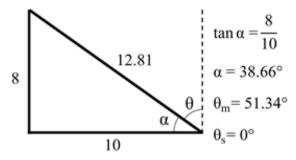


Appendix D Example 17 – Diagonal Bracing of Multi-Tiered Framed Bents – Multiple Posts

Refer to *Falsework Manual,* Section 6-3, *Diagonal Bracing* and Section 5-3, *Timber Fasteners*. This example demonstrates how to determine if the bracing system of a multi-tiered framed bent is adequate. The falsework bent has multiple posts, and the tiers are different heights. The brace to post connections and mid brace connections are bolted.

Given Information



Determine if the Bracing System is Adequate

ANALYZE THE TOP TIER IN BRACING

1. Determine the connection capacity between brace and post

Main Member Properties		Side Member Properties		
l _m = 12 in t _m = l _m = 12 in	thickness (12x	12)	l _s = 1.5 in t _s = l _s = 1.5 in	thickness (2x8)
θ _m = 51.34° G = 0.50	angle between direction of loa direction of gra Specific Gravit NDS Table 12.	ding & nin y	θ _s = 0°	angle between direction of loading & direction of grain
Connector Prop	<u>erties</u>			
D = 0.75 in		connec	ctor diameter	
F _{yb} = 45000 psi		Yield S Tables	•	ootnote #2 of Bolt
F _{e.pll} = 11200G	osi = 5600 psi	Dowel	Bearing Streng	th Parallel to Grain
$F_{e,perp} = \frac{6100G^1}{\sqrt{D}}$.45 — = 2578 psi	Dowel Grain	Bearing Streng	th Perpendicular to

Compare values to NDS Table 12.3.3:

F_{e.pll} (NDS Table 12.3.3) = 5600 psi

F_{e.perp (NDS Table 12.3.3)} = 2600 psi

Use calculated value for $\mathsf{F}_{\mathsf{perp}}$ = 2578 psi

Find Dowel Bearing Strength at an Angle to Grain (NDS Section 12.3.4):

$$F_{em} = \frac{F_{e.pll}F_{perp}}{F_{e.pll}(\sin(\theta_m))^2 + F_{perp}(\cos(\theta_m))^2} = 3266 \text{ psi}$$
$$F_{es} = \frac{F_{e.pll}F_{perp}}{F_{e.pll}(\sin(\theta_s))^2 + F_{perp}(\cos(\theta_s))^2} = 5600 \text{ psi}$$

Find Reduction Term, Rd (NDS Table 12.3.1B):

$\theta = \max (\theta_m, \theta_s) = 51.34^{\circ}$	Maximum angle between direction of load and direction of grain for any member in connection (See Table 12.3.1B)
$K_{\theta} = 1 + 0.25 \frac{\theta}{90 \text{ deg}} = 1.1426$	
$R_{d_1} = 4 K_{\theta} = 4.57$	Reduction Term for Yield Mode I_m and I_s
$R_{d_{II}} = 3.6 K_{\theta} = 4.11$	Reduction Term for Yield Mode II
$R_{d_III.IV}$ = 3.2 K ₀ = 3.66	Reduction Term for Yield Mode III_m , III_s , and IV

Find Yield Limit Equations for Single Shear (NDS Table 12.3.1A):

$$R_{e} = \frac{F_{em}}{F_{es}} = 0.5832$$

$$R_{t} = \frac{I_{m}}{I_{s}} = 8$$

$$k_{1} = \frac{\sqrt{R_{e} + 2R_{e}^{2}(1 + R_{t} + R_{t}^{2}) + R_{t}^{2}R_{e}^{3}} - R_{e}(1 + R_{t})}{(1 + R_{e})} = 1.6956$$

$$k_{2} = -1 + \sqrt{2(1 + R_{e}) + \frac{2F_{yb}(1 + 2R_{e})D^{2}}{3F_{em}I_{m}^{2}}} = 0.8011$$

APRIL 2020

APPENDIX D-17, DIAGONAL BRACING OF MULTI-TIERED FRAMED BENTS – MULTIPLE POSTS

$$k_{3} = -1 + \sqrt{\frac{2(1 + R_{e})}{R_{e}} + \frac{2F_{yb}(2 + R_{e})D^{2}}{3F_{em}l_{s}^{2}}} = 2.3707$$

$$Z_{Im} = \frac{DI_{m}F_{em}}{R_{d_{-}I}} = 6431 \text{ lb} \qquad NDS \ Eqn \ 12.3-1$$

$$Z_{Is} = \frac{DI_{s}F_{es}}{R_{d_{-}I}} = 1378 \text{ lb} \qquad NDS \ Eqn \ 12.3-2$$

$$Z_{II} = \frac{k_{1}DI_{s}F_{es}}{R_{d_{-}II}} = 2597 \text{ lb} \qquad NDS \ Eqn \ 12.3-3$$

$$Z_{IIIm} = \frac{k_{2}DI_{m}F_{em}}{(1 + 2R_{e})R_{d_{-}III.IV}} = 2973 \text{ lb} \qquad NDS \ Eqn \ 12.3-4$$

$$Z_{IIIs} = \frac{k_{3}DI_{s}F_{em}}{(2 + R_{e})R_{d_{-}III.IV}} = 922 \text{ lb} \qquad NDS \ Eqn \ 12.3-5$$

$$Z_{IV} = \frac{D^{2}}{R_{d_{-}III.IV}} \sqrt{\frac{2F_{em}F_{yb}}{3(1 + R_{e})}} = 1210 \text{ lb} \qquad NDS \ Eqn \ 12.3-6$$

The controlling value is the minimum single shear capacity from the above equations.

