Appendix D Example 29 - Short Poured-In-Place Concrete Piles

The following section presents sample calculations for specific items discussed in the subsections of Section 5-6, Short Poured-In-Place Concrete Piles. For a full example problem see Appendix D, Example 30 - Short Poured-In-Place Concrete Piles.

Pile Uplift in Cohesionless Soil:
Refer to Section 5-6.02A, Pile Uplift in Cohesionless Soil.

Given Information

Soil internal friction:
angle $\phi=30^{\circ}$
Unit weight of concrete:
$\gamma_{c}=145 \mathrm{pcf}$
Unit weight of soil:
$\gamma_{s}=100 \mathrm{pcf}$

Water table:
4 feet from pile tip at anticipated time of load application

Pile:

Figure D-29-1. Short Concrete Pile in Cohesionless Soil
$L_{p}=$ Length of the pile $=12 \mathrm{ft}$
$\mathrm{d}=$ Pile diameter $=18 \mathrm{in}=1.5 \mathrm{ft}$
z $=$ Depth below ground $=10 \mathrm{ft}$
Single use loading (FS = 2)
Determine vertical load capacity for the poured-in-place concrete pile in Cohesionless Soil

$$
\begin{align*}
& \mathrm{R}=\pi d \mathrm{~d} S+\mathrm{W} \tag{5-6.02-1}\\
& \mathrm{~S}=\beta \sigma_{\mathrm{z}} \leq 4,000 \mathrm{psf} \tag{5-6.02A-1}\\
& \beta=1.5-0.315 \mathrm{z}^{1 / 2} \text { but } 0.25 \leq \beta \leq 1.2 \tag{5-6.02A-2}
\end{align*}
$$

Where:
$\mathrm{R}=\quad$ Resistance to pile uplift (lb)
$S=\quad$ Unit shearing resistance on the soil-pile interface (psf)
$\mathrm{W}=$ Pile weight (lbs)
$\beta=\quad$ Reduction factor for cohesionless soils
$\sigma_{z}=$ Effective overburden soil weight (psf). Below the water table the weight of water is subtracted from the soil unit weight so that only the submerged soil weight is used
$A B=$ The pressure due to the weight of the soil
$B C=$ The pressure due to the weight of the water

Unit shearing resistance

$$
\begin{aligned}
& \beta=1.5-0.315 \mathrm{z}^{1 / 2}=1.5-0.315(10)^{1 / 2}=0.5 \quad 0.25 \leq \beta \leq 1.2 \quad \underline{\text { OK }} \\
& \mathrm{z}=10 \mathrm{ft} \quad\left(\mathrm{z}_{\text {dry }}=6 \mathrm{ft} ; \mathrm{z}_{\text {submerged }}=4 \mathrm{ft}\right) \\
& \sigma_{\mathrm{z}}=6(100)+4(100-62.4)=750 \mathrm{pcf} \\
& \mathrm{~S}=\beta \sigma_{\mathrm{z}}=0.5(750)=375 \mathrm{psf}<4000 \mathrm{psf} \quad \underline{\text { OK }}
\end{aligned}
$$

Net pile shearing resistance

$R_{s}=($ Pile surface area) $S=\pi d z S=\pi(1.5)(10)(375)=17,671 \mathrm{lbs}$

Pile weight

$$
W=\pi\left(\frac{d}{2}\right)^{2} L_{p} Y_{c}=\pi\left(\frac{1.5}{2}\right)^{2}(12)(145)=3075 \mathrm{lbs}
$$

Resistance to pile uplift

$$
\begin{aligned}
R & =\text { Net pile shearing resistance }\left(R_{s}\right)+\text { Pile weight }(W)=\pi d z S+W \\
& =17,671+3,075=20,746 \mathrm{lbs}
\end{aligned}
$$

Working load

$$
(V)=\frac{\text { Ultimate Load }}{F S}=\frac{(20,746)}{2}=10,373 \mathrm{lbs}
$$

Pile Uplift in Cohesive Soil:

Refer to Section 5-6.02B, Pile Uplift in Cohesive Soil.

