Appendix D Example 8 - Stability of Towers with Discontinuous Legs

Refer to Falsework Manual, Section 6, Stability and Section 6-6, Tower Stability. This example problem illustrates the overturning stability of a tower with discontinuous legs. Refer to Figure D-8-1.

Given Information

Assume that the bracing and other falsework features are adequate:
$P_{1}=6,700 \mathrm{lb}$
$\mathrm{P}_{2}=7,000 \mathrm{lb}$
$\gamma_{\omega}=$ weight of wood $=35$ pcf
$H=1,050 \mathrm{lb}$ acting on one-half of a tower unit.

Figure D-8-1. Tower with Discontinuous Legs

Check Shear Resistance

The shear at the elevation of the plane B discontinuity will govern since frictional resistance increases with the weight of additional material below that elevation.

Check shear resistance at plane B. The active horizontal load (H) of $1,050 \mathrm{lb}$ will be resisted by the frictional capacity of 2 tower legs.

Single post weight $=40 \mathrm{ft}\left(1 \mathrm{ft}^{2}\right)(35 \mathrm{pcf})=1,400 \mathrm{lb}$
Single cap weight $=10 \mathrm{ft}\left(1 \mathrm{ft}^{2}\right)(35 \mathrm{pcf})=350 \mathrm{lb}$
Resistance $=0.3\left[6,700 \mathrm{lb}+7,000 \mathrm{lb}+2(1,400 \mathrm{lb})+2\left(\frac{350 \mathrm{lb}}{2}\right)\right]=5,055 \mathrm{lb}>1,050 \mathrm{lb}$

Mechanical connection not required

Check Overturning Resistance

Check overturning resistance at plane B, C, and D by taking moments about the heavier loaded post.

Plane B:
$\mathrm{OTM}=41 \mathrm{ft}(\mathrm{H})=41 \mathrm{ft}(1,050 \mathrm{lb})=43,050^{\mathrm{ft}-\mathrm{lb}}$
$R M=8 \mathrm{ft}(6,700 \mathrm{lb})+8 \mathrm{ft}(1,400 \mathrm{lb})+8 \mathrm{ft}\left(\frac{350 \mathrm{lb}}{2}\right)=66,200^{\mathrm{ft}-\mathrm{lb}}$
Safety Factor $=\frac{66,200}{43,050}=1.54$
External bracing not required

Plane C:

$\mathrm{OTM}=44 \mathrm{ft}(\mathrm{H})=44 \mathrm{ft}(1,050 \mathrm{lb})=46,200^{\mathrm{ft}-\mathrm{lb}}$
$R M=66,200^{\mathrm{ft}-\mathrm{lb}}+2(4 \mathrm{ft})(350 \mathrm{lb})+\left(\frac{350 \mathrm{lb}}{2}\right)(2 \mathrm{ft}+4 \mathrm{ft}+6 \mathrm{ft}+8 \mathrm{ft})=72,500^{\mathrm{ft}-\mathrm{lb}}$

Safety Factor $=\frac{72,500}{46,200}=1.57$
External bracing not required
Plane D:
OTM $=84 \mathrm{ft}(\mathrm{H})=84 \mathrm{ft}(1,050 \mathrm{lb})=88,200^{\mathrm{ft}-\mathrm{lb}}$
$\left.R M=72,500^{\mathrm{ft}-\mathrm{lb}}+8 \mathrm{ft}(1,400 \mathrm{lb})\right)=83,700^{\mathrm{ft}-\mathrm{lb}}$
Safety Factor $=\frac{83,700}{88,200}=0.95<1$
External bracing will be required to prevent overturning!