Z_{control} = min (Z_{Im}, Z_{Is}, Z_{II}, Z_{IIIm}, Z_{IIIs}, Z_{IV}) = 922 lb (Yield Mode IIIs controls)

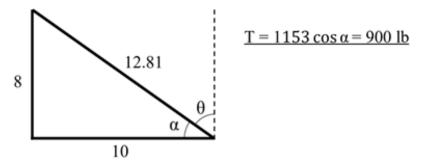
Adjustment factors from NDS Table 11.3.1:

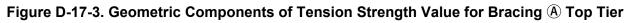
C _D = 1.25	Duration Factor for 2% lateral loading	
C _M = 1.0	Wet Service Factor NDS 11.3.3 (Assume < 19% moisture content)	
$C_t = 1.0$	Temperature Factor NDS 11.3.4 (Temp up to 100°F)	
C _g = 1.0	Group Action Factor NDS 11.3.6 (Single Fastener)	
C _∆ = 1.0	Geometry Factor NDS 12.5.1 (Assume End Dist. & spacing meet Tables 12.5.1A and 12.5.1B)	
C _{eg} = 1.0	End Grain Factor NDS 12.5.2 (Does not apply)	
C _{di} = 1.0	Diaphragm Factor NDS 12.5.3 (Does not apply)	
C _{tn} = 1.0	Toe Nail Factor NDS 12.5.4 (Does not apply)	
Adjusted lateral design value Z' = $Z(C_D)(C_M)(C_t)(C_g)(C_\Delta)$ = 1153 lb		

2. Determine the capacity of the diagonal brace in tension

Reference design value in tension Ft = 575 psi (NDS supplement table 4A)

Adjustment factors from NDS table 4.3.1:


C _D = 1.25	Duration Factor for 2% lateral loading	
C _M = 1.0	<i>Wet Service Factor NDS table 4A (Assume < 19% moisture content)</i>	
Ct = 1.0	Temperature Factor NDS table 2.3.3 (Temp up to 100°F)	
CF = 1.2	Size Factor NDS Table 4A	
C _i = 1.0	Incising Factor NDS 4.3.8	
Adjusted design value Ft' = Ft (CD)(CM)(Ct)(CF)(Ci) = 862.5 psi		


Tension capacity = 862.5 psi(1.5")(7.25") = 9380 lb

3. Determine the strength value of the tension members

9380 lb > 1153 lb ... Connection strength controls

4. Calculate the horizontal component of the strength value for the tension members

5. Determine the capacity of diagonal brace in compression

Check cross brace capacity in compression:

Reference design value in compression F_c = 1350 psi (NDS supplement table 4A)

Adjustment factors from NDS table 4.3.1:

CD	= 1.25	Duration Factor for 2% lateral loading
См	= 1.0	<i>Wet Service Factor NDS table 4A (Assume < 19% moisture content)</i>
Ct	= 1.0	Temperature Factor NDS table 2.3.3 (Temp up to 100°F)

APPENDIX D-17, D	DIAGONAL BRACING OF MULTI-TIERED FRAMED	April 2020
	BENTS – MULTIPLE POSTS	
$C_{F} = 1.05$	Size Factor NDS Table 4A	

$$C_{i} = 1.0$$

$$C_{i} = 1.0$$

$$Incising Factor NDS 4.3.8$$

$$Column Stability$$

$$C_{p} = \frac{1 + (F_{cE}/F_{c}^{*})}{2c} - \sqrt{\left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}} = 0.1003$$

$$NDS Eqn. 3.7-1$$

where:

Ie=
$$(12.81'/2) = 6.405' = 76.86"$$
unsupported lengthd= 1.5"member width, weak directionEmin= 580,000 psiNDS supplement table 4AFcE= $\frac{0.822E_{min}'}{(I_e/d)^2} = 182$ NDS 3.7.1Fc*= Fc (CD)(CM)(Ct)(CF)(Ci) = 1772 psiAdjusted design compression
value except Cpc= 0.8 for sawn lumberNDS 3.7.1

Adjusted design compression value $F_c' = F_c (C_D)(C_M)(C_f)(C_f)(C_p) = 177.7 \text{ psi}$

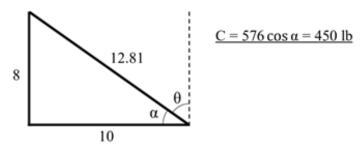
Compression brace capacity = 177.7 psi (1.5")(7.25") = 1932 lb

6. Determine the strength value of the compression members

Connection capacity = 1153 lb

(See step 1. Capacity in tension and compression are the same)

