## Appendix D Example 17 - Diagonal Bracing of Multi-Tiered Framed Bents Multiple Posts

Refer to Falsework Manual, Section 6-3, Diagonal Bracing and Section 5-3, Timber Fasteners. This example demonstrates how to determine if the bracing system of a multi-tiered framed bent is adequate. The falsework bent has multiple posts, and the tiers are different heights. The brace to post connections and mid brace connections are bolted.

## Given Information


$2 \%$ Dead load $=3500 \mathrm{lb}$
Wind load $=3200 \mathrm{lb}$

Posts:
$12 \times 12$ Rough Douglas FirLarch \#2 ( $\mathrm{G}=0.50$ )

Diagonal Braces:
2x8 S4S Douglas Fir-Larch \#2 ( $\mathrm{G}=0.50$ )

Connectors:
Brace to Post: $1 \times 3 / 4^{\prime \prime} \varnothing$ bolt Intersection of brace: 1x3/4" Ø bolt
(All bolts in single shear)

Figure D-17-1. Multi-Tiered Framed Bent with Multiple Posts

## Determine if the Bracing System is Adequate

## ANALYZE THE TOP TIER IN BRACING

1. Determine the connection capacity between brace and post


Figure D-17-2. Bracing (A) Top Tier Member Lengths and Orientation

## Main Member Properties

$I_{m}=12$ in thickness (12x12)
$t_{m}=I_{m}=12 \mathrm{in}$
$\theta_{\mathrm{m}}=51.34^{\circ} \quad$ angle between direction of loading \& direction of grain
$\mathrm{G}=0.50$

Side Member Properties

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{s}}=1.5 \text { in } & \text { thickness }(2 x 8) \\
\mathrm{t}_{\mathrm{s}}=\mathrm{I}_{\mathrm{s}}=1.5 \text { in } & \\
\theta_{\mathrm{s}}=0^{\circ} & \begin{array}{l}
\text { angle between } \\
\\
\end{array} \begin{array}{l}
\text { direction of loading \& } \\
\text { direction of grain }
\end{array}
\end{array}
$$

Connector Properties
$\mathrm{D}=0.75$ in connector diameter
$\mathrm{F}_{\mathrm{yb}}=45000 \mathrm{psi}$
$F_{\text {e.pll }}=11200 \mathrm{Gpsi}=5600 \mathrm{psi}$
$F_{\text {e.perp }}=\frac{6100 \mathrm{G}^{1.45}}{\sqrt{\mathrm{D}}}=2578 \mathrm{psi}$

Yield Strength (See Footnote \#2 of Bolt Tables)
Dowel Bearing Strength Parallel to Grain

Dowel Bearing Strength Perpendicular to Grain

Compare values to NDS Table 12.3.3:
$\mathrm{F}_{\text {e.pll (NDS Table 12.3.3) }}=5600 \mathrm{psi}$
$F_{\text {e.perp (NDS Table 12.3.3) }}=2600$ psi
Use calculated value for $F_{\text {perp }}=2578$ psi
Find Dowel Bearing Strength at an Angle to Grain (NDS Section 12.3.4):
$F_{\text {em }}=\frac{F_{\text {e.pll }} F_{\text {perp }}}{F_{\text {e.pIII }}\left(\sin \left(\theta_{\mathrm{m}}\right)\right)^{2}+F_{\text {perp }}\left(\cos \left(\theta_{\mathrm{m}}\right)\right)^{2}}=3266 \mathrm{psi}$
$F_{\text {es }}=\frac{F_{\text {e.pll }} F_{\text {perp }}}{F_{\text {e.pIII }}\left(\sin \left(\theta_{\mathrm{s}}\right)\right)^{2}+\mathrm{F}_{\text {perp }}\left(\cos \left(\theta_{\mathrm{s}}\right)\right)^{2}}=5600 \mathrm{psi}$
Find Reduction Term, $\mathrm{R}_{\mathrm{d}}$ (NDS Table 12.3.1B):
$\theta=\max \left(\theta_{\mathrm{m}}, \theta_{\mathrm{s}}\right)=51.34^{\circ} \quad$ Maximum angle between direction of load and direction of grain for any member in connection (See Table 12.3.1B)
$\mathrm{K}_{\theta}=1+0.25 \frac{\theta}{90 \mathrm{deg}}=1.1426$
$R_{d_{-}}=4 K_{\theta}=4.57$
Reduction Term for Yield Mode $I_{m}$ and $I_{s}$
$R_{d_{\_} \|}=3.6 \mathrm{~K}_{\theta}=4.11$
$R_{d \_ \text {IIIIIV }}=3.2 \mathrm{~K}_{\theta}=3.66$ Reduction Term for Yield Mode II Reduction Term for Yield Mode III ${ }_{m}$, IIIs, and IV

Find Yield Limit Equations for Single Shear (NDS Table 12.3.1A):
$\mathrm{R}_{\mathrm{e}}=\frac{\mathrm{F}_{\mathrm{em}}}{\mathrm{F}_{\mathrm{es}}}=0.5832$
$\mathrm{R}_{\mathrm{t}}=\frac{\mathrm{I}_{\mathrm{m}}}{\mathrm{I}_{\mathrm{s}}}=8$
$k_{1}=\frac{\sqrt{R_{e}+2 R_{e}^{2}\left(1+R_{t}+R_{t}^{2}\right)+R_{t}^{2} R_{e}^{3}}-R_{e}\left(1+R_{t}\right)}{\left(1+R_{e}\right)}=1.6956$
$\mathrm{k}_{2}=-1+\sqrt{2\left(1+R_{e}\right)+\frac{2 \mathrm{~F}_{\mathrm{yb}}\left(1+2 \mathrm{R}_{\mathrm{e}}\right) \mathrm{D}^{2}}{3 \mathrm{~F}_{\mathrm{em}} \mathrm{m}_{\mathrm{m}}{ }^{2}}}=0.8011$

