Table of Contents

Gates Formula Commentary E-2
Pile Driving Formulas E-4
Comparison Of Formulas E-7
Example 1: Calculation Of Minimum Hammer Energy E-13
Example 2: Calculations For Establishing A Blow Count Chart E-14
Example 3: Calculations For Establishing A E-16
Battered Pile Blow Count Chart
E-17
Example 4: Calculations For Piles With Downdrag
E-20
Example 5: Estimate Hammer Stroke Of A Single Acting Hammer
E-21
Example Battered Pile Blow Count ChartE-22

Gates Formula Commentary

Projects with driven pile foundations specify the "Gates Formula" to determine nominal resistance. This change was first incorporated in the "Amendments to July 1999 Standard Specifications" and is now included in the Standard Specifications ${ }^{1}$. The change is also discussed in Bridge Construction Memo (BCM) 130-4.0, Pile Driving Acceptance Criteria.

Why change from ENR to Gates Formula?

- Factor of safety from ENR (Engineering News Record) varies from $1 / 2$ to 20. With low factor of safety, capacity of the pile is actually driven to be under the factored design load. Lack of capacity has resulted in excessive settlement. Extremely high factors of safety often cause damage to the pile and result in contractor claims and also is a waste of time and energy.
- California was actually one of the last States using the ENR formula.
- ENR does not properly account for down drag or the overburden effects and resistance associated with zones that may scour or liquefy.

Advantage of Gate's Formula

- This formula predicts the static capacity of the pile significantly more accurately than the ENR Formula because it provides a significantly lower coefficient of variation.

Additionally, since the formula utilizes ultimate capacity and not an unfactored safe load, the formula can account for the effects of downdrag, scour, and liquefaction.

The Gates formula (US Customary) is:

$$
R_{u}=\left(1.83 *\left(E_{r}\right)^{1 / 2} * \log _{10}(0.83 * N)\right)-124
$$

Where:
$\mathrm{R}_{\mathrm{u}}=$ Calculated nominal resistance/ultimate compressive capacity in kips
$\mathrm{E}_{\mathrm{r}}=$ Energy rating of hammer at observed field drop height in foot pounds
$\mathrm{N}=$ Number of blows in the last foot (maximum of 96)

[^0]
Additional Notes:

Caltrans Memo to Designer 3-1 was updated in June 2014. During constructability reviews, it is very important that the Structure Construction reviewer checks the pile data table on the plan sheets for notes on downdrag and liquefaction.

A very good reference showing the differences in formulas (Gates, ENR, Haley, Janbu, etc) is the "Comparison of Methods for Estimating Pile Capacity, Report No. WA-RD 163.1", Final Report dated August 1988, by the Washington State Department of Transportation. In lieu of that, examples of comparisons are shown below.

Pile Driving Formulas

Gates Formula

$$
P=\left(\left(1.83 *\left(E_{r}\right)^{1 / 2} * \log _{10}(0.83 * N)\right)-124\right) z
$$

Where, $\quad P=$ safe load in kips
$E_{r}=$ energy of driving in foot pounds
$N=$ number of hammer blows in the last foot
$z=$ conversion factor for units and safety with this formula

Engineering News (ENR)

$$
P=\frac{2 E}{(s+0.1)}
$$

Where, $\quad P=$ safe load in pounds
$E=$ rated energy in foot-pounds
$s=$ penetration per blow in inches
This formula was derived from the original Engineering News formula for drop hammers on timber piles, which was:
$P=\frac{W H}{(s+c)}$
Where, $\quad W=$ weight of ram in pounds
$H=$ length of stroke in inches
c = elastic losses in the cap, pile, and soil in inches
It was modified to correct units and apply other factors to compensate for modern equipment.