1932 lb > 1153 lb \therefore connection controls compression

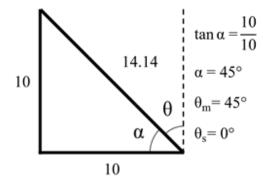

Limit to 1/2 theoretical strength for compression values: See section 6-3.02, *Wood Cross Bracing.*

Reduced compression brace capacity = $\frac{1153 \text{ lb}}{2}$ = 576 lb

7. Calculate the horizontal component of the strength value for the compression member

APRIL 2020

APPENDIX D-17, DIAGONAL BRACING OF MULTI-TIERED FRAMED BENTS – MULTIPLE POSTS



8. Calculate the total resisting capacity of the top tier of bracing <u>Total resisting capacity = $\Sigma(C+T) = 450 + 900 = 1350 \text{ lb}$ </u>

ANALYZE THE MIDDLE TIER IN BRACING $\ensuremath{\,\textcircled{}}$

1. Determine the connection capacity between brace and post:

Main Member Properties		Side Member Properties	
I _m = 12 in t _m = I _m = 12 in	thickness (12x12)	l _s = 1.5 in t _s = l _s = 1.5 in	thickness (2x8)
θ _m = 45°	angle between direction of loading & direction of grain	$\theta_s = 0^{\circ}$	angle between direction of loading & direction of grain
G = 0.50	Specific Gravity NDS Table 12.3.3		

Connector Properties

By inspection, same properties as previous tier. $F_{e.pll} = 5600 \text{ psi}$ = 2578 psi

Find Dowel Bearing Strength at an Angle to Grain (NDS Section 12.3.4):

$$F_{em} = \frac{F_{e.pll}F_{perp}}{F_{e.pll}(\sin(\theta_m))^2 + F_{perp}(\cos(\theta_m))^2} = 3531 \text{ psi}$$
$$F_{es} = \frac{F_{e.pll}F_{perp}}{F_{e.pll}(\sin(\theta_s))^2 + F_{perp}(\cos(\theta_s))^2} = 5600 \text{ psi}$$

Find Reduction Term, Rd (NDS Table 12.3.1B):

$\theta = \max(\theta_{m}, \theta_{s}) = 45^{\circ}$	Maximum angle between direction of load and direction of grain for any member in connection (See Table 12.3.1B)
$K_{\theta} = 1 + 0.25 \frac{\theta}{90 \text{ deg}} = 1.125$	
$R_{d_1} = 4 K_{\theta} = 4.5$	Reduction Term for Yield Mode I_m and I_s
$R_{d_{II}}$ = 3.6 K ₀ = 4.05	Reduction Term for Yield Mode II
$R_{d_III.IV}$ = 3.2 K ₀ = 3.6	Reduction Term for Yield Mode III _m , III _s , and IV

Find Yield Limit Equations for Single Shear (NDS Table 12.3.1A):

$$R_{e} = \frac{F_{em}}{F_{es}} = 0.6305$$

$$R_{t} = \frac{I_{m}}{I_{s}} = 8$$

$$k_{1} = \frac{\sqrt{R_{e} + 2R_{e}^{2}(1 + R_{t} + R_{t}^{2}) + R_{t}^{2}R_{e}^{3}} - R_{e}(1 + R_{t})}{(1 + R_{e})} = 1.8209$$

$$k_{2} = -1 + \sqrt{2(1 + R_{e}) + \frac{2F_{yb}(1 + 2R_{e})D^{2}}{3F_{em}I_{m}^{2}}} = 0.8265$$

APRIL 2020

APPENDIX D-17, DIAGONAL BRACING OF MULTI-TIERED FRAMED BENTS – MULTIPLE POSTS

$$k_{3} = -1 + \sqrt{\frac{2(1 + R_{e})}{R_{e}} + \frac{2F_{yb}(2 + R_{e})D^{2}}{3F_{em}l_{s}^{2}}} = 2.2802$$

$$Z_{Im} = \frac{DI_{m}F_{em}}{R_{d_{-}I}} = 7062 \text{ lb} \qquad NDS \ Eqn \ 12.3-1$$

$$Z_{Is} = \frac{DI_{s}F_{es}}{R_{d_{-}I}} = 1400 \text{ lb} \qquad NDS \ Eqn \ 12.3-2$$

$$Z_{II} = \frac{k_{1}DI_{s}F_{es}}{R_{d_{-}II}} = 2833 \text{ lb} \qquad NDS \ Eqn \ 12.3-3$$

$$Z_{IIIm} = \frac{k_{2}DI_{m}F_{em}}{(1 + 2R_{e})R_{d_{-}III.IV}} = 3227 \text{ lb} \qquad NDS \ Eqn \ 12.3-4$$

$$Z_{IIIs} = \frac{k_{3}DI_{s}F_{em}}{(2 + R_{e})R_{d_{-}III.IV}} = 956 \text{ lb} \qquad NDS \ Eqn \ 12.3-5$$

$$Z_{IV} = \frac{D^{2}}{R_{d_{-}III.IV}} \sqrt{\frac{2F_{em}F_{yb}}{3(1 + R_{e})}} = 1259 \text{ lb} \qquad NDS \ Eqn \ 12.3-6$$

The controlling value is the minimum single shear capacity from the above equations.