$$
\begin{aligned}
& \mathrm{k}_{3}=-1+\sqrt{\frac{2\left(1+R_{e}\right)}{R_{e}}+\frac{2 \mathrm{~F}_{\mathrm{yb}}\left(2+\mathrm{R}_{\mathrm{e}}\right) \mathrm{D}^{2}}{3 \mathrm{~F}_{\mathrm{em}} \mathrm{I}_{\mathrm{s}}^{2}}}=2.3707 \\
& Z_{\mathrm{lm}}=\frac{\mathrm{DI} \mathrm{~m}_{\mathrm{m}} \mathrm{~F}_{\mathrm{em}}}{\mathrm{R}_{\mathrm{d} \_} \mathrm{I}}=6431 \mathrm{lb} \\
& Z_{\mathrm{ls}}=\frac{\mathrm{DI}_{\mathrm{s}} \mathrm{~F}_{\mathrm{es}}}{\mathrm{R}_{\mathrm{d}_{\mathrm{L}} \mathrm{I}}}=1378 \mathrm{lb} \\
& Z_{\| I}=\frac{k_{1} D_{s} F_{e s}}{R_{d_{-} \|}}=2597 \mathrm{lb} \\
& Z_{\text {IIIm }}=\frac{\mathrm{k}_{2} \mathrm{DI}_{\mathrm{m}} \mathrm{~F}_{\mathrm{em}}}{\left(1+2 \mathrm{R}_{\mathrm{e}}\right) \mathrm{R}_{\mathrm{d} \text { IIII.IV }}}=2973 \mathrm{lb} \\
& Z_{\text {IIIs }}=\frac{k_{3} D_{s} F_{e m}}{\left(2+R_{e}\right) R_{d_{\text {_IIIIIV }}}}=922 \mathrm{lb} \\
& Z_{I V}=\frac{D^{2}}{R_{d_{-} \text {III.IV }}} \sqrt{\frac{2 F_{e m} F_{y b}}{3\left(1+R_{e}\right)}}=1210 \mathrm{lb} \\
& \text { NDS Eqn 12.3-1 } \\
& \text { NDS Eqn 12.3-2 } \\
& \text { NDS Eqn 12.3-3 } \\
& \text { NDS Eqn 12.3-4 } \\
& \text { NDS Eqn 12.3-5 } \\
& \text { NDS Eqn 12.3-6 }
\end{aligned}
$$

The controlling value is the minimum single shear capacity from the above equations.
$Z_{\text {control }}=\min \left(Z_{\mathrm{Im}}, Z_{\mathrm{Is}}, Z_{I I}, Z_{I I I m}, Z_{I I \mathrm{~s}}, Z_{\mathrm{Iv}}\right)=922 \mathrm{lb}$
(Yield Mode IIIs controls)
Adjustment factors from NDS Table 11.3.1:
$C_{D}=1.25 \quad$ Duration Factor for $2 \%$ lateral loading
$\mathrm{C}_{\mathrm{M}}=1.0 \quad$ Wet Service Factor NDS 11.3.3 (Assume < 19\% moisture content)
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS 11.3 .4 (Temp up to $100^{\circ} \mathrm{F}$ )
$\mathrm{C}_{\mathrm{g}}=1.0 \quad$ Group Action Factor NDS 11.3.6 (Single Fastener)
$C_{\Delta}=1.0 \quad$ Geometry Factor NDS 12.5.1 (Assume End Dist. \& spacing meet Tables 12.5.1A and 12.5.1B)
Ceg $=1.0 \quad$ End Grain Factor NDS 12.5.2 (Does not apply)
$\mathrm{C}_{\mathrm{di}}=1.0 \quad$ Diaphragm Factor NDS 12.5.3 (Does not apply)
$\mathrm{C}_{\mathrm{tn}}=1.0 \quad$ Toe Nail Factor NDS 12.5.4 (Does not apply)
Adjusted lateral design value $Z^{\prime}=Z\left(C_{D}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)=1153 \mathrm{lb}$

## 2. Determine the capacity of the diagonal brace in tension

Reference design value in tension $F_{t}=575$ psi (NDS supplement table 4A)

Adjustment factors from NDS table 4.3.1:
$C_{D}=1.25 \quad$ Duration Factor for 2\% lateral loading
$\mathrm{C}_{\mathrm{m}}=1.0 \quad$ Wet Service Factor NDS table 4A (Assume < 19\% moisture content)
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS table 2.3.3 (Temp up to $100^{\circ} \mathrm{F}$ )
$C_{F}=1.2 \quad$ Size Factor NDS Table 4A
$\mathrm{C}_{\mathrm{i}}=1.0 \quad$ Incising Factor NDS 4.3.8
Adjusted design value $\mathrm{Ft}^{\prime}=\mathrm{F}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{Cm}_{\mathrm{m}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)=862.5 \mathrm{psi}$
Tension capacity $=862.5 \mathrm{psi}(1.5 ")(7.25 ")=9380 \mathrm{lb}$
3. Determine the strength value of the tension members
$9380 \mathrm{lb}>1153 \mathrm{lb} \quad \therefore$ Connection strength controls
4. Calculate the horizontal component of the strength value for the tension members


Figure D-17-3. Geometric Components of Tension Strength Value for Bracing (A) Top Tier
5. Determine the capacity of diagonal brace in compression

Check cross brace capacity in compression:
Reference design value in compression $\mathrm{F}_{\mathrm{c}}=1350$ psi (NDS supplement table 4A)

Adjustment factors from NDS table 4.3.1:

$$
\begin{array}{ll}
\mathrm{C}_{\mathrm{D}}=1.25 & \begin{array}{l}
\text { Duration Factor for 2\% lateral loading } \\
\mathrm{C}_{\mathrm{M}}=1.0
\end{array} \\
& \begin{array}{l}
\text { Wet Service Factor NDS table } 4 \mathrm{~A} \text { (Assume }<19 \% \\
\text { moisture content) }
\end{array} \\
\mathrm{C}_{t}=1.0 & \begin{array}{l}
\text { Temperature Factor NDS table 2.3.3 (Temp up to } \\
100^{\circ} \mathrm{F} \text { ) }
\end{array}
\end{array}
$$

$C_{F}=1.05 \quad$ Size Factor NDS Table 4A
$\mathrm{C}_{\mathbf{i}}=1.0 \quad$ Incising Factor NDS 4.3.8
$C_{p}=\frac{1+\left(F_{\mathrm{cE}} / F_{\mathrm{c}}{ }^{*}\right)}{2 \mathrm{c}}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right)}{2 \mathrm{c}}\right]^{2}-\frac{\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}}{\mathrm{c}}}=0.1003$

Column Stability Factor
NDS Eqn. 3.7-1
where:
$l_{\text {e }} \quad=\left(12.81^{\prime} / 2\right)=6.405^{\prime}=76.86 " \quad$ unsupported length
$\mathrm{d}=1.5^{\prime \prime}$ member width, weak direction
$\mathrm{E}_{\text {min }}=580,000 \mathrm{psi} \quad$ NDS supplement table 4A
$\mathrm{F}_{\mathrm{CE}}=\frac{0.822 \mathrm{E}_{\text {min }}{ }^{\prime}}{\left(\mathrm{I}_{\mathrm{e}} / \mathrm{d}\right)^{2}}=182$
NDS 3.7.1
$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{m}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)=1772 \mathrm{psi} \quad$ Adjusted design compression value except $C_{p}$
c $\quad=0.8$ for sawn lumber
NDS 3.7.1
Adjusted design compression value $\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)\left(\mathrm{C}_{\mathrm{p}}\right)=177.7 \mathrm{psi}$
Compression brace capacity $=177.7 \mathrm{psi}(1.5 ")(7.25 ")=1932 \mathrm{lb}$

## 6. Determine the strength value of the compression members

Connection capacity $=1153 \mathrm{lb}$
(See step 1. Capacity in tension and compression are the same)
$1932 \mathrm{lb}>1153 \mathrm{lb} \therefore$ connection controls compression
Limit to $1 / 2$ theoretical strength for compression values: See section 6-3.02, Wood Cross Bracing.