Janbu Formula

$$
P=\left(\frac{W H}{k_{u} s}\right) z
$$

Where, $\quad P=$ safe load in pounds
$W=$ weight of ram in pounds
$H=$ length of stroke in inches
$s=$ penetration per blow in inches
$k_{u}=$ factor derived from the following,

$$
\begin{aligned}
k_{u} & =C_{d}\left[1+\sqrt{1+\left(\lambda / C_{d}\right)}\right] \\
C_{d} & =0.75+0.15\left(W_{p} / W\right) \\
\lambda & =\frac{W H L}{A E s^{2}}
\end{aligned}
$$

where, W_{p} = weight of pile in pounds
$L=$ length of pile in inches
$A=$ area of pile in square inches
$E=$ modulus of elasticity of pile in pounds per square inch
$z=$ conversion factor for units and safety with this formula

Hiley Formula

$$
P=\left(\frac{e_{f} W H}{s+1 / 2\left(c_{1}+c_{2}+c_{3}\right)}\right)\left(\frac{W+n^{2} W_{p}}{W+W_{p}}\right) z
$$

Where, $\quad P=$ safe load in pounds
$e_{f}=$ efficiency of hammer (\%)
$W=$ weight of ram in pounds
$H=$ length of stroke in inches
$s=$ penetration per blow in inches
$c_{1}, c_{2}, c_{3}=$ temporary compression of pile cap and head, pile, and soil,
respectively in inches
$n=$ coefficient of restitution
$W_{p} \quad=$ weight of pile in pounds
$z=$ conversion factor for units and safety with this formula

Pacific Coast Formula

$$
P=\frac{E_{n}\left(\frac{W+k W_{p}}{W+W_{p}}\right) z}{s+\frac{P L}{A E}}
$$

Where, $\quad P=$ safe load in pounds
$E_{n}=$ energy of driving in inch pounds
$W=$ weight of ram in pounds
$W_{p} \quad=$ weight of pile in pounds
$s=$ penetration per blow in inches
$L=$ length of pile in inches
$A=$ area of pile in square inches
$E=$ modulus of elasticity of pile in pounds per square inch
$k=0.25$ for steel piles
0.10 for other piles
$z=$ conversion factor for units and safety with this formula

Comparison of Formulas

Given Problem Conditions

Hammer Data: Delmag D36-32
Maximum Energy $=83,880 \mathrm{ft} \cdot \mathrm{lbs}$
Ram Weight $=\quad 7,938 \mathrm{lbs}$
Maximum Stroke $=$
Penetration or Set=
Length of Pile $=80$ feet

- Assume hard driving -

Case 1: $\quad 12 " \mathrm{PC} / \mathrm{PS}$ concrete pile
Case 2: 12 BP 53 Steel Piles

Gates Formula

For Case $1 \& 2: \quad P=\left(\left(1.83 *\left(E_{r}\right)^{1 / 2} * \log _{10}(0.83 * N)\right)-124\right) z$

$$
=\left(\left(1.83 *(83,880)^{1 / 2} * \log _{10}(0.83 *(12 / 0.844))-124\right) \frac{1}{2\left(2^{k i / / / 0 n}\right)}\right.
$$

$$
=((1.83 * 289.62 * 1.072)-124)_{\left.\frac{1}{2\left(2^{\mathrm{kip}} /\right. \text { /on }}\right)}
$$

$$
=(568.122-124) \frac{1}{2\left(2^{k i p / / o n}\right)}
$$

$$
=\frac{444.122 \mathrm{kips}}{2\left(2^{\mathrm{kip}} / \text { ton }\right)} \approx \underline{\underline{111.0 \mathrm{tons}}}
$$

Engineering News (ENR) Formula

For Case $1 \& 2$:

$$
\begin{aligned}
P & =\frac{2 E}{(s+0.1)} \\
& =\frac{2(83,880.0 \mathrm{ft} \cdot \mathrm{lbs})}{0.844 \mathrm{in}+0.1} \\
& =177,712 \mathrm{lbs} \approx \underline{\underline{70 \mathrm{tons}}}
\end{aligned}
$$

