Appendix D Example 30 - Short Poured-In-Place Concrete Piles

Refer to Falsework Manual, Section 5-6, Short Poured-In-Place Concrete Piles and the sample calculations in Appendix D Example 29 - Short Poured-In-Place Concrete Piles. This example demonstrates how to perform a complete analysis for a short poured-inplace concrete pile.

Given Information

A contractor proposes to use an 18-inch diameter poured in place concrete pile as an anchorage for his falsework cable bracing. Prior to being used for bracing the falsework this pile will be used as an anchorage for the column reinforcing cage and form.

This anchor pile will be subjected to three short term loads in the same direction.
Soil (cohesionless):
Internal Friction $\phi=35^{\circ}$
Unit weight $\gamma_{s}=110 \mathrm{pcf}$

Concrete:
Unit weight $\gamma_{c}=145$ pcf
Compressive strength $\mathrm{f}^{\prime} \mathrm{c}=3250 \mathrm{psi}$
Bar Reinforcing Steel:
2-\#5 Grade 60 bars, full length each side of centerline

Pile Dimensions:
$\mathrm{a}=2 \mathrm{in}$.
b $=6 \frac{1}{4}$ in
$\mathrm{d}=18 \mathrm{in}=1.5 \mathrm{ft}$
$\mathrm{e}=1.2 \mathrm{ft}$
$\theta=35^{\circ}$
$\mathrm{L}=12 \mathrm{ft}$ (lower 2 ft submerged)
Design load:

Section A-A
Figure D-30-1. Laterally Loaded Reinforced Concrete Pile

$$
P=8000 \mathrm{lbs}
$$

Determine the Adequacy of the Pile

Check for adequate reinforcement clearance

Find distance from center of pile to center of bar (use geometry) and bar radius 9 in $-\left\{\sqrt{(6.25)^{2}+(2)^{2}}+\frac{0.625}{2}\right\}=2.13$ in >2 in minimum clearance $\underline{O K}$

Calculate load components

Hdesign $=$ Design $\cos 35^{\circ}=(8000)\left(\cos \left(35^{\circ}\right)\right)=6553 \mathrm{lbs}$
$V_{\text {design }}=$ Design $\sin 35^{\circ}=(8000)\left(\sin \left(35^{\circ}\right)\right)=4589 \mathrm{lbs}$

Calculate Factor of Safety

$$
\begin{align*}
\mathrm{FS} & =2.0+(x-1)(0.25)=2.0+(3-1)(0.25) \tag{5-6.03-1}\\
& =2.5 \text { for lateral soil loading }
\end{align*}
$$

Check Uplift Capacity

$$
S=\beta \sigma_{z}
$$

where:

$$
\begin{aligned}
& z=12 \mathrm{ft} \quad\left(Z_{\text {dry }}=10 \mathrm{ft} ; Z_{\text {wet }}=2 \mathrm{ft}\right) \\
& \sigma_{z}=10(110)+2(110-62.4)=1195 \mathrm{psf} \\
& \beta=1.5-0.315 \mathrm{z}^{1 / 2}=1.5-0.315(12)^{1 / 2}=0.41>0.25 \quad \underline{\text { OK }}
\end{aligned}
$$

$S=0.41(1,195)=490$ psf $\quad 4,000$ psf $\quad 0 K$
Net pile shearing resistance $\mathrm{Rs}=\pi \mathrm{dzS}=\pi(1.5)(12)(490)=27,709 \mathrm{lbs}$
Pile weight $W=\pi\left(\frac{d}{2}\right)^{2} L_{p} Y_{c}=\pi\left(\frac{1.5}{2}\right)^{2}(12+1.2)(145)=3382 \mathrm{lbs}$
Ultimate load capacity $R=27,709+3382=31,091 \mathrm{lbs}$
Working load $V=\frac{31,091}{2.5}=12,436 \mathrm{lbs}>4,589 \mathrm{lbs} \quad \underline{O K}$