Given Information

Unit weight of concrete:
$\gamma_{c}=145 \mathrm{pcf}$
Soil cohesion:
$C=$ undrained shear strength $=910 \mathrm{psf}$
Unit weight of soil:
$\gamma_{s}=110 \mathrm{pcf}$
Pile:
$\mathrm{L}_{\mathrm{p}}=$ Length of the pile $=12 \mathrm{ft}$
$\mathrm{d}=$ Pile diameter $=18 \mathrm{in}=1.5 \mathrm{ft}$
$z=$ Depth below ground $=10 \mathrm{ft}$
Single use loading (FS = 2)

Figure D-29-2. Short Concrete Pile in Cohesive Soil

Determine vertical load capacity for the poured-in-place concrete pile in Cohesive Soil

$$
\begin{equation*}
\mathrm{R}_{\mathrm{s}}=\pi \mathrm{dzS} \tag{5-6.02B-1}
\end{equation*}
$$

Where:
$\mathrm{R}_{\mathrm{s}}=$ Shearing resistance (lbs)
$S=$ Unit shearing resistance (psf)
$\mathrm{a}_{\mathrm{z}}=$ An empirical unitless reduction factor which accounts for clay shrinkage and lateral pile loadings
$A B=$ The pressure due to the weight of the soil

Unit shearing resistance

$$
\begin{equation*}
\mathrm{S}=\mathrm{a}_{\mathrm{z}} \mathrm{C} \leq 5,500 \mathrm{psf} \tag{5-6.02B-2}
\end{equation*}
$$

Use reduction factor for pile diameter $d \leq 18$ ", pile length with more than 5 feet embedment
For $0 \leq \mathrm{z} \leq 5$ feet

$$
\begin{align*}
\mathrm{a}_{\mathrm{z}(0-5)} & =(0.055) \mathrm{z} \tag{5-6.02B-6}\\
& =(0.055) 5=0.275 \\
\mathrm{~S}_{(0-5)} & =\mathrm{a}_{\mathrm{z}(0-5)} \mathrm{C}=0.275(910)=250 \mathrm{psf} \leq 5500 \mathrm{psf}
\end{align*}
$$

Net pile shearing resistance

$$
\begin{aligned}
R_{\mathrm{S}} & =\pi d\left[(5) \mathrm{S}_{(0-5)}+(\mathrm{z}-5) \mathrm{S}_{(>5)}\right] \\
& =\pi(1.5)[(5)(250)+(10-5)(500)] \\
& =\pi(1.5)(3750)=17,671 \mathrm{lbs}
\end{aligned}
$$

Pile weight

$$
W=\pi\left(\frac{d}{2}\right)^{2} L_{p} Y_{c}=\pi\left(\frac{1.5}{2}\right)^{2}(12)(145)=3075 \mathrm{lbs}
$$

Resistance to pile uplift

$$
\begin{aligned}
R & =\text { Net pile shearing resistance }\left(R_{s}\right)+\text { Pile weight }(W) \\
& =17,671+3,075=20,746 \mathrm{Lbs}
\end{aligned}
$$

Working load

$$
V=\frac{\text { Ultimate Load }}{F S}=\frac{20,746}{2}=10,373 \mathrm{lbs}
$$

Lateral Loading in Cohesionless Soil:

Refer to Section 5-6.03A, Lateral Loading in Cohesionless Soil.

Given Information
Soil internal friction:
angle $\phi=30^{\circ}$
Unit weight of concrete:
$\gamma_{c}=145 \mathrm{pcf}$
Unit weight of soil:
$\gamma_{\mathrm{s}}=110 \mathrm{pcf}$

Pile:
$\mathrm{L}=$ Depth below ground $=8 \mathrm{ft}$

Figure D-29-3. Pile Lateral Loading in Cohesionless Soil
$e=$ Length from ground surface to ultimate lateral load $=2 \mathrm{ft}$
$\mathrm{d}=$ Pile diameter $=18 \mathrm{in}=1.5 \mathrm{ft}$
Single use loading (FS = 2)
Determine allowable loading for the poured-in-place concrete pile in