Janbu Formula

Case 1:

$$
\begin{aligned}
& P=\left(\frac{W H}{k_{u} s}\right) z=\left(\frac{W H}{k_{u} s}\right) \frac{1}{3\left(2000^{1 \mathrm{bs} / \text { /(0n })}\right.} \\
& =\left(\frac{7,938 \mathrm{lbs}(10.42 \mathrm{ft} \times 12 \mathrm{in} / \mathrm{ft})}{2.697(0.844 \mathrm{in})}\right) \frac{1}{3\left(2000 \mathrm{obssh}_{\text {/on }}\right)} \\
& =\left(\frac{435,931 \mathrm{lbs}}{3\left(2000^{\mathrm{lbs} / \mathrm{ton})}\right)}\right) \approx \underline{\underline{72.66 \mathrm{tons}}} \\
& \begin{aligned}
c_{d} & =0.75+0.15\left(W_{p} / W\right) \\
& =0.75+0.15(11,600 \mathrm{lbs} / 7,938 \mathrm{lbs}) \\
& =0.969 \\
\lambda & =\frac{W H L}{A E s^{2}} \\
& =\frac{7,938 \mathrm{lbs}(10.42 \mathrm{ft} \times 12 \mathrm{in} / \mathrm{ft})(80 \mathrm{ft} \times 12 \mathrm{in} / \mathrm{ft})}{\left(144 \mathrm{in}^{2}\right)\left(4.4 \times 10^{6} \mathrm{lbs} / \mathrm{in}^{2}\right)(0.844 \mathrm{in})^{2}} \\
& =2.111 \\
k_{u} & =c_{d}\left[1+\sqrt{1+\left(\lambda / c_{d}\right)}\right] \\
& =0.969[1+\sqrt{1+(2.111 / 0.969)}] \\
& =2.697
\end{aligned}
\end{aligned}
$$

Case 2:

$$
\begin{aligned}
P & =\left(\frac{W H}{k_{u} s}\right) z=\left(\frac{W H}{k_{u} s}\right) \frac{1}{3(2000 \mathrm{bs} / \text { /on })} \\
& =\left(\frac{7,938 \mathrm{lbs}(10.42 \mathrm{ft} \times 12 \mathrm{in} / \mathrm{ft})}{2.581(0.844 \mathrm{in})}\right) \frac{1}{3(2000 \mathrm{lb/s/6n})} \\
& =\left(\frac{455,578 \mathrm{lbs}}{3\left(2000^{\mathrm{lbs} / \mathrm{ton})}\right)}\right) \approx \underline{\underline{75.93 \mathrm{tons}}}
\end{aligned}
$$

$$
\begin{aligned}
c_{d} & =0.75+0.15\left(W_{p} / W\right) \\
& =0.75+0.15(4,240 \mathrm{lbs} / 7,938 \mathrm{lbs}) \\
& =0.830 \\
\lambda & =\frac{W H L}{A E s^{2}} \\
& =\frac{7,938 \mathrm{lbs}(10.42 \mathrm{ft} \times 12 \mathrm{in} / \mathrm{ft})(80 \mathrm{ft} \times 12 \mathrm{in} / \mathrm{tt})}{\left(15.58 \mathrm{in}^{2}\right)\left(30 \times 10^{6} \mathrm{lbs} / \mathrm{in}^{2}\right)(0.844 \mathrm{in})^{2}} \\
& =2.861 \\
k_{u} & =c_{d}\left[1+\sqrt{1+\left(\lambda / c_{d}\right)}\right] \\
& =0.830[1+\sqrt{1+(2.861 / 0.830)}] \\
& =2.581
\end{aligned}
$$

Hiley Formula

Case 1:

$$
\begin{aligned}
P & =\left(\frac{e_{f} W H}{s+1 / 2\left(c_{1}+c_{2}+c_{3}\right)}\right)\left(\frac{W+n^{2} W_{p}}{W+W_{p}}\right) z \\
& =\left(\frac{e_{f} W H}{s+1 / 2\left(c_{1}+c_{2}+c_{3}\right)}\right)\left(\frac{W+n^{2} W_{p}}{W+W_{p}}\right) \frac{1}{2.75(2000 \mathrm{bs} / \mathrm{ton})} \\
& =\left(\frac{1.00(7,938 \mathrm{lbs})(10.42 \mathrm{ft} \times 12 \mathrm{in} / \mathrm{tt})}{0.844 \mathrm{in}+1 / 2(0.37 \mathrm{in}+0.32 \mathrm{in}+0.10 \mathrm{in})}\right)\left(\frac{7,938 \mathrm{lbs}+\left(0.25^{2}\right)(11,600 \mathrm{lbs})}{7,938 \mathrm{lbs}+11,600 \mathrm{lbs}}\right) \frac{1}{2.75(2000 \mathrm{bs} / \mathrm{lon})} \\
& =\frac{355,090 \mathrm{lbs}}{2.75(2000 \mathrm{lbs} / \mathrm{ton})} \approx 64.6 \mathrm{tons}
\end{aligned}
$$