 $Z_{control} = min (Z_{Im}, Z_{Is}, Z_{II}, Z_{IIIm}, Z_{IIIs}, Z_{IV}) = 956 lb$ (Yield Mode IIIs controls) Adjustment factors from NDS Table 11.3.1:

C _D = 1.25	Duration Factor for 2% lateral loading
См = 1.0	Wet Service Factor NDS 11.3.3 (Assume < 19% moisture content)
$C_t = 1.0$	Temperature Factor NDS 11.3.4 (Temp up to 100°F)
C _g = 1.0	Group Action Factor NDS 11.3.6 (Single Fastener)
C _∆ = 1.0	Geometry Factor NDS 12.5.1 (Assume End Dist. & spacing meet
	Tables 12.5.1A and 12.5.1B)
C _{eg} = 1.0	End Grain Factor NDS 12.5.2 (Does not apply)
C _{di} = 1.0	Diaphragm Factor NDS 12.5.3 (Does not apply)
C _{tn} = 1.0	Toe Nail Factor NDS 12.5.4 (Does not apply)

Adjusted lateral design value $Z' = Z(C_D)(C_M)(C_t)(C_g)(C_{\Delta}) = 1196$ lb

2. Determine the capacity of the diagonal brace in tension

By inspection, same as previous tier. See top tier, step #2. Adjusted design value F_t ' = $F_t (C_D)(C_M)(Ct)(C_F)(C_i)$ = 862.5 psi Tension capacity = 862.5 psi(1.5")(7.25") = 9380 lb

3. Determine the strength value of the tension members

9380 lb > 1196 lb \therefore Connection strength controls

4. Calculate the horizontal component of the strength value for the tension members

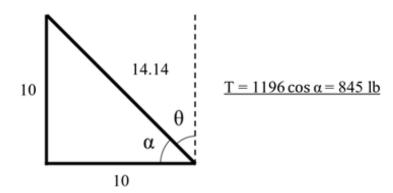


Figure D-17-6. Geometric Components of Tension Strength Value for Bracing (A) Middle Tier

5. Determine the capacity of diagonal brace in compression

Check cross brace capacity in compression:

Reference design value in compression F_c = 1350 psi (NDS supplement table 4A)

Adjustment factors from NDS table 4.3.1:

APRIL 2020

where:

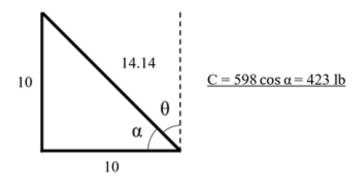
le	= (14.14'/2) = 7.071' = 84.85"	unsupported length
d	= 1.5"	member width, weak direction
E_{min}	= 580,000 psi	NDS supplement table 4A
F_{cE}	$=\frac{0.822E_{min}}{(I_e/d)^2}=149$	NDS 3.7.1
Fc [*]	= F _c (C _D)(C _M)(C _t)(C _F)(C _i) = 1772 psi	Adjusted design compression value except C _p
С	= 0.8 for sawn lumber	NDS 3.7.1

Adjusted design compression value F_c ' = $F_c (C_D)(C_M)(C_f)(C_F)(C_i)(C_p)$ = 146.4 psi

Compression brace capacity = 146.4 psi (1.5")(7.25") = 1592 lb

6. Determine the strength value of the compression members

Connection capacity = 1196 lb


(See step 1. Capacity in tension and compression are the same)

1196 lb < 1592 lb ∴ connection controls compression

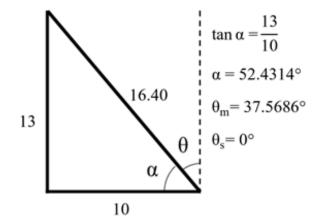
Limit to ½ theoretical strength for compression values: See section 6-3.02, *Wood Cross Bracing.*

Reduced compression brace capacity = $\frac{1196 \text{ lb}}{2}$ = 598 lb

7. Calculate the horizontal component of the strength value for the compression member

8. Calculate the total resisting capacity of the top tier of bracing

Total resisting capacity = $\Sigma(C+T)$ = 423 + 845 = 1268 lb


ANALYZE THE BOTTOM TIER IN BRACING A

By inspection, middle tier and bottom tier are the same.

