{\text {_IIIIIV }}}}=1193 \mathrm{lb}$
NDS Eqn 12.3-4

NDS Eqn 12.3-5
$Z_{I V}=\frac{D^{2}}{R_{d_{\text {_IIIIV }}}} \sqrt{\frac{2 F_{e m} F_{y b}}{3\left(1+R_{e}\right)}}=1616 \mathrm{lb}$
NDS Eqn 12.3-6

The controlling value is the minimum single shear capacity from the above equations.
 controls)

Adjustment factors from NDS Table 11.3.1:
$C_{D}=1.25$ Duration Factor for 2\% lateral loading
$\mathrm{C}_{\mathrm{M}}=1.0 \quad$ Wet Service Factor NDS 11.3 .3 (Assume $<19 \%$ moisture content)
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS 11.3 .4 (Temp up to $100^{\circ} \mathrm{F}$)
$\mathrm{C}_{g}=1.0 \quad$ Group Action Factor NDS 11.3.6 (Single Fastener)
$\mathrm{C}_{\Delta}=1.0 \quad$ Geometry Factor NDS 12.5.1 (Assume End Dist. \& spacing meet Tables 12.5.1A and 12.5.1B)
$\mathrm{C}_{\mathrm{eg}}=1.0 \quad$ End Grain Factor NDS 12.5.2 (Does not apply)
$\mathrm{C}_{\text {di }}=1.0$ Diaphragm Factor NDS 12.5.3 (Does not apply)
$\mathrm{C}_{\mathrm{t} n}=1.0 \quad$ Toe Nail Factor NDS 12.5.4 (Does not apply)
Adjusted lateral design value $Z^{\prime}=Z\left(C_{\text {р }}\right)\left(\mathrm{C}_{м}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)=1492 \mathrm{lb}$

2. Determine the capacity of the diagonal brace in tension:

Reference design value in tension $\mathrm{F}_{\mathrm{t}}=575 \mathrm{psi}$ (NDS supplement table 4A)
Adjustment factors from NDS table 4.3.1:
$C_{D}=1.25 \quad$ Duration Factor for 2\% lateral loading
$\mathrm{C}_{\mathrm{M}}=1.0 \quad$ Wet Service Factor NDS table $4 A$ (Assume $<19 \%$ moisture content)

$\mathrm{C}_{\mathrm{t}}=1.0$	Temperature Factor NDS table 2.3.3 (Temp up to $100^{\circ} \mathrm{F}$)
$\mathrm{C}_{\mathrm{F}}=1.2$	Size Factor NDS Table 4A
$\mathrm{C}_{\mathrm{i}}=1.0$	Incising Factor NDS 4.3.8

Adjusted design value $F_{t}^{\prime}=F_{t}(C D)(C M)(C t)(C F)(C i)=863 \mathrm{psi}$
Tension capacity $=863 \mathrm{psi}(1.5 ")(7.25 ")=9385 \mathrm{lb}$
3. Determine the strength value of the tension members:
$9385 \mathrm{lb}>1492 \mathrm{lb}$. Connection strength controls
4. Calculate the horizontal component of the strength value for the tension members:

Figure D-16-3. Geometric Components of Tension Strength Value for Top Tier
5. Determine the capacity of diagonal brace in compression:

First check adequacy of the connection to reduce the unsupported length of compression member (See Section 6-3.02, Wood Cross Bracing):
(See Example Problem \#14 Step 5 for additional information)
Connection capacity $=300 \mathrm{lb}>250 \mathrm{lb}$ (minimum required per section 6-3.02)
Check cross brace capacity in compression:

Reference design value in compression $\mathrm{F}_{\mathrm{c}}=1350 \mathrm{psi}$ (NDS supplement table 4A)