Case 2:

$$
\begin{aligned}
P & =\left(\frac{e_{f} W H}{s+1 / 2\left(c_{1}+c_{2}+c_{3}\right)}\right)\left(\frac{W+n^{2} W_{p}}{W+W_{p}}\right) z \\
& =\left(\frac{e_{f} W H}{s+1 / 2\left(c_{1}+c_{2}+c_{3}\right)}\right)\left(\frac{W+n^{2} W_{p}}{W+W_{p}}\right) \frac{1}{2.75(2000 \mathrm{bs} / \mathrm{on})} \\
& =\left(\frac{1.00(7,938 \mathrm{lbs})(10.42 \mathrm{ft} \times 12 \mathrm{in} / \mathrm{ft})}{0.844 \mathrm{in}+1 / 2(0.0 \mathrm{in}+0.48 \mathrm{in}+0.10 \mathrm{in})}\right)\left(\frac{7,938 \mathrm{lbs}+\left(0.55^{2}\right)(4,240 \mathrm{lbs})}{7,938 \mathrm{lbs}+4,240 \mathrm{lbs}}\right) \frac{1}{2.75(2000 \mathrm{bbs} / \mathrm{ton})} \\
& =\frac{662,508 \mathrm{lbs}}{2.75\left(2000 \mathrm{lbs}_{\mathrm{lon}}^{\mathrm{lon}}\right)} \approx \underline{\underline{120.5 \mathrm{tons}}}
\end{aligned}
$$

Pacific Coast Formula

Case 1:

$$
\begin{aligned}
P & =\frac{E_{n}\left(\frac{W+k W_{p}}{W+W_{p}}\right) z}{s+\frac{P L}{A E}} \\
& =\frac{E_{n}\left(\frac{W+k W_{p}}{W+W_{p}}\right)}{s+\frac{P L}{A E}} \times \frac{1}{4\left(2000^{\mathrm{lbs} / \mathrm{ton})}\right.} \\
& =\frac{83,880 \mathrm{ft} \cdot \mathrm{lbs}(12 \mathrm{in} / \mathrm{bs})\left(\frac{7,938 \mathrm{lbs}+0.1(11,600 \mathrm{lbs})}{7,938 \mathrm{lbs}+(11,600 \mathrm{lbs})}\right)}{\left.0.844 \mathrm{in}+\frac{P(80 \mathrm{ft}}{\left(144 \mathrm{in}^{2}\right)\left(4.4 \times 10^{\mathrm{in} / \mathrm{tr})}\right.}\right)} \times \frac{1}{4\left(2000^{\mathrm{lbs} / \mathrm{ton})}\right.} \\
& =\frac{468,711 \mathrm{in} \cdot 1 \mathrm{lbs}}{0.844 \mathrm{in}+P\left(1.52 \times 10^{-6} \mathrm{in} / \mathrm{lbs}\right)} \times \frac{1}{4\left(2000^{\mathrm{lbs} / \mathrm{ton}}\right)} \\
& =\frac{343,511 \mathrm{lbs}}{4\left(2000^{\mathrm{lbs} / \mathrm{ton})} \approx \underline{42.94 \mathrm{tons}}\right.}
\end{aligned}
$$