Reduced compression brace capacity $=\frac{1153 \mathrm{lb}}{2}=576 \mathrm{lb}$
7. Calculate the horizontal component of the strength value for the compression member


Figure D-17-4. Geometric Components of Compression Strength Value for Bracing (A) Top Tier
8. Calculate the total resisting capacity of the top tier of bracing

Total resisting capacity $=\Sigma(C+T)=450+900=1350 \mathrm{lb}$

## ANALYZE THE MIDDLE TIER IN BRACING Ⓐ

1. Determine the connection capacity between brace and post:


Figure D-17-5. Bracing (A) Middle Tier Member Lengths and Orientation

Main Member Properties
$I_{m}=12$ in thickness (12 $\times 12$ )
$t_{m}=I_{m}=12 \mathrm{in}$
$\theta_{m}=45^{\circ} \quad$ angle between direction of loading \& direction of grain
$\mathrm{G}=0.50 \quad$ Specific Gravity
NDS Table 12.3.3

Side Member Properties
$\mathrm{I}_{\mathrm{s}}=1.5$ in thickness (2x8)
$\mathrm{t}_{\mathrm{s}}=\mathrm{I}_{\mathrm{s}}=1.5 \mathrm{in}$
$\theta_{\mathrm{s}}=0^{\circ} \quad$ angle between
direction of loading \& direction of grain

## Connector Properties

By inspection, same properties as previous tier. $F_{\text {e.pll }}=5600$ psi $\quad F_{\text {e.perp }}$

$$
=2578 \mathrm{psi}
$$

Find Dowel Bearing Strength at an Angle to Grain (NDS Section 12.3.4):
$F_{\text {em }}=\frac{F_{\text {e.pII }} F_{\text {perp }}}{F_{\text {e.pll }}\left(\sin \left(\theta_{\mathrm{m}}\right)\right)^{2}+F_{\text {perp }}\left(\cos \left(\theta_{\mathrm{m}}\right)\right)^{2}}=3531$ psi
$F_{\text {es }}=\frac{F_{\text {e.pll }} F_{\text {perp }}}{F_{\text {e.pll }}\left(\sin \left(\theta_{s}\right)\right)^{2}+F_{\text {perp }}\left(\cos \left(\theta_{s}\right)\right)^{2}}=5600$ psi

Find Reduction Term, $\mathrm{R}_{\mathrm{d}}$ (NDS Table 12.3.1B):
$\theta=\max \left(\theta_{\mathrm{m}}, \theta_{\mathrm{s}}\right)=45^{\circ}$
Maximum angle between direction of load and direction of grain for any member in connection (See Table 12.3.1B)
$K_{\theta}=1+0.25 \frac{\theta}{90 \mathrm{deg}}=1.125$
$R_{d_{\_} I}=4 K_{\theta}=4.5$
$R_{d \_\|}=3.6 \mathrm{~K}_{\theta}=4.05$
$R_{d \_ \text {III.IV }}=3.2 \mathrm{~K}_{\theta}=3.6$
Reduction Term for Yield Mode $I_{m}$ and $I_{s}$
Reduction Term for Yield Mode II
Reduction Term for Yield Mode III $I_{m}$ IIIs, and IV

## Find Yield Limit Equations for Single Shear (NDS Table 12.3.1A):

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{e}}=\frac{\mathrm{F}_{\mathrm{em}}}{\mathrm{~F}_{\mathrm{es}}}=0.6305 \\
& \mathrm{R}_{\mathrm{t}}=\frac{\mathrm{I}_{\mathrm{m}}}{\mathrm{l}_{\mathrm{s}}}=8
\end{aligned}
$$

$$
k_{1}=\frac{\sqrt{R_{e}+2 R_{e}^{2}\left(1+R_{t}+R_{t}^{2}\right)+R_{t}^{2} R_{e}^{3}}-R_{e}\left(1+R_{t}\right)}{\left(1+R_{e}\right)}=1.8209
$$

$$
\mathrm{k}_{2}=-1+\sqrt{2\left(1+\mathrm{R}_{\mathrm{e}}\right)+\frac{2 \mathrm{~F}_{\mathrm{yb}}\left(1+2 \mathrm{R}_{\mathrm{e}}\right) \mathrm{D}^{2}}{3 \mathrm{~F}_{\mathrm{em} \mathrm{~m}_{\mathrm{m}}^{2}}^{2}}}=0.8265
$$

$$
\begin{aligned}
& \mathrm{k}_{3}=-1+\sqrt{\frac{2\left(1+R_{e}\right)}{R_{e}}+\frac{2 F_{y b}\left(2+R_{e}\right) D^{2}}{3 F_{e m l_{s}}^{2}}}=2.2802 \\
& Z_{\text {Im }}=\frac{\mathrm{DI}_{\mathrm{m}} \mathrm{~F}_{\mathrm{em}}}{\mathrm{R}_{\mathrm{d}_{-} \mathrm{I}}}=7062 \mathrm{lb} \\
& Z_{\mathrm{ls}}=\frac{D \mathrm{I}_{\mathrm{s}} \mathrm{~F}_{\mathrm{es}}}{\mathrm{R}_{\mathrm{d}_{-} \mathrm{I}}}=1400 \mathrm{lb} \\
& Z_{\| I}=\frac{\mathrm{k}_{1} \mathrm{DI}_{\mathrm{s}} \mathrm{~F}_{\mathrm{es}}}{\mathrm{R}_{\mathrm{d}_{-} \|}}=2833 \mathrm{lb} \\
& Z_{\text {IIIm }}=\frac{k_{2} D_{m} F_{e m}}{\left(1+2 R_{e}\right) R_{d_{-} \text {III.IV }}}=3227 \mathrm{lb} \\
& Z_{\text {IIIs }}=\frac{\mathrm{k}_{3} \mathrm{DI}_{\mathrm{s}} \mathrm{~F}_{\mathrm{em}}}{\left(2+\mathrm{R}_{\mathrm{e}}\right) \mathrm{R}_{\mathrm{d}_{\text {_III.IV }}}}=956 \mathrm{lb} \\
& Z_{I V}=\frac{D^{2}}{R_{d_{-} I I I . I V}} \sqrt{\frac{2 F_{e m} F_{y b}}{3\left(1+R_{e}\right)}}=1259 \mathrm{lb} \\
& \text { NDS Eqn 12.3-1 } \\
& \text { NDS Eqn 12.3-2 } \\
& \text { NDS Eqn 12.3-3 } \\
& \text { NDS Eqn 12.3-4 } \\
& \text { NDS Eqn 12.3-5 } \\
& \text { NDS Eqn 12.3-6 }
\end{aligned}
$$