Adjustment factors from NDS table 4.3.1:
$C_{D}=1.25$ Duration Factor for 2\% lateral loading
$\mathrm{C}_{\mathrm{M}}=1.0$ Wet Service Factor NDS table 4A (Assume $<19 \%$ moisture content)
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS table 2.3.3 (Temp up to $100^{\circ} \mathrm{F}$)
$C_{F}=1.05$ Size Factor NDS Table 4A
$\mathrm{C}_{\mathrm{i}}=1.0 \quad$ Incising Factor NDS 4.3.8

$$
\mathrm{C}_{\mathrm{p}}=\frac{1+\left(\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right)}{2 \mathrm{c}}\right]^{2}-\frac{\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}}{\mathrm{c}}=0.1003} \begin{aligned}
& \text { Column Stability } \\
& \text { Factor } \\
& \text { NDS Eqn. 3.7-1 }
\end{aligned}
$$

where:
$l_{\mathrm{e}} \quad=(12.81 \mathrm{ft} / 2)=6.405 \mathrm{ft}=76.86 \mathrm{in} \quad$ unsupported length
$\mathrm{d}=1.5$ in member width, weak direction
$\mathrm{E}_{\text {min }}=580,000 \mathrm{psi} \quad$ NDS supplement table 4A
$\mathrm{F}_{\mathrm{CE}}=\frac{0.822 \mathrm{E}_{\text {min }}^{\prime}}{\left(\mathrm{I}_{\mathrm{e}} / \mathrm{d}\right)^{2}}=182$
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{C}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)=1772 \mathrm{psi} \quad$ Adjusted design compression value except C_{p}
C $\quad=0.8$ for sawn lumber
NDS 3.7.1

NDS 3.7.1

Adjusted design compression value $\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)\left(\mathrm{C}_{\mathrm{p}}\right)=177.7 \mathrm{psi}$
Compression brace capacity $=177.7 \mathrm{psi}(1.5 ")(7.25 ")=1932 \mathrm{lb}$

6. Determine the strength value of the compression members:

Connection capacity $=1492 \mathrm{lb}$
(See step 1. Capacity in tension and compression are the same)
$1932 \mathrm{lb}>1492 \mathrm{lb} \therefore$ connection controls compression
Limit to $1 / 2$ theoretical strength for compression values: See Section 6-3.02, Wood Cross Bracing.
Reduced compression brace capacity $=\frac{1492 \mathrm{lb}}{2}=746 \mathrm{lb}$
7. Calculate the horizontal component of the strength value for the compression member:

$$
\mathrm{C}=746 \cos \alpha=582 \mathrm{lb}
$$

Figure D-16-4. Geometric Components of Compression Strength Value for Top Tier
8. Calculate the total resisting capacity of the top tier of bracing:

Total resisting capacity $=\Sigma(C+T)=582+1165=1747 \mathrm{lb}$

ANALYZE THE MIDDLE TIER

1. Determine the connection capacity between brace and post:

10
Figure D-16-5. Middle Tier Member Lengths and Orientation

Main Member Properties
$I_{m}=12$ in thickness (12x12)
$t_{m}=I_{m}=12 \mathrm{in}$
$\theta_{\mathrm{m}}=39.806^{\circ} \quad$ angle between direction of loading \& direction of grain
$G=0.50 \quad$ Specific Gravity
NDS Table 12.3.3

Side Member Properties
$\mathrm{I}_{\mathrm{s}}=1.5$ in thickness (2x8)
$\mathrm{t}_{\mathrm{s}}=\mathrm{l}_{\mathrm{s}}=1.5 \mathrm{in}$
$\theta_{\mathrm{s}}=0^{\circ} \quad$ angle between direction of loading \& direction of grain

Connector Properties

$$
\begin{aligned}
& D=1 \text { in } \\
& F_{y b}=45000 \mathrm{psi} \\
& F_{\text {e.pll }}=11200 \mathrm{G} \mathrm{psi}=5600 \mathrm{psi} \\
& F_{\text {e.perp }}=\frac{6100 \mathrm{G}^{1.45}}{\sqrt{\frac{\mathrm{D}}{\mathrm{in}}}}=2233 \mathrm{psi}
\end{aligned}
$$

connector diameter
Yield Strength (See Footnote \#2 NDS table 12A)
Dowel Bearing Strength Parallel to Grain
Dowel Bearing Strength Perpendicular to Grain
(See Footnote \#2 NDS table 12A)