Total resisting capacity = 1268 lb

ANALYZE THE TOP TIER IN BRACING B

1. Determine the connection capacity between brace and post

Main Member Properties		Side Member Properties	
I _m = 12 in	thickness (12x12)	l₅ = 1.5 in	thickness (2x8)
$t_m = I_m = 12$ in		t _s = I _s = 1.5 in	
θ _m = 37.56°	angle between direction of loading & direction of grain	$\theta_s = 0^{\circ}$	angle between direction of loading & direction of grain
G = 0.50	Specific Gravity NDS Table 12.3.3		

Connector Properties

By inspection, same properties as previous tiers. $F_{e.pll} = 5600 \text{ psi}$ $F_{e.perp} = 2578 \text{ psi}$

Find Dowel Bearing Strength at an Angle to Grain (NDS Section 12.3.4)

$$F_{em} = \frac{F_{e.pll}F_{perp}}{F_{e.pll}(\sin(\theta_m))^2 + F_{perp}(\cos(\theta_m))^2} = 3900 \text{ psi}$$
$$F_{es} = \frac{F_{e.pll}F_{perp}}{F_{e.pll}(\sin(\theta_s))^2 + F_{perp}(\cos(\theta_s))^2} = 5600 \text{ psi}$$

Find Reduction Term, Rd (NDS Table 12.3.1B):

$\theta = \max (\theta_m, \theta_s) = 37.5686^{\circ}$	Maximum angle between direction of load and direction of grain for any member in connection (See Table 12.3.1B)
$K_{\theta} = 1 + 0.25 \frac{\theta}{90 \text{ deg}} = 1.1044$	
$R_{d_1} = 4 K_{\theta} = 4.42$	Reduction Term for Yield Mode I_m and I_s
$R_{d_{II}} = 3.6 K_{\theta} = 3.98$	Reduction Term for Yield Mode II
$R_{d_III.IV}$ = 3.2 K ₀ = 3.53	Reduction Term for Yield Mode III _m , III _s , and IV

Find Yield Limit Equations for Single Shear (NDS Table 12.3.1A):

$$R_{e} = \frac{F_{em}}{F_{es}} = 0.6965$$

$$R_{t} = \frac{I_{m}}{I_{s}} = 8$$

$$k_{1} = \frac{\sqrt{R_{e} + 2R_{e}^{2}(1 + R_{t} + R_{t}^{2}) + R_{t}^{2}R_{e}^{3}} - R_{e}(1 + R_{t})}{(1 + R_{e})} = 1.9940$$

$$k_{2} = -1 + \sqrt{2(1 + R_{e})} + \frac{2F_{yb}(1 + 2R_{e})D^{2}}{3F_{em}I_{m}^{2}} = 0.8614$$

$$k_{3} = -1 + \sqrt{\frac{2(1 + R_{e})}{R_{e}}} + \frac{2F_{yb}(2 + R_{e})D^{2}}{3F_{em}I_{s}^{2}} = 2.1712$$

$$Z_{Im} = \frac{DI_{m}F_{em}}{R_{d,I}} = 7947 \text{ lb}$$
NDS Eqn 12.3-1

$$Z_{ls} = \frac{DI_s F_{es}}{R_{d_l}} = 1426 \text{ lb}$$
 NDS Eqn 12.3-2

$$Z_{II} = \frac{1}{R_{d_{II}}} = 3160 \text{ lb}$$
 NDS Eqn 12.3-3

$$Z_{\text{IIIm}} = \frac{k_2 D I_{\text{m}} F_{\text{em}}}{(1 + 2R_{\text{e}}) R_{\text{d}}_{\text{III.IV}}} = 3576 \text{ lb}$$
 NDS Eqn 12.3-4

$$Z_{IIIs} = \frac{k_3 DI_s F_{em}}{(2 + R_e) R_{d_III.IV}} = 1000 \text{ lb}$$
 NDS Eqn 12.3-5

$$Z_{IV} = \frac{D^2}{R_{d_III.IV}} \sqrt{\frac{2F_{em}F_{yb}}{3(1 + R_e)}} = 1322 \text{ lb}$$

The controlling value is the minimum single shear capacity from the above equations.

 $Z_{control} = min (Z_{Im}, Z_{Is}, Z_{II}, Z_{IIIm}, Z_{IIIs}, Z_{IV}) = 1000 lb$ (Yield Mode IIIs controls) Adjustment factors from NDS Table 11.3.1:

C _D = 1.25	Duration Factor for 2% lateral loading
C _M = 1.0	Wet Service Factor NDS 11.3.3 (Assume < 19% moisture content)
Ct = 1.0	Temperature Factor NDS 11.3.4 (Temp up to 100°F)
C _g = 1.0	Group Action Factor NDS 11.3.6 (Single Fastener)
C _∆ = 1.0	Geometry Factor NDS 12.5.1 (Assume End Dist. & spacing meet Tables 12.5.1A and 12.5.1B)
C _{eg} = 1.0	End Grain Factor NDS 12.5.2 (Does not apply)
C _{di} = 1.0	Diaphragm Factor NDS 12.5.3 (Does not apply)
C _{tn} = 1.0	Toe Nail Factor NDS 12.5.4 (Does not apply)

Adjusted lateral design value Z' = $Z(C_D)(C_M)(C_t)(C_g)(C_{\Delta})$ = 1250 lb

2. Determine the capacity of the diagonal brace in tension

By inspection, same as previous tiers. See top tier, step #2. Adjusted design value Ft' = Ft (CD)(CM)(Ct)(CF)(Ci) = 862.5 psi Tension capacity = 862.5 psi(1.5")(7.25") = 9380 lb