Check lateral capacity

$4 \mathrm{~d}=(4)(1.5)=6.0 \leq 12 \mathrm{ft}$ (Meets minimum embedment length requirements)

$$
K_{p}=\tan ^{2}\left(45^{\circ}+\frac{\phi}{2}\right)=\tan ^{2}\left(45^{\circ}+\frac{35^{\circ}}{2}\right)=3.69
$$

$L / d=12 / 1.5=8.0 \leq 20$ (meets short pile criteria)
$\mathrm{e} / \mathrm{d}=1.2 / 1.5=0.8$
From Figure 5-23, $\quad \frac{\mathrm{H}_{\mathrm{ULT}}}{\mathrm{K}_{\mathrm{p}} \gamma_{S} \mathrm{~d}^{3}} \approx 16$
Find effective unit weight of soil by using weighted average to account for variable soil layers:

$$
\begin{aligned}
& \gamma_{2}=\frac{(10)(110)+(2)(110-62.4)}{12}=99.6 \mathrm{pcf} \\
& \text { HuLt }=16 \times \mathrm{K}_{\mathrm{p}} \gamma_{\mathrm{s}} \mathrm{~d}^{3}=16 \times(3.69)(99.6)(1.5)^{3}=19,846 \mathrm{lbs}
\end{aligned}
$$

Working Load Value for Hult $=\frac{19,846}{2.5}=7938 \mathrm{lbs}>6533 \mathrm{lbs} \underline{\mathrm{OK}}$

$$
\begin{equation*}
\left(\mathrm{f}_{\mathrm{g}}\right)^{2}=\frac{\mathrm{H}_{\mathrm{ULT}}}{1.5 \gamma_{\mathrm{s}} \mathrm{~d} K_{\mathrm{p}}} \tag{5-6.03A-1}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{g}}=\left(\frac{\mathrm{H}_{\mathrm{ULT}}}{1.5 \gamma_{\mathrm{s}} \mathrm{dK}_{\mathrm{p}}}\right)^{\frac{1}{2}}=\left(\frac{19,846}{1.5(99.6)(1.5)(3.69)}\right)^{\frac{1}{2}}=4.90 \mathrm{ft} \\
& \text { MULT }=\text { HuLt }\left(\mathrm{e}+\frac{2 \mathrm{f}_{\mathrm{g}}}{3}\right) \\
& \quad=(19,846)\left(1.2+\frac{(2)(4.90)}{3}\right)=88,645 \mathrm{ft}-\mathrm{lb}
\end{aligned}
$$

Working Load Value for Mult $=\frac{88,645}{2.5}=35,458 \mathrm{ft}-\mathrm{lb}$

Pile Adequacy

Pile capacity is to be based on design loads. The lateral force Hdesign may be substituted for Hult and Mdesign for Mult in the critical soil equations.
$V_{\text {DESIIGN }}=4,589 \mathrm{lbs}$
Hdesign $=6,553 \mathrm{lbs}$

$$
\begin{align*}
& \left(\mathrm{f}_{\mathrm{g}}\right)^{2}=\frac{\mathrm{H}_{\mathrm{ULT}}}{1.5 \gamma_{\mathrm{s}} \mathrm{~d} \mathrm{~K}_{\mathrm{p}}} \tag{5-6.03A-1}\\
& \mathrm{f}_{\mathrm{g}}=\left(\frac{\mathrm{H}_{\mathrm{ULT}}}{1.5 \gamma_{\mathrm{s}} \mathrm{dK}_{\mathrm{p}}}\right)^{\frac{1}{2}}=\left(\frac{6553}{1.5(99.6)(1.5)(3.69)}\right)^{\frac{1}{2}}=2.82 \mathrm{ft} \\
& \text { MdESIGN }=\text { MuLT }=\text { HULT }\left(\mathrm{e}+\frac{2 \mathrm{f}_{\mathrm{g}}}{3}\right) \tag{5-6.03A-2}\\
& \text { MdESIGN }=6553\left(1.2+\frac{(2)(2.82)}{3}\right)=20,183 \mathrm{ft}-\mathrm{Ib}
\end{align*}
$$

$$
\text { Depth to plane of zero shear of pile } \approx \frac{M_{\text {DESI GN }}}{\mathrm{H}_{\text {DESI } \mathrm{GN}}} \approx \frac{20,183}{6,553}=3.08 \mathrm{ft}
$$