The controlling value is the minimum single shear capacity from the above equations.
$Z_{\text {control }}=\min \left(Z_{I m}, Z_{\mathrm{ls}}, Z_{I I}, Z_{I I I m}, Z_{I I I s}, Z_{I v}\right)=956 \mathrm{lb} \quad$ (Yield Mode IIIs controls)
Adjustment factors from NDS Table 11.3.1:
$C_{D}=1.25 \quad$ Duration Factor for 2\% lateral loading
$\mathrm{C}_{\mathrm{M}}=1.0 \quad$ Wet Service Factor NDS 11.3.3 (Assume < 19\% moisture content)
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS 11.3.4 (Temp up to $100^{\circ} \mathrm{F}$ )
$\mathrm{C}_{\mathrm{g}}=1.0 \quad$ Group Action Factor NDS 11.3.6 (Single Fastener)
$\mathrm{C}_{\Delta}=1.0 \quad$ Geometry Factor NDS 12.5 .1 (Assume End Dist. \& spacing meet
Tables 12.5.1A and 12.5.1B)
$C_{\text {eg }}=1.0 \quad$ End Grain Factor NDS 12.5.2 (Does not apply)
$\mathrm{C}_{\mathrm{di}}=1.0 \quad$ Diaphragm Factor NDS 12.5.3 (Does not apply)
$\mathrm{C}_{\mathrm{tn}}=1.0 \quad$ Toe Nail Factor NDS 12.5.4 (Does not apply)
Adjusted lateral design value $Z^{\prime}=Z\left(C_{D}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)=1196 \mathrm{lb}$
2. Determine the capacity of the diagonal brace in tension

By inspection, same as previous tier. See top tier, step \#2.
Adjusted design value $\mathrm{Ft}^{\prime}=\mathrm{F}_{\mathrm{t}}\left(\mathrm{CD}_{\mathrm{D}}\right)\left(\mathrm{Cm}_{\mathrm{m}}\right)(\mathrm{Ct})\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)=862.5 \mathrm{psi}$
Tension capacity $=862.5 \mathrm{psi}(1.5 ")(7.25 ")=9380 \mathrm{lb}$
3. Determine the strength value of the tension members
$9380 \mathrm{lb}>1196 \mathrm{lb} \quad \therefore$ Connection strength controls
4. Calculate the horizontal component of the strength value for the tension members


10
Figure D-17-6. Geometric Components of Tension Strength Value for Bracing (A) Middle Tier
5. Determine the capacity of diagonal brace in compression

Check cross brace capacity in compression:
Reference design value in compression $\mathrm{F}_{\mathrm{c}}=1350$ psi (NDS supplement table 4A)

Adjustment factors from NDS table 4.3.1:
$C_{D}=1.25$ Duration Factor for 2\% lateral loading
$\mathrm{C}_{\mathrm{M}}=1.0$ Wet Service Factor NDS table 4A (Assume < 19\% moisture content)
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS table 2.3.3 (Temp up to $100^{\circ} \mathrm{F}$ )
$C_{F}=1.05$ Size Factor NDS Table 4A
$\mathrm{C}_{\mathrm{i}}=1.0 \quad$ Incising Factor NDS 4.3.8
$\mathrm{C}_{\mathrm{p}}=\frac{1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}}{ }^{*}\right)}{2 \mathrm{c}}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}}{ }^{*}\right)}{2 \mathrm{c}}\right]^{2}-\frac{\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}}{ }^{*}}{\mathrm{c}}}=0.0826$
Column Stability
Factor
NDS Eqn. 3.7-1
where:

$$
\begin{array}{lll}
\mathrm{le}_{\mathrm{e}} & =\left(14.14^{\prime} / 2\right)=7.071^{\prime}=84.85 " & \text { unsupported length } \\
\mathrm{d} & =1.5^{\prime \prime} & \text { member width, weak direction } \\
\mathrm{E}_{\min } & =580,000 \mathrm{psi} & \text { NDS supplement table 4A } \\
\mathrm{F}_{\mathrm{CE}} & =\frac{0.822 \mathrm{E}_{\min }^{\prime}}{\left(\mathrm{I}_{\mathrm{e}} / \mathrm{d}\right)^{2}}=149 & \text { NDS 3.7.1 } \\
\mathrm{F}_{\mathrm{c}}^{*} & =\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)=1772 \text { psi } & \begin{array}{l}
\text { Adjusted design compression value } \\
\text { except } C_{p}
\end{array} \\
\mathrm{c} & =0.8 \text { for sawn lumber } & \text { NDS 3.7.1 }
\end{array}
$$

Adjusted design compression value $\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{CD}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)\left(\mathrm{C}_{\mathrm{p}}\right)=146.4 \mathrm{psi}$
Compression brace capacity $=146.4$ psi $(1.5 ")(7.25 ")=1592 \mathrm{lb}$
6. Determine the strength value of the compression members

Connection capacity $=1196 \mathrm{lb}$
(See step 1. Capacity in tension and compression are the same)
$1196 \mathrm{lb}<1592 \mathrm{lb} \therefore$ connection controls compression
Limit to $1 / 2$ theoretical strength for compression values: See section 6-3.02, Wood Cross Bracing.

Reduced compression brace capacity $=\frac{1196 \mathrm{lb}}{2}=598 \mathrm{lb}$
7. Calculate the horizontal component of the strength value for the compression member


10
Figure D-17-7. Geometric Components of Compression Strength Value for Bracing (A) Middle Tier
8. Calculate the total resisting capacity of the top tier of bracing

Total resisting capacity $=\Sigma(C+T)=423+845=1268 \mathrm{lb}$

## ANALYZE THE BOTTOM TIER IN BRACING A

By inspection, middle tier and bottom tier are the same.
Total resisting capacity $=1268 \mathrm{lb}$

## ANALYZE THE TOP TIER IN BRACING B

1. Determine the connection capacity between brace and post


10
Figure D-17-8. Bracing B Top Tier Member Lengths and Orientation

## Main Member Properties

$I_{m}=12$ in $\quad$ thickness (12 $\times 12$ )
$t_{m}=I_{m}=12 \mathrm{in}$
$\theta_{\mathrm{m}}=37.56^{\circ} \quad$ angle between direction of loading \& direction of grain
$G=0.50 \quad$ Specific Gravity NDS Table 12.3.3