Cohesionless Soil

Working load value for lateral load H

$$
\mathrm{K}_{\mathrm{p}}=\tan ^{2}\left(45^{\circ}+\frac{\phi}{2}\right)=\tan ^{2}\left(45^{\circ}+\frac{30^{\circ}}{2}\right)=3.00 \text { (for level ground }
$$

surface)

$$
\mathrm{L} / \mathrm{d}=8 / 1.5=5.33 \quad \mathrm{e} / \mathrm{d}=2 / 1.5=1.33
$$

Use Figure 5-23 to find $\frac{\mathrm{H}_{\mathrm{ULT}}}{\mathrm{K}_{\mathrm{p}} \gamma_{S} \mathrm{~d}^{3}}$

$$
\frac{\mathrm{H}_{\mathrm{ULT}}}{\mathrm{~K}_{\mathrm{p}} \gamma_{s} \mathrm{~d}^{3}} \approx 5 \text { when } \mathrm{e}=2^{\prime}-0^{\prime \prime}
$$

HuLt $=5 \times \mathrm{K}_{\mathrm{p}} \gamma_{s} \mathrm{~d}^{3}=5 \times(3.0)(110)(1.5)^{3}=5569 \mathrm{lbs}$

Working Load Value for $\mathrm{H}=\frac{\mathrm{H}_{\mathrm{ULT}}}{\mathrm{FS}}=\frac{5569}{2}=2784 \mathrm{lbs}$

Working load value for moment M

$$
\begin{align*}
\left(\mathrm{f}_{\mathrm{g}}\right)^{2} & =\frac{\mathrm{H}_{\mathrm{ULT}}}{1.5 \gamma_{\mathrm{s}} \mathrm{dK}} \tag{5-6.03A-1}\\
\mathrm{f}_{\mathrm{g}} & =\left(\frac{\mathrm{H}_{\mathrm{ULT}}}{1.5 \gamma_{\mathrm{s}} \mathrm{dK}_{\mathrm{p}}}\right)^{\frac{1}{2}}=\left(\frac{5569}{1.5(110)(1.5)(3.0)}\right)^{\frac{1}{2}}=2.74 \mathrm{ft} \\
M_{U L T} & =\operatorname{HULT}\left(\mathrm{e}+\frac{2 \mathrm{f}_{\mathrm{g}}}{3}\right) \tag{5-6.03A-2}\\
& =5569\left(2+\frac{(2)(2.74)}{3}\right)=21,311 \mathrm{ft}-\mathrm{lb}
\end{align*}
$$

$$
\text { Working Load Value for } M=\frac{M_{U L T}}{F S}=\frac{21,311}{2}=10,656 \mathrm{ft}-\mathrm{lb}
$$

Lateral Loading in Cohesive Soil:

Refer to Section 5-6.03B, Lateral Loading in Cohesive Soil.

Given Information

Unit weight of concrete:
$\gamma_{c}=145 \mathrm{pcf}$
Unit weight of soil:
$\gamma_{\mathrm{s}}=110 \mathrm{pcf}$

Pile:
$\mathrm{L}=$ Depth below ground $=8 \mathrm{ft}$
$\mathrm{e}=$ Length from ground surface to ultimate lateral load $=2 \mathrm{ft}$
$\mathrm{d}=$ Pile diameter $=18 \mathrm{in}=1.5 \mathrm{ft}$

Figure D-29-4. Pile
Undrained shear strength:
$C_{u}=1000 \mathrm{psf}$

Lateral Loading in Cohesive Soil

Single use loading (FS = 2)

Determine allowable loading for poured-in-place concrete pile in Cohesive Soil

Working load value for lateral load H
$\mathrm{L} / \mathrm{d}=8 / 1.5=5.33 \quad \mathrm{e} / \mathrm{d}=2 / 1.5=1.33$

Use Figure 5-24 to find $\frac{H_{\text {ULT }}}{\mathrm{C}_{\mathrm{u}} \mathrm{d}^{2}}$
$\frac{\mathrm{H}_{\mathrm{ULT}}}{\mathrm{C}_{\mathrm{u}} \mathrm{d}^{2}} \approx 5.5$ when $\mathrm{e}=2^{\prime}-0^{\prime \prime}$
Hult $=5.5 \times \mathrm{Cud}^{2}=5.5 \times(1,000)(1.5)^{2}=12,375 \mathrm{lbs}$
Working Load Value for $\mathrm{H}=\frac{\mathrm{H}_{\text {ULT }}}{\mathrm{FS}}=\frac{12,375}{2}=6188 \mathrm{lbs}$