Concrete Stress

Pile weight $=\pi\left(\frac{\mathrm{d}}{2}\right)^{2}(3.08+\mathrm{e}) \gamma_{\mathrm{c}}=\pi\left(\frac{1.5}{2}\right)^{2}(3.08+1.2)(145)=1096 \mathrm{lbs}$ $\mathrm{V}^{\prime}=4589-1096=3493 \mathrm{lbs}$
$\mathrm{I}_{\mathrm{g}}=\frac{\pi \mathrm{d}^{4}}{64}=\frac{\pi(18)^{4}}{64}=5153 \mathrm{in}^{4}$
Ag $=\frac{\pi d^{2}}{4}=\frac{\pi(18)^{2}}{4}=254.5 \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{c}}=\frac{\mathrm{Md}}{2 \mathrm{I}_{\mathrm{g}}}-\frac{\mathrm{V}^{\prime}}{\mathrm{A}_{\mathrm{g}}} \leq \frac{\mathrm{f}^{\prime} \mathrm{c}}{2}$
$\mathrm{f}_{\mathrm{c}}=\frac{(20,183)(12)(1.5)(12)}{(2)(5153)}-\frac{3493}{254.5}=409 \mathrm{psi}<1625 \mathrm{psi}=\frac{\mathrm{f}_{\mathrm{c}}^{\prime}}{2} \quad \underline{\mathrm{OK}}$
$V_{u}=2 \sqrt{\mathrm{f}_{\mathrm{c}}}=2 \sqrt{3250}=114 \mathrm{psi}$
$\mathrm{v}_{\mathrm{u}}=\frac{\mathrm{v}}{0.5 \mathrm{bd}} \approx \frac{\mathrm{v}}{0.5 \mathrm{~A}} \approx \frac{6,553}{(0.5)(254.5)} \approx 51 \mathrm{psi}$

$$
51 \text { psi < } 114 \text { psi allowable } \underline{\mathbf{O K}}
$$

Bar Reinforcing Stress

$$
\begin{align*}
& \mathrm{A}_{\mathrm{s}}=0.31 \mathrm{in}^{2} \quad \mathrm{~d}_{\mathrm{bar}}=0.625 \mathrm{in} \\
& \mathrm{~d}_{\mathrm{s}}=2 \mathrm{~b}=(2)(6.25)=12.50 \mathrm{in} \\
& \Sigma \mathrm{~A}_{\mathrm{s}}=4\left(0.31 \mathrm{in}^{2}\right)=1.24 \mathrm{in}^{2} \\
& \mathrm{f}_{\mathrm{s}}=\frac{\mathrm{M}}{\mathrm{~A}_{\mathrm{s}} \mathrm{~d}_{\mathrm{s}}}+\frac{\mathrm{V}^{\prime}}{\Sigma \mathrm{A}_{\mathrm{s}}}=\frac{(20,183)(12)}{(2 \times 0.31)(12.50)}+\frac{3493}{1.24}=34,068 \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{s}} \leq 0.70 \quad \mathrm{~F}_{y}=0.7(60,000)=42,000 \mathrm{psi} \tag{5-6.05-4}
\end{align*}
$$

$$
34,068 \mathrm{psi}<42,000 \mathrm{psi} \text { allowable } \underline{\text { OK }}
$$

This pile is capable of resisting the applied loads. The pile is satisfactory for use as designed by the contractor.