3. Determine the strength value of the tension members

9380 lb > 1250 lb ... Connection strength controls

NDS Eqn 12.3-6

4. Calculate the horizontal component of the strength value for the tension members

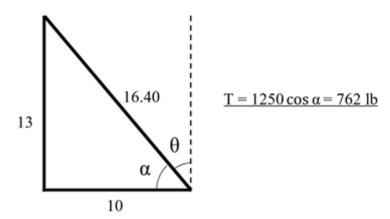


Figure D-17-9. Geometric Components of Tension Strength Value for Bracing B Top Tier

5. Determine the capacity of diagonal brace in compression

Check cross brace capacity in compression:

Reference design value in compression F_c = 1350 psi (NDS supplement table 4A)

Adjustment factors from NDS table 4.3.1:

- C_D = 1.25 Duration Factor for 2% lateral loading
- C_M = 1.0 Wet Service Factor NDS table 4A (Assume < 19% moisture content)
- Ct = 1.0 Temperature Factor NDS table 2.3.3 (Temp up to 100°F)
- C_F = 1.05 Size Factor NDS Table 4A
- $C_i = 1.0$ Incising Factor NDS 4.3.8

$$= \frac{1 + (F_{cE}/F_{c}^{*})}{2c} - \frac{1}{2c} - \frac{F_{cE}/F_{c}^{*}}{\sqrt{\left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}} = 0.0617$$

Column Stability Factor NDS Eqn. 3.7-1

where:

 $I_e = (16.40'/2) = 8.20' = 98.40''$

unsupported length

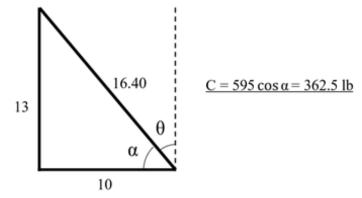
d= 1.5"member width, weak direction
$$E_{min}$$
= 580,000 psiNDS supplement table 4A F_{cE} $= \frac{0.822E_{min}'}{(I_e/d)^2} = 111$ NDS 3.7.1 F_c^* = $F_c (C_D)(C_M)(C_t)(C_F)(C_i) = 1772 psi$ Adjusted design compression
value except C_p c= 0.8 for sawn lumberNDS 3.7.1

Adjusted design compression value F_c ' = $F_c (C_D)(C_M)(C_t)(C_F)(C_i)(C_p)$ = 109.3 psi

Compression brace capacity = 109.3 psi (1.5")(7.25") = 1189 lb

6. Determine the strength value of the compression members

Connection capacity = 1250 lb


(See step 1. Capacity in tension and compression are the same)

1250 lb > 1189 lb \therefore member controls compression

Limit to 1/2 theoretical strength for compression values: See section 6-3.02, *Wood Cross Bracing.*

Reduced compression brace capacity = $\frac{1189 \text{ lb}}{2}$ = 595 lb

7. Calculate the horizontal component of the strength value for the compression member

APRIL 2020

8. Calculate the total resisting capacity of the top tier of bracing

Total resisting capacity = $\Sigma(C+T)$ = 362.5 + 762 = 1224.5 lb

ANALYZE THE BOTTOM TIER IN BRACING

1. Determine the connection capacity between brace and post

Main Member Properties		Side Member Properties	
I _m = 12 in t _m = I _m = 12 in	thickness (12 x 12)	l _s = 1.5 in t _s = l _s = 1.5 in	<i>thickness (2 x 8)</i> n
θ _m = 35.54°	angle between direction of loading & direction of grain	$\theta_s = 0^{\circ}$	angle between direction of loading & direction of grain
G = 0.50	Specific Gravity NDS Table 12.3.3		

Connector Properties

By inspection, same properties as previous tiers. $F_{e.pll} = 5600 \text{ psi}$ $F_{e.perp} = 2578 \text{ psi}$

Find Dowel Bearing Strength at an Angle to Grain (NDS Section 12.3.4):

$$F_{em} = \frac{F_{e.pll}F_{perp}}{F_{e.pll}(\sin(\theta_m))^2 + F_{perp}(\cos(\theta_m))^2} = 4012 \text{ psi}$$
$$F_{es} = \frac{F_{e.pll}F_{perp}}{F_{e.pll}(\sin(\theta_s))^2 + F_{perp}(\cos(\theta_s))^2} = 5600 \text{ psi}$$

Find Reduction Term, Rd (NDS Table 12.3.1B):

$\theta = \max (\theta_m, \theta_s) = 35.5377^\circ$	Maximum angle between direction of load and direction of grain for any member in connection (See Table 12.3.1B)
$K_{\theta} = 1 + 0.25 \frac{\theta}{90 \text{ deg}} = 1.0987$	
$R_{d_l} = 4 K_{\theta} = 4.39$	Reduction Term for Yield Mode I_m and I_s
$R_{d_{II}}$ = 3.6 K ₀ = 3.96	Reduction Term for Yield Mode II
$R_{d_III.IV}$ = 3.2 K ₀ = 3.52	Reduction Term for Yield Mode III _m , III _s , and IV