Compare values to NDS Table 12.3.3:
$F_{\text {e.pll }}($ NDS Table 12.3.3 $)=5600 \mathrm{psi}$
$F_{\text {e.perp }(\text { NDS Table 12.3.3 })}=2400$ psi
Use calculated value for $F_{\text {perp }}=2233$ psi
Find Dowel Bearing Strength at an Angle to Grain (NDS Section 12.3.4):
$F_{e m}=\frac{F_{\text {e.plI }} F_{\text {perp }}}{F_{\text {e.pll }}\left(\sin \left(\theta_{\mathrm{m}}\right)\right)^{2}+F_{\text {perp }}\left(\cos \left(\theta_{\mathrm{m}}\right)\right)^{2}}=3461 \mathrm{psi}$
$F_{e s}=\frac{F_{\text {e.pII }} F_{\text {perp }}}{F_{\text {e.pII }}\left(\sin \left(\theta_{\mathrm{s}}\right)\right)^{2}+\mathrm{F}_{\text {perp }}\left(\cos \left(\theta_{\mathrm{s}}\right)\right)^{2}}=5600 \mathrm{psi}$
Use same methodology as top tier to find controlling yield mode and adjusted lateral design value:
$Z_{\text {control }}=\min \left(Z_{I m}, Z_{I s}, Z_{I I}, Z_{I I I m}, Z_{\text {IIIs }}, Z_{\text {IV }}\right)=1626 \mathrm{lb}$
(Yield Mode IIIs controls)
Adjusted lateral design value $Z^{\prime}=Z\left(C_{D}\right)\left(C_{M}\right)\left(C_{t}\right)\left(C_{g}\right)\left(C_{\Delta}\right)=1626(1.25)=2033 \mathrm{lb}$

2. Determine the capacity of the diagonal brace in tension

By inspection, same as top tier. See top tier, step \#2.
Adjusted design value $\mathrm{Ft}^{\prime}=\mathrm{F}_{\mathrm{t}}\left(\mathrm{CD}_{\mathrm{D}}\right)\left(\mathrm{Cm}_{\mathrm{m}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)=863 \mathrm{psi}$
Tension capacity $=863 \mathrm{psi}\left(1.5^{\prime \prime}\right)(7.25 ")=9385 \mathrm{lb}$

3. Determine the strength value of the tension members

$9385 \mathrm{lb}>2033 \mathrm{lb} . \therefore$ Connection strength controls
4. Calculate the horizontal component of the strength value for the tension members

Figure D-16-6. Geometric Components of Tension Strength Value for Middle Tier
5. Determine the capacity of diagonal brace in compression:

Adequacy of connection to reduce unsupported length of compression member was checked previously, see Step 5 of Top Tier.

Check cross brace capacity in compression:
Reference design value in compression $\mathrm{F}_{\mathrm{c}}=1350$ psi (NDS supplement table 4A)

Adjustment factors from NDS table 4.3.1:
$C_{D}=1.25$ Duration Factor for 2\% lateral loading
$\mathrm{C}_{\mathrm{M}}=1.0$ Wet Service Factor NDS table 4A (Assume < 19\% moisture content)
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS table 2.3.3 (Temp up to 100° F)
$C_{F}=1.05$ Size Factor NDS Table 4A
$C_{i}=1.0 \quad$ Incising Factor NDS 4.3.8
$C_{p}=\frac{1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}}{ }^{*}\right)}{2 \mathrm{c}}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}}{ }^{*}\right)}{2 \mathrm{c}}\right]^{2}-\frac{\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}}{ }^{*}}{\mathrm{c}}=0.0679} \begin{aligned} & \text { Column Stability } \\ & \text { Factor } \\ & \text { NDS Eqn. 3.7-1 }\end{aligned}$
where:

