

## Appendix D Example 24 – Timber Pile Bents – Type I Bent

Refer to Falsework Manual, Section 8-6.05, Analysis of Timber Pile Bents.

Occasionally pile foundations will be used for falsework systems due to poor soil conditions, having to traverse over water, and to mitigate differential settlement. As-built conditions of the driven piles will dictate the bent capacity to resist horizontal loads. Type I falsework bents are analyzed in this example.

## **Given Information**



## Preliminary Calculations and Assumptions

Identify pertinent properties of the pile selected, ground conditions encountered, and driving tolerances of the pile to be used in the falsework bent.

- 1. Pile properties ( $\emptyset = 12$  in; R = 6 in)
  - A =  $\pi R^2$  = 113 in<sup>2</sup>

- S  $=\frac{\pi R^3}{4} = 170 \text{ in}^3$ I  $=\frac{\pi R^4}{4} = 1018 \text{ in}^4$
- 2. Required Pile Penetration (Section 8-6.04A)

Minimum 
$$\frac{D}{H} \ge 0.75$$
; design  $\frac{D}{H} = \frac{12}{12} = 1.0$  OK

Minimum D for construction = (0.75)(12.0) = 9.0 ft

3. Soil Relaxation Factor (Section 8-6.04D)

Assumptions: (1) normal (average) soil & (2) 30-day time period From Soil Factor Chart (Fig. 8-24) R=1.25

- 4. Point of Pile Fixity (Section 8-6.04B & 8-6.04D)
  - $Y_1 = kd$
  - d = 1 ft (pile diam. @ ground line)
  - k = 4 (for medium hard to medium soft soil) (8-6.04B-2)
  - $Y_1 = (4)(1.0) = 4.0$  ft

 $Y_2 = (Y_1)(soil relax. Factor from fig 8-24) = (4.0)(1.25) = 5.0 ft$ 

5. Driving Tolerances (Section 8-6.04C)

Max. pile pull =  $\triangle$  = 4 in Max. pile lean =  $e_1$  = 4 in

6. Modulus of Elasticity (NDS Table 6A)

Assume Pacific Coast Douglas fir: E = 1,700,000 psi

Investigate the Effect of Pile Pull (Section 8-6.05A)

Pile Schematic (no scale)



APRIL 2020



(1) = Driven position

1. Calculate  $F_1$  = force to pull pile into line

$$\mathsf{F}_1 = \frac{3\mathrm{EI}\triangle}{(12\mathrm{L}_1)^3} = \frac{3(1.7\mathrm{x}\ 10^6)(\ 1018)(4)}{(12\ \mathrm{x}\ 16.0)^3} = 2934 \ \mathrm{lbs}$$

2. Calculate the initial bending stress

$$f_{\text{bp(1)}} = \frac{F_1(12L_1)}{S} = \frac{(2934)(16)(12)}{170} = 3314 \text{ psi}$$

3314 psi < 4000 psi allowed (per Section 8-6.05A), therefore OK

3. Calculate  $F_2$  = force after soil relaxes

$$F_2 = \frac{F_1(L_1)^3}{(L_2)^3} = \frac{2934(16.0)^3}{(17.0)^3} = 2446$$
 lbs

4. Calculate bending stress remaining in pile after soil relaxation (final condition)

$$f_{bp(2)} = rac{F_2(12L_2)}{S} = rac{2446(17)(12)}{170} = 2935 \ psi$$

## Evaluate System Adequacy (Section 8-6.05E)

1. Determine bent type

 $L_u = Y_2 + (12.0 - 10.0) = 5.0 + 2.0 = 7.0 \text{ ft (the distance from PF}_2 \text{ to bottom of X-brace})$ 

 $\frac{L_u}{d} = \frac{7.0}{1.0} = 7 < 8 \therefore \text{ Type I bent (Bending stress produced by the horizontal design load may be neglected per Section 8-6.05E(1))}$ 

 Calculate bending stress due to vertical load eccentricity Since it's a Type I bent follow Section 8-6.05E(1)

$$f_{be(1)} = \frac{(P_v e_1)}{S} = \frac{(42000)(4)}{170} = 988 \text{ psi}$$

3. Calculate stress due to axial compression

$$f_c = \frac{P_v}{A} = \frac{42000}{113} = 371 \text{ psi}$$

4. Determine allowable compressive stress (Use NDS)

Note: bent supported at the cap in the longitudinal direction.

 $L_u$  (in longitudinal direction) =  $L_2$  = 17.0 ft (pile is unrestrained in longitudinal direction)

Equivalent "d" =  $r\sqrt{12} = 3\sqrt{12} = 10.39$  in (r = radius of gyration= D/4; NDS C6.3.8)

$$\frac{L_{\rm u}}{\rm d} = \frac{(17)(12)}{10.39} = 19.63$$

Reference design value in compression  $F_c$  = 1300 psi (NDS supplement table 6A)

Adjustment factors from NDS table 6.3.1:

 $C_D = 1.25$ Duration Factor for 2% lateral loading NDS 6.3.2 $C_t = 1.0$ Temperature Factor NDS 6.3.4 (Temp up to 100°F)

| $C_{ct} = 1.0$         | Condition Treatment factor NDS 6.3.5                            |
|------------------------|-----------------------------------------------------------------|
| C <sub>P</sub> = 0.631 | Column Stability Factor NDS 6.3.8 (Eff length 17 ft)            |
| C <sub>cs</sub> = 1.03 | Critical Section Factor NDS 6.3.9 (tip to point of fixity 7 ft) |
| C <sub>ls</sub> = 1.11 | Load Sharing Factor NDS 6.3.11 (assume continuous cap)          |

Adjusted design compression value  $F_c' = F_c (C_D)(C_t)(C_{ct}) (C_P)(C_{cs}) (C_{ls}) = 1172 \text{ psi}$ 

5. Solve combined stress expression

$$\frac{f_{bp(2)} + 2f_{be(1)}}{3F_{b'}} + \frac{2f_c}{3F_{c'}} \le 1.0$$
(8-6.05E(1)-1)

Need to calculate F<sub>b</sub> using NDS

Reference design value F<sub>b</sub> = 2050 psi (NDS supplement table 6A)

Adjustment factors from NDS table 6.3.1:

 $C_D = 1.25$  Duration Factor for 2% lateral loading NDS 6.3.2  $C_t = 1.0$  Temperature Factor NDS 6.3.4 (Temp up to 100°F)  $C_{ct} = 1.0$  Condition Treatment factor NDS 6.3.5  $C_F = 1.0$  Size Factor NDS 6.3.7  $C_{ls} = 1.08$ Load Sharing Factor NDS 6.3.11 (assume continuous cap)

Adjusted design compression value  $F_b = F_b (C_D)(C_t)(C_{ct}) (C_F)(C_{ls}) = 2768 \text{ psi}$ 

Substitute values and solve combined stress equation

 $\frac{2935 + 2(988)}{3(2768)} + \frac{2(371)}{3(1172)}$ 

 $0.59 + 0.21 = 0.80 \le 1.0$  System is adequate!!

Options available if combined stress > 1:

- a. Use larger diameter pile
- b. Reduce allowable values for  $\triangle$  and/or  $e_1$
- c. Shorten F/W span to reduce  $\mathsf{P}_{\mathsf{v}}$