Case 2:

$$
\begin{aligned}
P & =\frac{E_{n}\left(\frac{W+k W_{p}}{W+W_{p}}\right) z}{s+\frac{P L}{A E}} \\
& =\frac{E_{n}\left(\frac{W+k W_{p}}{W+W_{p}}\right)}{s+\frac{P L}{A E}} \times \frac{1}{4\left(2000^{\mathrm{lbs} / \mathrm{ton})}\right.} \\
& =\frac{83,880 \mathrm{ft} \cdot \mathrm{lbs}(12 \mathrm{in} / \mathrm{lb})\left(\frac{7,938 \mathrm{lbs}+0.25(4240 \mathrm{lbs})}{7,938 \mathrm{lbs}+(4240 \mathrm{lbs})}\right)}{0.844 \mathrm{in}+\frac{P(80 \mathrm{ft} \times 12 \mathrm{in} / \mathrm{tr})}{\left(15.58 \mathrm{in}^{2}\right)\left(30 \times 10^{6}\right)}} \times \frac{1}{4\left(2000^{\mathrm{lbs} / \mathrm{ton})}\right.} \\
& =\frac{743,720 \mathrm{in} \cdot \mathrm{lbs}}{0.844 \mathrm{in}+P\left(2.1 \times 10^{-6} \mathrm{in} / \mathrm{lbs}\right)} \times \frac{1}{4\left(2000^{\mathrm{lbs} / \mathrm{ton})}\right.} \\
& =\frac{430,395 \mathrm{lbs}}{4\left(2000^{\mathrm{lbs} / \mathrm{ton})} \approx \underline{\underline{53.8 \mathrm{tons}}}\right.}
\end{aligned}
$$

Table E-1. Results of Pile Driving Formula ComparisonPile Formula		CASE 1 12" PC/PS Concrete Pile		CASE 2 HP12×53 Steel Pile	
	Pile Length	80.0 ft	40.0 ft	80.0 ft	40.0 ft
GATES		111.0 tons	111.0 tons	111.0 tons	111.0 tons
ENR		70 tons	70 tons	70 tons	70 tons
JANBU		72.7 tons	91.5 tons	75.9 tons	92.7 tons
HILEY		64.6 tons	88.0 tons	120.5 tons	135.7 tons
PACIFIC COAST		42.9 tons	63.5 tons	53.8 tons	73.3 tons

Example 1: Calculation of Minimum Hammer Energy

Given:

Hammer Data: | Delmag D36-32 | |
| ---: | :--- |
| Ram Weight | $=7938 \mathrm{lbs}$ |
| Manufacturer's Maximum Energy Rating | $=83,880 \mathrm{ft} \cdot \mathrm{lbs}$ |

Nominal Resistance $=390$ kips

Check: Hammer Energy per 2010 Standard Specification 49-2.01A(4)(b), Pile Driving Acceptance Criteria.

From the Gates Equation,

$$
R_{u}=\left(1.83 *\left(E_{r}\right)^{1 / 2} * \log _{10}(0.83 * N)\right)-124
$$

Rearranging for $N: \quad N=\frac{10^{\left(R_{u}+124 / 1.83 \sqrt{E_{r}}\right)}}{0.83}$

$$
\begin{aligned}
N & =\frac{10^{(390+124 / 1.83 \sqrt{83,880})}}{0.83} \\
& =\frac{\left.10^{(514 / 530}\right)}{0.83} \\
& =\frac{10^{0.9698}}{0.83} \\
& =11.23 \approx 11 \text { blows } / \mathrm{tr}
\end{aligned}
$$

$$
\begin{aligned}
s & =\text { penetration per blow in inches } \\
& =N^{-1}(12 \mathrm{in} / \mathrm{tr}) \\
& =(11.23 \mathrm{blows} / \mathrm{tt})^{-1}(12 \mathrm{in} / \mathrm{tr}) \\
& =\underline{\underline{1.07 \mathrm{in} / \text { blow }}>0.125 \mathrm{in} / \mathrm{blow}}
\end{aligned}
$$

\therefore proposed hammer meets the minimum energy requirements of 2010 Standard Specification 49-2.01C(2), Driving Equipment.