$$
\begin{array}{lll}
\mathrm{I}_{\mathrm{e}} & =(15.62 ' / 2)=7.81 \mathrm{ft}=93.72 \mathrm{in} & \text { unsupported length } \\
\mathrm{d} & =1.5 \mathrm{in} & \text { member width, weak direction } \\
\mathrm{E}_{\min }=580,000 \mathrm{psi} & \text { NDS supplement table } 4 A
\end{array}
$$

$F_{C E}=\frac{0.822 \mathrm{E}_{\text {min }}}{\left(\mathrm{I}_{\mathrm{e}} / \mathrm{d}\right)^{2}}=122$
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{CD}_{\mathrm{D}}\right)\left(\mathrm{Cm}_{\mathrm{m}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)=1772 \mathrm{psi}$
c $\quad=0.8$ for sawn lumber

NDS 3.7.1
Adjusted design compression value except C_{p}
NDS 3.7.1

Adjusted design compression value $\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{CD}_{\mathrm{D}}\right)\left(\mathrm{Cm}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)\left(\mathrm{C}_{\mathrm{p}}\right)=120.4 \mathrm{psi}$
Compression brace capacity $=120.4 \mathrm{psi}\left(1.5^{\prime \prime}\right)(7.25 ")=1309 \mathrm{lb}$
6. Determine the strength value of the compression members:

Connection capacity $=2033 \mathrm{lb}$
(See step 1. Capacity in tension and compression are the same)
$1309 \mathrm{lb}<2033 \mathrm{lb} \therefore$ member controls compression
Limit to $1 / 2$ theoretical strength for compression values: See section 6-3.02,
Wood Cross Bracing.
Reduced compression brace capacity $=\frac{1309 \mathrm{lb}}{2}=655 \mathrm{lb}$
7. Calculate the horizontal component of the strength value for the compression member:

Figure D-16-7. Geometric Components of Compression Strength Value for Middle Tier
8. Calculate the total resisting capacity of the middle tier of bracing:
$\underline{\underline{\text { Total resisting capacity }}=\Sigma(\mathrm{C}+\mathrm{T})=419+1301=1720 \mathrm{lb}}$

ANALYZE THE BOTTOM TIER

Since the bottom tier is identical to the middle tier, the resisting capacity is equal to the middle tier. By inspection, $\Sigma(\mathrm{C}+\mathrm{T})=1720 \mathrm{lb}$.

Summary

Summarize Results for 2\% Dead Load:

Tier	Resisting Capacity	Collapsing Force $=2700 \mathrm{lb}$
Top	1747 lb	No Good
Middle	1720 lb	No Good
Bottom	1720 lb	No Good

Summarize Results for Wind Load:

Repeat above process for wind load to calculate the Resisting Capacity, using $\mathrm{C}_{\mathrm{D}}=1.6$ rather than 1.25. All other factors are the same.

The Resisting Capacity for wind load can also be derived by multiplying the resisting capacity for 2% Dead Load (above table) by the factor $\frac{C_{D} \text { wind }}{C_{D} 2 \%}=\frac{1.6}{1.25}$
$\Sigma(\mathrm{C}+\mathrm{T})$ Top Tier $=1747 \mathrm{lb}\left(\frac{1.6}{1.25}\right)=2236 \mathrm{lb}$
$\Sigma(\mathrm{C}+\mathrm{T})$ Middle \& Bottom Tiers $=1720 \mathrm{lb}\left(\frac{1.6}{1.25}\right)=2202 \mathrm{lb}$

Tier	Resisting Capacity	Collapsing Force = 2800 lb
Top	2236 lb	No Good
Middle	2202 lb	No Good
Bottom	2202 lb	No Good

Bracing system is inadequate.