Find Yield Limit Equations for Single Shear (NDS Table 12.3.1A):

$$\begin{split} &\mathsf{R}_{e} = \frac{\mathsf{F}_{em}}{\mathsf{F}_{es}} = 0.7163 \\ &\mathsf{R}_{t} = \frac{\mathsf{I}_{m}}{\mathsf{I}_{s}} = 8 \\ &\mathsf{k}_{1} = \frac{\sqrt{\mathsf{R}_{e} + 2\mathsf{R}_{e}^{\ 2} \left(1 + \mathsf{R}_{t} + \mathsf{R}_{t}^{\ 2}\right) + \mathsf{R}_{t}^{\ 2}\mathsf{R}_{e}^{\ 3}} - \mathsf{R}_{e}(1 + \mathsf{R}_{t})}{(1 + \mathsf{R}_{e})} = 2.0456 \\ &\mathsf{k}_{2} = -1 + \sqrt{2(1 + \mathsf{R}_{e}) + \frac{2\mathsf{F}_{yb}(1 + 2\mathsf{R}_{e})\mathsf{D}^{2}}{3\mathsf{F}_{em}\mathsf{I}_{m}^{\ 2}}} = 0.8718 \\ &\mathsf{k}_{3} = -1 + \sqrt{\frac{2(1 + \mathsf{R}_{e})}{\mathsf{R}_{e}} + \frac{2\mathsf{F}_{yb}(2 + \mathsf{R}_{e})\mathsf{D}^{2}}{3\mathsf{F}_{em}\mathsf{I}_{s}^{\ 2}}} = 2.1417 \\ &\mathsf{Z}_{Im} = \frac{\mathsf{D}_{m}\mathsf{F}_{em}}{\mathsf{R}_{d_I}} = 8215 \ \mathsf{Ib} \qquad NDS \ \mathsf{Eqn} \ 12.3-1 \\ &\mathsf{Z}_{Is} = \frac{\mathsf{D}_{ls}\mathsf{F}_{es}}{\mathsf{R}_{d_I}} = 1433 \ \mathsf{Ib} \qquad NDS \ \mathsf{Eqn} \ 12.3-2 \\ &\mathsf{Z}_{II} = \frac{\mathsf{k}_{1}\mathsf{D}_{s}\mathsf{F}_{es}}{\mathsf{R}_{d_II}} = 3258 \ \mathsf{Ib} \qquad NDS \ \mathsf{Eqn} \ 12.3-3 \\ &\mathsf{Z}_{IIIm} = \frac{\mathsf{k}_{2}\mathsf{D}_{m}\mathsf{F}_{em}}{\mathsf{I}_{1} + 2\mathsf{R}_{e})\mathsf{R}_{d_III,IV}} = 3680 \ \mathsf{Ib} \qquad NDS \ \mathsf{Eqn} \ 12.3-4 \end{split}$$

$$Z_{IIIs} = \frac{k_3 DI_s F_{em}}{(2 + R_e) R_{d_III.IV}} = 1012 \text{ lb} \qquad NDS \ Eqn \ 12.3-5$$
$$Z_{IV} = \frac{D^2}{R_{d_III.IV}} \sqrt{\frac{2F_{em} F_{yb}}{3(1 + R_e)}} = 1340 \text{ lb} \qquad NDS \ Eqn \ 12.3-6$$

The controlling value is the minimum single shear capacity from the above equations.

Z_{control} = min (Z_{Im}, Z_{Is}, Z_{II}, Z_{IIIm}, Z_{IIIs}, Z_{IV}) = 1012 lb (*Yield Mode IIIs controls*)

Adjustment factors from NDS Table 11.3.1:

t)

Adjusted lateral design value Z' = $Z(C_D)(C_M)(C_t)(C_g)(C_{\Delta})$ = 1265 lb

2. Determine the capacity of the diagonal brace in tension

By inspection, same as previous tiers. See top tier, step #2. Adjusted design value F_t = $F_t (C_D)(C_M)(C_t)(C_F)(C_i)$ = 862.5 psi Tension capacity = 862.5 psi(1.5")(7.25") = 9380 lb

3. Determine the strength value of the tension members

9380 lb > 1265 lb ... Connection strength controls

4. Calculate the horizontal component of the strength value for the tension members

APRIL 2020

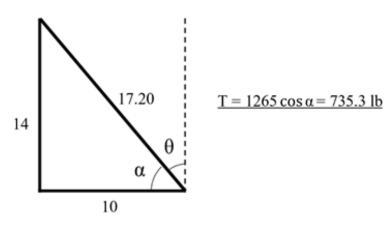


Figure D-17-12. Geometric Components of Tension Strength Value for Bracing (B) Bottom Tier

5. Determine the capacity of diagonal brace in compression

Check cross brace capacity in compression:

Reference design value in compression F_c = 1350 psi (NDS supplement table 4A)

Adjustment factors from NDS table 4.3.1:

$C_D = 1.25$ <i>L</i>		Duration Factor for 2% lateral loading		
~	4.0	Maton in Englando (abla 14/4) and a		