Side Member Properties
$\mathrm{I}_{\mathrm{s}}=1.5$ in thickness (2x8)
$\mathrm{t}_{\mathrm{s}}=\mathrm{l}_{\mathrm{s}}=1.5 \mathrm{in}$
$\theta_{\mathrm{s}}=0^{\circ} \quad$ angle between
direction of loading \&
direction of grain

## Connector Properties

By inspection, same properties as previous tiers. $F_{\text {e.pll }}=5600$ psi $\quad F_{\text {e.perp }}=$ 2578 psi

Find Dowel Bearing Strength at an Angle to Grain (NDS Section 12.3.4)

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{em}}=\frac{\mathrm{F}_{\text {e.pll }} \mathrm{F}_{\text {perp }}}{\mathrm{F}_{\mathrm{e} . \mathrm{pll}}\left(\sin \left(\theta_{\mathrm{m}}\right)\right)^{2}+\mathrm{F}_{\text {perp }}\left(\cos \left(\theta_{\mathrm{m}}\right)\right)^{2}}=3900 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{es}}=\frac{\mathrm{F}_{\mathrm{e} . \mathrm{pll}} \mathrm{~F}_{\text {perp }}}{\mathrm{F}_{\mathrm{e} . \mathrm{pll}}\left(\sin \left(\theta_{\mathrm{s}}\right)\right)^{2}+\mathrm{F}_{\text {perp }}\left(\cos \left(\theta_{\mathrm{s}}\right)\right)^{2}}=5600 \mathrm{psi}
\end{aligned}
$$

Find Reduction Term, $\mathrm{R}_{\mathrm{d}}$ (NDS Table 12.3.1B):

$$
\begin{aligned}
\theta=\max \left(\theta_{\mathrm{m}}, \theta_{\mathrm{s}}\right)=37.5686^{\circ} & \begin{array}{l}
\text { Maximum angle between direction of load and } \\
\text { direction of grain for any member in connection }
\end{array} \\
& \text { (See Table 12.3.1B) }
\end{aligned}
$$

$\mathrm{K}_{\theta}=1+0.25 \frac{\theta}{90 \mathrm{deg}}=1.1044$
$R_{\text {d_I }}=4 \mathrm{~K}_{\theta}=4.42 \quad$ Reduction Term for Yield Mode $I_{m}$ and $I_{s}$
Rd_川 $=3.6 \mathrm{~K}_{\theta}=3.98 \quad$ Reduction Term for Yield Mode II
$\mathrm{R}_{\mathrm{d} \text { _IIIIV }}=3.2 \mathrm{~K}_{\theta}=3.53 \quad$ Reduction Term for Yield Mode $I I I_{m}$, IIIs, and IV

Find Yield Limit Equations for Single Shear (NDS Table 12.3.1A):
$\mathrm{R}_{\mathrm{e}}=\frac{\mathrm{F}_{\mathrm{em}}}{\mathrm{F}_{\mathrm{es}}}=0.6965$
$R_{t}=\frac{I_{\mathrm{m}}}{I_{\mathrm{s}}}=8$
$k_{1}=\frac{\sqrt{R_{e}+2 R_{e}{ }^{2}\left(1+R_{t}+R_{t}^{2}\right)+R_{t}{ }^{2} R_{e}{ }^{3}}-R_{e}\left(1+R_{t}\right)}{\left(1+R_{e}\right)}=1.9940$
$\mathrm{k}_{2}=-1+\sqrt{2\left(1+R_{e}\right)+\frac{2 \mathrm{~F}_{\mathrm{yb}}\left(1+2 \mathrm{R}_{\mathrm{e}}\right) \mathrm{D}^{2}}{3 \mathrm{~F}_{\mathrm{em} \mathrm{m}^{2}}{ }^{2}}}=0.8614$
$k_{3}=-1+\sqrt{\frac{2\left(1+R_{e}\right)}{R_{e}}+\frac{2 F_{y b}\left(2+R_{e}\right) D^{2}}{3 F_{e m I_{s}}^{2}}}=2.1712$
$Z_{\text {Im }}=\frac{\mathrm{DI}_{\mathrm{m}} \mathrm{F}_{\mathrm{em}}}{\mathrm{R}_{\mathrm{d}_{-} \mathrm{I}}}=7947 \mathrm{lb}$
NDS Eqn 12.3-1
$Z_{\mathrm{ls}}=\frac{\mathrm{DI}_{\mathrm{s}} \mathrm{F}_{\mathrm{es}}}{\mathrm{R}_{\mathrm{d}_{-} \mathrm{I}}}=1426 \mathrm{lb}$
NDS Eqn 12.3-2
$Z_{\| I}=\frac{k_{1} D_{s} F_{e s}}{R_{d_{-} \|}}=3160 \mathrm{lb}$
NDS Eqn 12.3-3
$Z_{\text {IIIm }}=\frac{\mathrm{k}_{2} \mathrm{DI}_{\mathrm{m}} \mathrm{F}_{\mathrm{em}}}{\left(1+2 \mathrm{R}_{\mathrm{e}}\right) \mathrm{R}_{\mathrm{d}_{-} \mathrm{IIIIV}}}=3576 \mathrm{lb}$
NDS Eqn 12.3-4
$Z_{\text {IIIs }}=\frac{\mathrm{k}_{3} \mathrm{DI}_{\mathrm{s}} F_{\mathrm{em}}}{\left(2+\mathrm{R}_{\mathrm{e}}\right) \mathrm{R}_{\mathrm{d}_{\text {_IIIIV }}}}=1000 \mathrm{lb}$
$Z_{I V}=\frac{D^{2}}{R_{d_{-} I I I I I V}} \sqrt{\frac{2 F_{e m} F_{y b}}{3\left(1+R_{e}\right)}}=1322 \mathrm{lb}$
NDS Eqn 12.3-5
NDS Eqn 12.3-6

The controlling value is the minimum single shear capacity from the above equations.
$Z_{\text {control }}=\min \left(Z_{I m}, Z_{\mathrm{Is}}, Z_{I I}, Z_{I I I m}, Z_{I I I s}, Z_{\mathrm{IV}}\right)=1000 \mathrm{lb} \quad$ (Yield Mode IIIs controls)
Adjustment factors from NDS Table 11.3.1:
$C_{D}=1.25 \quad$ Duration Factor for 2\% lateral loading
$\mathrm{C}_{\mathrm{M}}=1.0 \quad$ Wet Service Factor NDS 11.3.3 (Assume < 19\% moisture content)
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS 11.3.4 (Temp up to $100^{\circ} \mathrm{F}$ )
$\mathrm{C}_{\mathrm{g}}=1.0 \quad$ Group Action Factor NDS 11.3.6 (Single Fastener)
$\mathrm{C}_{\Delta}=1.0 \quad$ Geometry Factor NDS 12.5 .1 (Assume End Dist. \& spacing meet Tables 12.5.1A and 12.5.1B)
$\mathrm{C}_{\text {eg }}=1.0 \quad$ End Grain Factor NDS 12.5.2 (Does not apply)
$\mathrm{C}_{\mathrm{di}}=1.0 \quad$ Diaphragm Factor NDS 12.5.3 (Does not apply)
$\mathrm{C}_{\mathrm{tn}}=1.0 \quad$ Toe Nail Factor NDS 12.5.4 (Does not apply)
Adjusted lateral design value $Z^{\prime}=Z\left(C_{D}\right)\left(\mathrm{C}_{M}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)=1250 \mathrm{lb}$

