Appendix D Example 7 - Stability of Shoring Towers

Refer to Falsework (FW) Manual, Section 6-6, Tower Stability. This example demonstrates how to check the stability of shoring towers.

Given Information

Wind load calculated in example 5:

$$
\mathrm{H}=7630 \mathrm{lb} \text { per tower }
$$

(Wind Load from Example 5)
Ultimate cable load specified by manufacturer $=69.2 \mathrm{~K}$

WACO 10x10 Towers
Weight of tower $=0.2 \frac{\mathrm{kip}}{\mathrm{ft}}$

Figure D-7-1. Wind Load on Towers

Due to bridge
concrete $\{|75 \mathrm{k} \quad| 75 \mathrm{k} \quad|75 \mathrm{k} \quad| 75 \mathrm{k}$

Figure D-7-2. Tower Reactions

Check Stability

Check Stability of the Unloaded Towers

Figure D-7-3. Unloaded Towers

1. Calculate the resisting moment (RM) before the bridge concrete is placed:

Tower weight $\mathrm{W}=0.2 \frac{\mathrm{kip}}{\mathrm{ft}}(104 \mathrm{ft})=20.8 \mathrm{kip}$
RM per tower $=10 \mathrm{ft}(20 \mathrm{k})+5 \mathrm{ft}(20.8 \mathrm{k})=304^{\mathrm{ft}-\mathrm{k}}$
2. Overturning moment $(\mathrm{OTM})=104 \mathrm{ft}(7630 \mathrm{lb} / 1000)=794^{\mathrm{ft}-\mathrm{k}}$
3. Since $\mathrm{OTM}=794^{\mathrm{ft}-\mathrm{k}}>\mathrm{RM}=304^{\mathrm{ft}-\mathrm{k}}$

Cable bracing is required for unloaded condition.
4. Calculate the force in the cables.

Excess overturning, one tower $=794^{\mathrm{ft}-\mathrm{k}}$ -$304^{\mathrm{ft}-\mathrm{k}}=490^{\mathrm{ft}-\mathrm{k}}$

Excess overturning, two towers $=2\left(490^{\mathrm{ft}-\mathrm{k}}\right)$
$=980^{\mathrm{ft}-\mathrm{k}}$
$\mathrm{H}_{\mathrm{C}}=\frac{980^{\mathrm{ft}-\mathrm{k}}}{104 \mathrm{ft}}=9.42 \mathrm{kip}$
Force in cables $T=\frac{108.2 \mathrm{ft}}{30 \mathrm{ft}}(9.42 \mathrm{kip})=34.0$ kip

Figure D-7-4. Towers and Cable Bracing
5. Check cables:

Efficiency of clip type connectors $=80 \%$ (FW Sect. 5-5.04)
Factor of safety $=3.0$ (FW Sect. 5-5.06)
Ultimate cable load = 69.2 kip (given)
Safe working load -
$\frac{\text { Breaki ng streng th } \mathrm{x} \text { connect or efficie ncy }}{\text { safety factor }}=\frac{69.2 \mathrm{kip}(0.80)}{3.0}=18.5 \mathrm{kip}$
$18.5 \frac{\mathrm{kip}}{\text { cable }} \times 2$ cables $=37.0$ kip
34.0 kip ≤ 37.0 kip allowable

Check Stability of the Loaded Towers

Figure D-7-5. Loaded Towers

1. Calculate the resisting moment after the bridge concrete is placed.

RM of two tower units $=2[5 \mathrm{ft}(21 \mathrm{kip})+10 \mathrm{ft}(95 \mathrm{kip})]=2110^{\mathrm{ft}-\mathrm{k}}$
2. OTM of two tower units $=2 \times 794^{\mathrm{ft}-\mathrm{k}}=1588^{\mathrm{ft}-\mathrm{k}}$
3. Since OTM $=1588^{\mathrm{ft}-\mathrm{k}} \leq \mathrm{RM}=2110^{\mathrm{ft}-\mathrm{k}}$

Cable bracing is not required for loaded condition

