Appendix D Example 2 - Falsework Beam - Bi-Axial Bending - Canted $\leq 2 \%$

This example demonstrates how to calculate maximum bending stress in beams canted less than or equal to two percent. Refer to Falsework Manual (FW), Section 5-4.04, BiAxial Bending.

Given Information

Span $=48$ Ft \quad Member W 14×176
Cross Slope $=2 \% \quad I_{x-x}=2140$ in $^{4} \quad I_{y-y}=838$ in 4
$d=15.2$ in $\quad b_{f}=15.7$ in.

Uniform Load W

Total Section:
Loading for stress calculations:
Load A = Dead Load (FW 3-2.01) + Beam Weight + LL (FW 3-2.02- min $20 \mathrm{psf})$
Load A = Concrete (160 lb/ft $\left.{ }^{3}\right)+$ Beam (176 lb/ft) $+\mathrm{LL}\left(20 \mathrm{lb} / \mathrm{ft}^{2}\right)=1420 \mathrm{lb} / \mathrm{ft}$ Loading for deflection calculation:

Load B = Concrete only ($150 \mathrm{lb} / \mathrm{ft}^{3}$) (FW 3-2.01)
Load B = Concrete only ($150 \mathrm{lb} / \mathrm{ft}^{3}$) $=1000 \mathrm{lb} / \mathrm{ft}$ (for calculating beam deflection)

Bottom slab and stems:
Loading for horizontal calculation (when canted $>2 \%$)
Load C = Concrete DL of Soffit Slab + Girder Stems
Load C $=$ Concrete $\left(150 \mathrm{lb} / \mathrm{ft}^{3}\right)=649 \mathrm{lb} / \mathrm{ft}$

Assume lateral bracing is adequate so that $F_{b}=22,000$ psi (FW 5-4.04) maximum of the Standard Specifications is not exceeded.

$$
\begin{aligned}
& \varnothing=90^{\circ}-\tan ^{-1} \text { (cross slope) } \\
& =90^{\circ}-\tan ^{-1}\left(\frac{2.00}{100}\right)=88.85^{\circ} \\
& y=\frac{d}{2}=\frac{15.2 \text { inches }}{2}=7.60 \text { inches } \\
& x=\frac{b_{f}}{2}=\frac{15.7 \text { inches }}{2}=7.85 \text { inches }
\end{aligned}
$$

Check Bending and Deflection

Check bending using Load A:

$\mathrm{M}=\frac{\mathrm{WL}^{2}}{8}=\frac{1420 \frac{\mathrm{lb}}{\mathrm{ft}}(48 \mathrm{Ft})^{2}}{8}=408,960 \mathrm{ft}-\mathrm{lbs}=4,907,520 \mathrm{in}-\mathrm{lbs}$
$f_{b}=M\left[\frac{y}{I_{x-x}} \sin \emptyset+\frac{x}{I_{y-y}} \cos \emptyset\right]$ (FW 5-4.04A-1)
$f_{b}=4,907,520\left(\frac{7.60}{2140} \sin 88.85^{\circ}+\frac{7.85}{838} \cos 88.85^{\circ}\right)=18,348 \mathrm{psi}$
$18,348 \mathrm{psi}<22,000$ psi allowable OK

Check deflection about the 3-3 axis, using Load B:

$$
\begin{aligned}
\Delta_{3-3} & =\frac{5 \mathrm{WL}^{4}}{384 \mathrm{EI}_{3-3}}=\frac{5(1000 \mathrm{Lb} / \mathrm{Ft})(48 \mathrm{Ft})^{4}\left(1728 \mathrm{In}^{3} / \mathrm{Ft}^{3}\right)}{384\left(30 \times 10^{6} \mathrm{psi}\right)\left(\mathrm{I}_{\mathrm{x}-\mathrm{x}} \sin ^{2} \emptyset+\mathrm{I}_{\mathrm{y}-\mathrm{y}} \cos ^{2} \emptyset\right)} \\
& =\frac{5(1000)(48)^{4}(1728)}{384\left(30 \times 10^{6}\right)\left(2140 \sin ^{2} 88.85+838 \cos ^{2} 88.85\right)} \\
& =1.86 \mathrm{In} .<\frac{\mathrm{L}}{240}=\frac{(48)(12)}{240}=2.40 \text { Inches allowable } \quad \mathrm{OK}
\end{aligned}
$$