Working load value for moment M

$$
\begin{align*}
& \begin{aligned}
& \mathrm{f}_{\mathrm{c}}= \\
& 9 \mathrm{H}_{\mathrm{uLT}} \mathrm{~d}
\end{aligned} \tag{5-6.03B-1}\\
&=\frac{12,375}{9(1,000)(1.5)}=0.917 \mathrm{ft} \\
& \text { MuLT }=\operatorname{HuLT}\left(\mathrm{e}+1.5 \mathrm{~d}+0.5 \mathrm{f}_{\mathrm{c}}\right) \tag{5-6.03B-2}\\
&=(12,375)[2+2.25+0.46]=58,266 \mathrm{ft}-\mathrm{lb}
\end{align*}
$$

Working Load Value for $M=\frac{M_{\mathrm{ULT}}}{\mathrm{FS}}=\frac{58,266}{2}=29,133 \mathrm{ft}-\mathrm{lb}$

Concrete Stress:

Refer to Section 5-6.04, Concrete Stresses,

Given Information

Pile:
$L=$ Depth below ground $=8 \mathrm{ft}$
$e=$ Length from ground surface to ultimate lateral load $=2$ ft
$\mathrm{d}=$ Pile diameter $=18 \mathrm{in}=1.5 \mathrm{ft}$

Unit weight of concrete:
$\gamma_{c}=145 \mathrm{pcf}$
Concrete compressive strength:
$\mathrm{f}^{\prime} \mathrm{c}=3250 \mathrm{psi}$
Design loads:
$V_{\text {max }}=6188 \mathrm{lbs}$
$\mathrm{H}_{\text {max }}=6188 \mathrm{lbs}$

Figure D-29-5. Pile Lateral Loading for Concrete Stress
$\mathrm{M}_{\text {max }}=29,133 \mathrm{ft}-\mathrm{lb}$
Single use loading (FS = 2)

Determine the concrete stress for this poured-in-place pile

With forces acting through the center of the pile consider one half of pile in compression.

Use the simplified equation:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{c}}=\frac{\mathrm{Md}}{2 \mathrm{I}_{\mathrm{g}}}-\frac{\mathrm{V}^{\prime}}{\mathrm{A}_{\mathrm{g}}} \leq \frac{\mathrm{f}^{\prime} \mathrm{c}}{2} \tag{5-6.04-1}
\end{equation*}
$$

where $\mathrm{V}^{\prime}=6188 \mathrm{lbs}$ minus the pile weight above the plane of zero shear.
Distance to plane of zero shear $\approx \frac{\mathrm{M}_{\mathrm{ULT}}}{\mathrm{H}_{\mathrm{ULT}}} \approx \frac{\mathrm{M}_{\mathrm{MAX}}}{\mathrm{H}_{\mathrm{MAX}}} \approx \frac{29,133}{6188}=4.7 \mathrm{ft}$

$$
\begin{aligned}
\text { Pile Weight } & =\pi\left(\frac{\mathrm{d}}{2}\right)^{2}(4.7+2) \mathrm{Y}_{\mathrm{c}} \\
& =\pi\left(\frac{1.5}{2}\right)^{2}(6.7)(145)=1717 \mathrm{lbs}
\end{aligned}
$$

$$
V^{\prime}=6188-1717=4471 \mathrm{lbs}
$$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{g}}=\frac{\pi}{4}\left(\frac{\mathrm{~d}}{2}\right)^{4}=\frac{\pi}{4}\left(\frac{18}{2}\right)^{4}=5153 \mathrm{in}^{4} \\
& \mathrm{~A}_{\mathrm{g}}=\pi\left(\frac{\mathrm{d}}{2}\right)^{2}=\pi\left(\frac{18}{2}\right)^{2}=254.5 \mathrm{in}^{2} \\
& \mathrm{f}_{\mathrm{c}}=\frac{(29,133 \times 12)(18)}{2(5153.0)}-\frac{4,471}{254.5}=593 \mathrm{psi} \leq 1625 \mathrm{psi}=\frac{\mathrm{f}^{\prime} \mathrm{c}}{2}
\end{aligned}
$$