Example 2: Calculations for Establishing a Blow Count Chart

Given:

Hammer Data: Delmag 36-32
Ram Weight $=\quad 7938 \mathrm{lbs}$
Maximum Stroke $=\quad 10.42 \mathrm{ft}$

Nominal Resistance $=390$ kips

Assumption(s): $\quad E_{r}=$ Ram Weight \times Observed Field Drop Height

$$
\text { Observed Field Drop Height }=6 \mathrm{ft}
$$

From the Gates Equation,

$$
R_{u}=\left(1.83 *\left(E_{r}\right)^{1 / 2} * \log _{10}(0.83 * N)\right)-124
$$

Rearranging to solve for N :

$$
\begin{aligned}
N & =\frac{10^{\left(R_{u}+124 / 1.83 \sqrt{E_{r}}\right)}}{0.83} \\
N & =\frac{10^{(390+124 / 1.83 \sqrt{47,628})}}{0.83} \\
& =6 \mathrm{ft}(7938 \mathrm{lbs}) \\
& =\frac{\left.10^{(514 / 399}\right)}{0.83} \\
& =\frac{10^{1.287}}{0.83} \cdot \mathrm{lbs} \\
& =\underline{23.33 \approx 23 \text { blows } / \mathrm{tt}}
\end{aligned}
$$

Calculations for the chart data are completed by using the Excel spreadsheet, Pile Equation-Gates.xls, downloaded from the SC Intranet website. See next page for calculation results of the spreadsheet.

Caltrans

PILE DRIVING (US Customary)
 Blows Per Foot using Gates Formula

SC-4309 (Reve 0ay12/15)

Bridge/Structure No:	53-2975
Bridge/Structure Name:	Eastside Underpass Br. (LRT)
Abu*Bent/RWSW No.:	Abut 1

Hammer Data		
Hammer Type:	ICE 120S	
Ram Weight (lbs)	-	12000 lbs
Norninal Resistance ${ }^{\text {(}}$ (kips)	-	688 kips

GATES Formula

$R_{\alpha}=\left(1.83 *\left(E_{r}\right)^{8 *} \log _{10}(0.83 * N)\right)-124$

$$
N=\frac{10^{(k+124 / 182 \sqrt{k})}}{0.83}
$$

where: $R_{z}=$ nominal driving resistance, lips
E_{r} - energy developed by hammer at observed stroke (tt-bs)
N - number of hammer blows in the last foot (max. $=96$)

$$
E_{r}-W H
$$

where: W - ramweight (bs)
H - stroke or drop height of hammer (f)

(H) Stroke (feet)	(Er) Energy (f-lbs)	(N) Blows (per foot)	
	-	-	
10.5	126,000	21	
10.0	120,000	23	
9.5	114,000	25	
9.0	108,000	27	
8.5	102,000	30	
8.0	96,000	33	
7.5	90,000	36	
7.0	84,000	41	
6.5	78,000	47	
6.0	72,000	54	
5.5	66,000	64	
5.0	60,000	78	
4.5	54,000	98	
4.0	48,000	128	
3.5	42,000	176	
	-	-	
	-	-	
	-	-	
	-	-	
	-	-	
	-	-	
	-	-	
	-	-	

${ }^{\text {t}}$ S.S. 49 2.01A(4)(b): Where the pile nominal driving resistance is not shown dive the pile to the nominal resistance shown (SS 2010)

Figure E-1. Gates Formula Excel Spreadsheet.

Example 3: Calculations for Establishing a Battered Pile Blow Count Chart

Given:

Hammer Data: Delmag 36-32
Ram Weight =
Maximum Stroke =

Assumption(s): $\quad E_{r}=$ Ram Weight \times Observed Field Drop Height
Observed Field Drop Height $=9 \mathrm{ft}$
As in the previous example, rearranging the Gates Formula gives,

$$
\begin{array}{rlrl}
N & =\frac{10^{\left(R_{u}+124 / 1.83 \sqrt{E_{r}}\right)}}{0.83} & \theta & =\sin ^{-1}(3 / 3.16)=71.565^{\circ} \\
& =\frac{10^{(390+124 / 1.83 \sqrt{67,775.8})}}{0.83} & E_{r} & =7938 \mathrm{lbs}\left(9 \mathrm{ft} \times \sin 71.565^{\circ}\right) \\
& & =67,775.8 \mathrm{ft} \cdot \mathrm{lbs}
\end{array}
$$

Calculations for the chart data are completed by using a MODIFIED value of E_{r}, modified as shown above for the batter angle, in the Excel spreadsheet, PileEquationGates.xls.