- C_M = 1.0 Wet Service Factor NDS table 4A (Assume < 19% moisture content)
- $C_t = 1.0$ Temperature Factor NDS table 2.3.3 (Temp up to 100°F)
- C_F = 1.05 Size Factor NDS Table 4A
- C_i = 1.0 Incising Factor NDS 4.3.8

$$C_{p} = \frac{1 + (F_{cE}/F_{c}^{*})}{2c} - \sqrt{\left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}} Column Stability Factor NDS Eqn. 3.7-1$$

= 0.0561

where:

$$l_e$$
= (17.20'/2) = 8.60' = 103.20"unsupported lengthd= 1.5"member width, weak direction E_{min} = 580,000 psiNDS supplement table 4A

APRIL 2020

$$F_{cE} = \frac{0.822E_{min}}{(l_e/d)^2} = 101$$

$$F_c^* = F_c (C_D)(C_M)(C_t)(C_F)(C_i) = 1772$$

$$Adjusted \ design \ compression \ value \ except \ C_p$$

$$c = 0.8 \ for \ sawn \ lumber$$

$$NDS \ 3.7.1$$

Adjusted design compression value $F_c' = F_c (C_D)(C_M)(C_t)(C_F)(C_i)(C_p) = 99.5 \text{ psi}$

Compression brace capacity = 99.5 psi (1.5")(7.25") = 1081.8 lb

6. Determine the strength value of the compression members

Connection capacity = 1265 lb

(See step 1. Capacity in tension and compression are the same)

1265 lb > 1081.8 lb : member controls compression

Limit to 1/2 theoretical strength for compression values: See section 6-3.02, *Wood Cross Bracing.*

Reduced compression brace capacity = $\frac{1081.8 \text{ lb}}{2}$ = 540.9 lb

7. Calculate the horizontal component of the strength value for the compression member

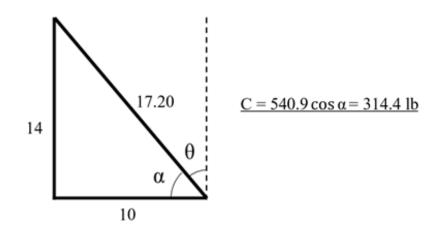


Figure D-17-13. Geometric Components of Compression Strength Value for Bracing (B) Bottom Tier

8. Calculate the total resisting capacity of the top tier of bracing

Total resisting capacity = $\Sigma(C+T)$ = 314.4 + 735.3 = 1050 lb

SUMMARY

Summarize Results for All Tiers for 2% Dead Load

Tier	Horizontal Tension	Horizontal Compression	Total Capacity
Атор	900 lb	450 lb	1350 lb
A _{MID} = A _{BOTTOM}	845 lb	423 lb	1268 lb
Втор	762 lb	363 lb	1125 lb
Ввоттом	735 lb	315 lb	1050 lb

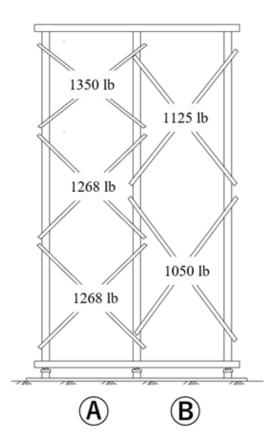
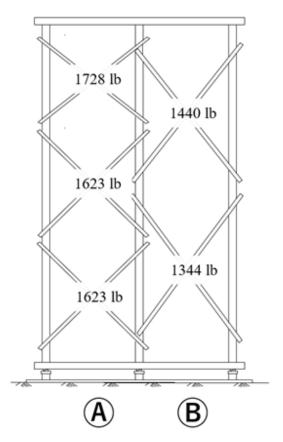


Figure D-17-14. Bracing Total Resisting Capacity for 2% Dead Load

The total resisting capacity of the bracing = the sum of the weaker pair of braces in A and the weaker pair of braces in B.

Total resisting capacity = 1268 lb + 1050 lb = 2318 lb

2318 lb (smallest total capacity) < 3500 lb (2% Dead Load)


Bracing system is inadequate for 2% Dead Load

Summarize Results for All Tiers for Wind Load

Repeat above process for wind load to calculate the Resisting Capacity, using $C_D = 1.6$ rather than 1.25. All other factors are the same.

The Resisting Capacity for wind load can also be derived by multiplying the resisting capacity for 2% Dead Load (above table) by the factor $\frac{1.6}{1.25} \left[\frac{C_D \text{ Wind Load}}{C_D 2\% \text{ Dead Load}} \right]$

Tier	Horizontal Tension	Horizontal Compression	Total Capacity
Атор	1152 lb	576 lb	1728 lb
A _{MID} = A _{BOTTOM}	1082 lb	541 lb	1623 lb
Втор	975 lb	465 lb	1440 lb
Ввоттом	941 lb	403 lb	1344 lb

The total resisting capacity of the bracing = the sum of the weaker pair of braces in A and the weaker pair of braces in B.

Total resisting capacity = 1623 lb + 1344 lb = 2967 lb

2967 lb (smallest total capacity) < 3200 lb (Wind Load)

Bracing system is inadequate for Wind Load

Conclusion:

Bracing system would be adequate if bracing capacity is greater for both 2% Dead Load and Wind Load conditions.

<u>..</u> Bracing System is inadequate