Bar Reinforcing Stress:

Refer to Section 5-6.05, Bar Reinforcing Stresses.
Given Information
Pile:
$\mathrm{L}=$ Depth below ground $=8 \mathrm{ft}$
$\mathrm{e}=$ Length from ground surface to ultimate lateral load $=2 \mathrm{ft}$
$\mathrm{d}=$ Pile diameter $=18 \mathrm{in}=1.5 \mathrm{ft}$
Bar Reinforcing Steel:
2-\#8 Grade 60 bars, full length, 2" clear
Placed symmetrically along the pile axis

Design loads:
$V_{\text {max }}=6188 \mathrm{lbs}$

Section A-A

Figure D-29-6. Laterally Loaded Pile with Reinforcement
$\mathrm{H}_{\text {max }}=6188 \mathrm{lbs}$
Mmax $^{\text {m }} 29,133 \mathrm{ft}-\mathrm{lb}$
Single use loading (FS = 2)

Determine the bar reinforcing stress in this pile

$$
d_{\mathrm{s}}=\mathrm{d}_{\text {pile }}-2\left[2^{\prime \prime} \text { clear }\right]-2\left(\mathrm{~d}_{\text {bar }} / 2\right)=18-2(2)-2(1.0 / 2)=13 \mathrm{in}
$$

$$
\mathrm{A}_{\mathrm{s}}=0.79 \mathrm{in}^{2}
$$

$$
\Sigma \mathrm{A}_{\mathrm{s}}=2\left(0.79 \mathrm{in}^{2}\right)=1.58 \mathrm{in}^{2}
$$

$$
\mathrm{V}^{\prime}=\mathrm{V}_{\mathrm{MAX}}-\text { pile weight }=6188-1717=4471 \mathrm{lbs}
$$

$$
\begin{align*}
f_{s} & =\frac{M}{A_{s} d_{s}}+\frac{V^{\prime}}{\Sigma A_{s}} \tag{5-6.05-3}\\
& =\frac{29,133(12)}{(0.79)(13)}+\frac{4,471}{1.58}=36,870 \mathrm{psi}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{F}_{\mathrm{s}} \leq 0.70 \mathrm{~F}_{\mathrm{y}}=0.7(60,000)=42,000 \mathrm{psi} \tag{5-6.05-4}
\end{equation*}
$$

$36,870 \mathrm{psi}<42,000$ psi allowable $\underline{\text { OK }}$
Combined Uplift and Horizontal Load:
Refer to Section 5-6.06, Resistance to Combined Uplift and Horizontal Load.
Given Information
Load capacities:
Vult $=15,800 \mathrm{lbs}$
Hult $=11,900 \mathrm{lbs}$
Single use loading (FS = 2)

Determine the load that the following pile types would be designed to resist:

a. For a plumb pile with load 30° from horizontal?
b. For a pile that is battered 15° towards the load with load 45° from H ?
a. Plumb Pile

The design loading of $13,741 \mathrm{lbs}$ governs
Design working load $=\frac{13,741}{2}=6871 \mathrm{lbs}$

Figure D-29-7. Combined Loading for Plumb Pile
b. Battered Pile

$$
\begin{aligned}
& \text { Design }_{1}=\frac{15,800}{\sin \left(45^{\circ}\right)}=22,345 \mathrm{lbs} \\
& \text { Design }_{2}=\frac{11,900}{\cos \left(45^{\circ}\right)}=16,829 \mathrm{lbs}
\end{aligned}
$$

The design loading of $16,829 \mathrm{lbs}$ governs
Design working load $=\frac{16,829}{2}=8415 \mathrm{lbs}$

Figure D-29-8. Combined Loading for Battered Pile

The forgoing equations may be used when the horizontal force H is to be less than the computed ultimate lateral force Hult.