## 2. Determine the capacity of the diagonal brace in tension

By inspection, same as previous tiers. See top tier, step \#2.
Adjusted design value $\mathrm{Ft}{ }^{\prime}=\mathrm{Ft}(\mathrm{CD})(\mathrm{CM})(\mathrm{Ct})(\mathrm{CF})(\mathrm{Ci})=862.5 \mathrm{psi}$
Tension capacity $=862.5 \mathrm{psi}(1.5 ")(7.25 ")=9380 \mathrm{lb}$

## 3. Determine the strength value of the tension members

$9380 \mathrm{lb}>1250 \mathrm{lb} \quad \therefore$ Connection strength controls
4. Calculate the horizontal component of the strength value for the tension members


Figure D-17-9. Geometric Components of Tension Strength Value for Bracing (B) Top Tier
5. Determine the capacity of diagonal brace in compression

Check cross brace capacity in compression:
Reference design value in compression $\mathrm{F}_{\mathrm{c}}=1350$ psi (NDS supplement table 4A)

Adjustment factors from NDS table 4.3.1:
$C_{D}=1.25$ Duration Factor for 2\% lateral loading
$\mathrm{Cm}_{\mathrm{m}}=1.0$ Wet Service Factor NDS table 4A (Assume < 19\% moisture content)
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS table 2.3.3 (Temp up to $100^{\circ}$ F)
$C_{F}=1.05$ Size Factor NDS Table 4A
$\mathrm{C}_{\mathrm{i}}=1.0 \quad$ Incising Factor NDS 4.3.8

$$
=\frac{1+\left(\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right)}{\text { Column Stability Factor }}
$$

NDS Eqn. 3.7-1
$C_{p}$

$$
\sqrt{\left[\frac{1+\left(F_{c E} / F_{c}^{*}\right)}{2 c}\right]^{2}-\frac{F_{C E} / F_{c}^{*}}{c}}=0.0617
$$

where:
le $=\left(16.40^{\prime} / 2\right)=8.20^{\prime}=98.40^{\prime \prime} \quad$ unsupported length

| d | $=1.5$ " | member width, weak direction |
| :---: | :---: | :---: |
| $E_{\text {min }}$ | $=580,000 \mathrm{psi}$ | NDS supplement table 4A |
| $\mathrm{F}_{\text {cE }}$ | $=\frac{0.822 \mathrm{E}_{\min }}{\left(\mathrm{I}_{\mathrm{e}} / \mathrm{d}\right)^{2}}=111$ | NDS 3.7.1 |
| $\mathrm{F}^{*}{ }^{\text { }}$ | $=\mathrm{F}_{\mathrm{c}}\left(\mathrm{CD}_{\mathrm{D}}\right)\left(\mathrm{Cm}_{\mathrm{m}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{CFF}^{\prime}\right)\left(\mathrm{Ci}_{\mathrm{i}}\right)=1772 \mathrm{psi}$ | Adjusted design compression value except $C_{p}$ |
| c | $=0.8$ for sawn lumber | NDS 3.7.1 |

Adjusted design compression value $\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{m}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)\left(\mathrm{C}_{\mathrm{p}}\right)=109.3 \mathrm{psi}$
Compression brace capacity $=109.3 \mathrm{psi}(1.5 ")(7.25 ")=1189 \mathrm{lb}$
6. Determine the strength value of the compression members

Connection capacity $=1250 \mathrm{lb}$
(See step 1. Capacity in tension and compression are the same)
$1250 \mathrm{lb}>1189 \mathrm{lb} \therefore$ member controls compression
Limit to 1/2 theoretical strength for compression values: See section 6-3.02, Wood Cross Bracing.

Reduced compression brace capacity $=\frac{1189 \mathrm{lb}}{2}=595 \mathrm{lb}$
7. Calculate the horizontal component of the strength value for the compression member


Figure D-17-10. Geometric Components of Compression Strength Value for Bracing (B) Top Tier
8. Calculate the total resisting capacity of the top tier of bracing

Total resisting capacity $=\Sigma(\mathrm{C}+\mathrm{T})=362.5+762=1224.5 \mathrm{lb}$

## ANALYZE THE BOTTOM TIER IN BRACING

1. Determine the connection capacity between brace and post


10
Figure D-17-11. Bracing (B) Bottom Tier Member Lengths and Orientation

## Main Member Properties

$I_{m}=12$ in $\quad$ thickness $(12 \times 12)$
$t_{m}=I_{m}=12 \mathrm{in}$
$\theta_{m}=35.54^{\circ} \quad$ angle between direction of loading \& direction of grain
$G=0.50 \quad$ Specific Gravity
NDS Table 12.3.3

## Side Member Properties

$\mathrm{I}_{\mathrm{s}}=1.5 \mathrm{in} \quad$ thickness $(2 \times 8)$
$\mathrm{t}_{\mathrm{s}}=\mathrm{l}_{\mathrm{s}}=1.5 \mathrm{in}$
$\theta_{\mathrm{s}}=0^{\circ} \quad$ angle between direction of loading \& direction of grain

## Connector Properties

By inspection, same properties as previous tiers. $\mathrm{F}_{\text {e.pll }}=5600 \mathrm{psi} \quad \mathrm{F}_{\text {e.perp }}=$ 2578 psi

Find Dowel Bearing Strength at an Angle to Grain (NDS Section 12.3.4):

$$
F_{e m}=\frac{F_{\text {e.pII }} F_{\text {perp }}}{F_{\text {e.plI }}\left(\sin \left(\theta_{\mathrm{m}}\right)\right)^{2}+F_{\text {perp }}\left(\cos \left(\theta_{\mathrm{m}}\right)\right)^{2}}=4012 \mathrm{psi}
$$

$F_{\text {es }}=\frac{F_{\text {e.pII }} F_{\text {perp }}}{F_{\text {e.plI }}\left(\sin \left(\theta_{s}\right)\right)^{2}+F_{\text {perp }}\left(\cos \left(\theta_{\mathrm{s}}\right)\right)^{2}}=5600 \mathrm{psi}$

Find Reduction Term, R (NDS Table 12.3.1B):

$$
\begin{aligned}
\theta=\max \left(\theta_{\mathrm{m}}, \theta_{\mathrm{s}}\right)=35.5377^{\circ} & \begin{array}{l}
\text { Maximum angle between direction of load and } \\
\text { direction of grain for any member in connection }
\end{array} \\
& \text { (See Table 12.3.1B) }
\end{aligned}
$$

$\mathrm{K}_{\theta}=1+0.25 \frac{\theta}{90 \mathrm{deg}}=1.0987$
$R_{\mathrm{d} \_}=4 \mathrm{~K}_{\theta}=4.39$
Reduction Term for Yield Mode $I_{m}$ and $I_{s}$
$\mathrm{R}_{\mathrm{d} \text {-II }}=3.6 \mathrm{~K}_{\theta}=3.96 \quad$ Reduction Term for Yield Mode II
$R_{d \_ \text {IIIIIV }}=3.2 \mathrm{~K}_{\theta}=3.52 \quad$ Reduction Term for Yield Mode III ${ }_{m}$, IIIs, and IV

## Find Yield Limit Equations for Single Shear (NDS Table 12.3.1A):

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{e}}=\frac{\mathrm{F}_{\mathrm{em}}}{\mathrm{~F}_{\mathrm{es}}}=0.7163 \\
& \mathrm{R}_{\mathrm{t}}=\frac{\mathrm{I}_{\mathrm{m}}}{\mathrm{I}_{\mathrm{s}}}=8
\end{aligned}
$$

$$
k_{1}=\frac{\sqrt{R_{e}+2 R_{e}^{2}\left(1+R_{t}+R_{t}^{2}\right)+R_{t}^{2} R_{e}^{3}}-R_{e}\left(1+R_{t}\right)}{\left(1+R_{e}\right)}=2.0456
$$

$$
\mathrm{k}_{2}=-1+\sqrt{2\left(1+\mathrm{R}_{\mathrm{e}}\right)+\frac{2 \mathrm{~F}_{\mathrm{yb}}\left(1+2 \mathrm{R}_{\mathrm{e}}\right) \mathrm{D}^{2}}{3 \mathrm{~F}_{\mathrm{em} \mathrm{I}_{\mathrm{m}}^{2}}^{2}}}=0.8718
$$

$$
\mathrm{k}_{3}=-1+\sqrt{\frac{2\left(1+R_{e}\right)}{R_{e}}+\frac{2 \mathrm{~F}_{\mathrm{yb}}\left(2+\mathrm{R}_{\mathrm{e}}\right) \mathrm{D}^{2}}{3 \mathrm{~F}_{\mathrm{em}} \mathrm{l}_{\mathrm{s}}^{2}}}=2.1417
$$

$$
\mathrm{Z}_{\mathrm{Im}}=\frac{\mathrm{DI}_{\mathrm{m}} \mathrm{~F}_{\mathrm{em}}}{\mathrm{R}_{\mathrm{d} \_} \mathrm{I}}=8215 \mathrm{lb} \quad \quad \text { NDS Eqn 12.3-1 }
$$

$$
\mathrm{Z}_{\mathrm{ls}}=\frac{\mathrm{D}_{\mathrm{s}} \mathrm{~F}_{\mathrm{es}}}{\mathrm{R}_{\mathrm{d}_{\mathrm{l}} \mathrm{l}}}=1433 \mathrm{lb} \quad \text { NDS Eqn 12.3-2 }
$$

$$
\mathrm{Z}_{\| I}=\frac{\mathrm{k}_{1} \mathrm{DI}_{\mathrm{s}} \mathrm{~F}_{\mathrm{es}}}{\mathrm{R}_{\mathrm{d}_{-} \mathrm{I}}}=3258 \mathrm{lb} \quad \quad \text { NDS Eqn 12.3-3 }
$$

$$
\mathrm{Z}_{\text {IIIm }}=\frac{\mathrm{k}_{2} \mathrm{DI}_{\mathrm{m}} \mathrm{~F}_{\mathrm{em}}}{\left(1+2 \mathrm{R}_{\mathrm{e}}\right) \mathrm{R}_{\mathrm{d} \_ \text {IIIIV }}}=3680 \mathrm{lb} \quad \text { NDS Eqn 12.3-4 }
$$

$Z_{\text {IIIs }}=\frac{\mathrm{k}_{3} \mathrm{DI}_{\mathrm{s}} \mathrm{F}_{\mathrm{em}}}{\left(2+\mathrm{R}_{\mathrm{e}}\right) \mathrm{R}_{\mathrm{d} \text { _III.IV }}}=1012 \mathrm{lb} \quad$ NDS Eqn 12.3-5
$Z_{\mathrm{IV}}=\frac{\mathrm{D}^{2}}{R_{\mathrm{d}_{-} I I I . I V}} \sqrt{\frac{2 \mathrm{~F}_{\mathrm{em}} \mathrm{F}_{\mathrm{yb}}}{3\left(1+\mathrm{R}_{\mathrm{e}}\right)}}=1340 \mathrm{lb} \quad$ NDS Eqn 12.3-6
The controlling value is the minimum single shear capacity from the above equations.
$Z_{\text {control }}=\min \left(Z_{I m}, Z_{\mathrm{Is}}, Z_{I I}, Z_{I I I m}, Z_{I I I s}, Z_{\mathrm{IV}}\right)=1012 \mathrm{lb} \quad$ (Yield Mode IIIs controls)
Adjustment factors from NDS Table 11.3.1:
$C_{D}=1.25 \quad$ Duration Factor for 2\% lateral loading
$\mathrm{C}_{\mathrm{M}}=1.0 \quad$ Wet Service Factor NDS 11.3 .3 (Assume < 19\% moisture content)
$\mathrm{C}_{\mathrm{t}}=1.0 \quad$ Temperature Factor NDS 11.3.4 (Temp up to $100^{\circ} \mathrm{F}$ )
$\mathrm{C}_{\mathrm{g}}=1.0 \quad$ Group Action Factor NDS 11.3.6 (Single Fastener)
$C_{\Delta}=1.0 \quad$ Geometry Factor NDS 12.5 .1 (Assume End Dist. \& spacing meet Tables 12.5.1A and 12.5.1B)
$\mathrm{C}_{\text {eg }}=1.0 \quad$ End Grain Factor NDS 12.5.2 (Does not apply)
$\mathrm{C}_{\mathrm{di}}=1.0 \quad$ Diaphragm Factor NDS 12.5.3 (Does not apply)
$\mathrm{C}_{\mathrm{tn}}=1.0 \quad$ Toe Nail Factor NDS 12.5.4 (Does not apply)
Adjusted lateral design value $Z^{\prime}=Z\left(C_{D}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{g}}\right)\left(\mathrm{C}_{\Delta}\right)=1265 \mathrm{lb}$
2. Determine the capacity of the diagonal brace in tension

By inspection, same as previous tiers. See top tier, step \#2.
Adjusted design value $\mathrm{Ft}^{\prime}=\mathrm{F}_{\mathrm{t}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)=862.5 \mathrm{psi}$
Tension capacity $=862.5 \mathrm{psi}(1.5 ")(7.25 ")=9380 \mathrm{lb}$
3. Determine the strength value of the tension members
$9380 \mathrm{lb}>1265 \mathrm{lb} \quad \therefore$ Connection strength controls
4. Calculate the horizontal component of the strength value for the tension members


Figure D-17-12. Geometric Components of Tension Strength Value for Bracing © Bottom Tier

## 5. Determine the capacity of diagonal brace in compression

Check cross brace capacity in compression:
Reference design value in compression $\mathrm{F}_{\mathrm{c}}=1350$ psi (NDS supplement table 4A)

Adjustment factors from NDS table 4.3.1:
CD $=1.25$ Duration Factor for 2\% lateral loading
$\mathrm{C}_{\mathrm{M}}=1.0 \quad$ Wet Service Factor NDS table 4A (Assume $<19 \%$ moisture content)
$\mathrm{C}_{\mathrm{t}} \quad=1.0 \quad$ Temperature Factor NDS table 2.3.3 (Temp up to $100^{\circ} \mathrm{F}$ )
$C_{F}=1.05$ Size Factor NDS Table 4A
$\mathrm{C}_{\mathrm{i}} \quad=1.0 \quad$ Incising Factor NDS 4.3.8
$\begin{aligned} \mathrm{C}_{p} & =\frac{1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}}{ }^{*}\right)}{2 \mathrm{c}}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}}{ }^{*}\right)}{2 \mathrm{c}}\right]^{2}-\frac{\mathrm{F}_{\mathrm{CE}} / \mathrm{F}_{\mathrm{C}}{ }^{*}}{\mathrm{c}}} \quad \begin{array}{l}\text { Column Stability Factor } \\ \text { NDS Eqn. 3.7-1 }\end{array} \\ & =0.0561\end{aligned}$
where:

| $\mathrm{l}_{\mathrm{e}}$ | $=\left(17.20^{\prime} / 2\right)=8.60^{\prime}=103.20^{\prime \prime}$ |  |
| :--- | :--- | :--- |
| unsupported length |  |  |
| d | $=1.5^{\prime \prime}$ | member width, weak direction |
| $\mathrm{E}_{\text {min }}=580,000 \mathrm{psi}$ |  | NDS supplement table 4A |

$F_{C E} \quad=\frac{0.822 \mathrm{E}_{\min }{ }^{\prime}}{\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}\right)^{2}}=101$

$\mathrm{F}_{\mathrm{c}}{ }^{*} \quad=\underset{\mathrm{psi}}{\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{M}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)=1772}$| Adjusted design compression |
| :--- |
| value except $\mathrm{C}_{p}$ |

c $\quad=0.8$ for sawn lumber

Adjusted design compression value $\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}\left(\mathrm{C}_{\mathrm{D}}\right)\left(\mathrm{C}_{\mathrm{m}}\right)\left(\mathrm{C}_{\mathrm{t}}\right)\left(\mathrm{C}_{\mathrm{F}}\right)\left(\mathrm{C}_{\mathrm{i}}\right)\left(\mathrm{C}_{p}\right)=99.5 \mathrm{psi}$
Compression brace capacity $=99.5 \mathrm{psi}(1.5 ")(7.25 ")=1081.8 \mathrm{lb}$
6. Determine the strength value of the compression members

Connection capacity $=1265 \mathrm{lb}$
(See step 1. Capacity in tension and compression are the same)
$1265 \mathrm{lb}>1081.8 \mathrm{lb}:$ member controls compression
Limit to $1 / 2$ theoretical strength for compression values: See section 6-3.02, Wood Cross Bracing.

Reduced compression brace capacity $=\frac{1081.8 \mathrm{lb}}{2}=540.9 \mathrm{lb}$
7. Calculate the horizontal component of the strength value for the compression member


$$
\mathrm{C}=540.9 \cos \alpha=314.4 \mathrm{lb}
$$

Figure D-17-13. Geometric Components of Compression Strength Value for Bracing (B) Bottom Tier

## 8. Calculate the total resisting capacity of the top tier of bracing

Total resisting capacity $=\Sigma(\mathrm{C}+\mathrm{T})=314.4+735.3=1050 \mathrm{lb}$

## SUMMARY

Summarize Results for All Tiers for 2\% Dead Load

| Tier | Horizontal <br> Tension | Horizontal <br> Compression | Total Capacity |
| :---: | :---: | :---: | :---: |
| Атор | 900 lb | 450 lb | 1350 lb |
| Амір $=$ Авоттом | 845 lb | 423 lb | 1268 lb |
| Втор | 762 lb | 363 lb | 1125 lb |
| Ввоттом | 735 lb | 315 lb | 1050 lb |



The total resisting capacity of the bracing = the sum of the weaker pair of braces in A and the weaker pair of braces in B.

Total resisting capacity $=1268 \mathrm{lb}+1050 \mathrm{lb}=$ 2318 lb

2318 lb (smallest total capacity) < $3500 \mathrm{lb}(2 \%$ Dead Load)

Bracing system is inadequate for $2 \%$ Dead Load

Figure D-17-14. Bracing Total Resisting Capacity for 2\% Dead Load

## Summarize Results for All Tiers for Wind Load

Repeat above process for wind load to calculate the Resisting Capacity, using $C_{D}=1.6$ rather than 1.25. All other factors are the same.

The Resisting Capacity for wind load can also be derived by multiplying the resisting capacity for $2 \%$ Dead Load (above table) by the factor $\frac{1.6}{1.25}\left[\frac{C_{D} \text { Wind Load }}{C_{D} 2 \% \text { Dead Load }}\right]$

| Tier | Horizontal <br> Tension | Horizontal <br> Compression | Total Capacity |
| :---: | :---: | :---: | :---: |
| Атор | 1152 lb | 576 lb | 1728 lb |
| Амір = Авоттом | 1082 lb | 541 lb | 1623 lb |
| Втор | 975 lb | 465 lb | 1440 lb |
| Ввоттом | 941 lb | 403 lb | 1344 lb |


(A)
(B)

The total resisting capacity of the bracing = the sum of the weaker pair of braces in A and the weaker pair of braces in $B$.

Total resisting capacity $=1623 \mathrm{lb}+1344 \mathrm{lb}=$ 2967 lb

2967 lb (smallest total capacity) < 3200 lb (Wind Load)

Bracing system is inadequate for Wind Load

Conclusion:
Bracing system would be adequate if bracing capacity is greater for both 2\% Dead Load and Wind Load conditions.

## $\therefore$ Bracing System is inadequate

Figure D-17-15. Bracing Total Resisting Capacity for Wind Load