Example 4: Calculations for Piles with Downdrag

The following metric example has downdrag:
(Example submitted by Joy Cheung, P.E., and Anh Luu, P.E.)
Island Parkway Overcrossing - Rte 101/Ralston Interchange
EA 04-256804, Oversight Project

The Pile Data Table from the contract plans show:
Bent 2 Piles - Class 900C Alt "X" (Pile Data Table)
Nominal Resistance (Compression) $=1250$ KN
Estimate Down Drag Load $=242$ KN
Ultimate Pile Capacity $=R_{u}=$ Nominal resistance +2 x downdrag
Therefore:
$R_{u}=$ Nominal resistance $+2 \times$ downdrag
$R_{u}=1250 \mathrm{KN}+(2 * 242 \mathrm{KN})=1734 \mathrm{KN}$

Contractor's proposed hammer: Delmag D36-32

Pile Hammer Data - (per specs, Contractor provides data)
Also see Bridge Construction Memo 130-4.0, Pile Driving Acceptance Criteria.
Internet: www.pileco.com, www.hmc-us.com, ...etc;
Pile hammer data:
Max Energy Output $=83880 \mathrm{ft} . \mathrm{lbs}=83880 * 1.3558=113724.5$ Joules
Ram Weight $=$ mass $=7938 \mathrm{lbs}=3600.6 \mathrm{~kg}$
Maximum obtainable stroke/Piston Drop = height $=10^{\prime} 5^{\prime \prime}=3.18 \mathrm{~m}$
Find:

$E_{r}=$ Energy rating of hammer at observed field drop height in Joules

**It is generally accepted that the energy output of an open-end diesel hammer is equal to the ram weight times the length of stroke.

Gravitational potential energy $=$ mass \times free-fall acceleration \times height $=m \cdot g \cdot H=E_{r}$
$E_{r}=3600.6 \mathrm{~kg} \cdot 9.81 \cdot 3.18=112,323$ Joules $<113,724$ (Max Energy)
** For battered pile, $E_{r}=m \cdot g(H \cdot \sin \theta)$
$N=$ Number of blows per 300 millimeters (maximum of 96)
$N=\frac{10^{\left(R_{u}+550 / 7 \sqrt{E_{r}}\right)}}{0.83}$
Set up table:
Hammer Type: Delmag D 36-32

Design Load:
Nominal Resistance:
Max Energy
Ram Weight

625 kN
1734 kN
113724Joules
3600.6 Kg

Blows Per Last 300 mm .

PISTON DROP (ft) PISTON DROP (m) ENERGY (joules)	GATES		
10.417	3.18	112151	11
10	3.05	107661	12
9	2.74	96895	13
8	2.44	86129	16
7	2.13	75363	19
6	1.83	64597	23
5	1.52	53831	31
4	1.22	43064	45
3	0.91	32298	79

Set up graph:

GATES

(Delmag D36-32, Design Load $=625$ kN, Nominal Resistance $=1734$ kN $)$

A very good spreadsheet (PileEquation-Gates.xls) used to calculate blows per foot using the Gates equation can be found on the OSC Intranet Homepage under, "Downloads/ Forms".
Continue calculations:
Contract Specifications ${ }^{2}$
--Impact Hammer Minimum Energy "not less 3mm/blow at the specified bearing value..."

Use the Gates formula again...
$R_{u}=\left(7 *\left(E_{r}\right)^{1 / 2} * \log _{10}(0.83 * N)\right)-550$
Find N.
Using $E_{r}=3600.6 \mathrm{~kg} * 9.81 * 3.18=112,323$ Joules

$$
R_{u}=1250 \mathrm{KN}+(2 * 242 \mathrm{KN})=1734 \mathrm{KN}
$$

$N=11$ blows $/ 300 \mathrm{~mm}$
$s=$ Penetration per blow in millimeters
$=300 \mathrm{~mm} / 11$ blows
$\approx 27.0 \mathrm{~mm}>3 \mathrm{~mm}$ OK.

[^1]Note: An upper limit is not specified for the Contractor to furnish an approved hammer having sufficient energy to drive piles at a penetration rate of not less than $1 / 8$ inch per blow at the required bearing value.

Example 5: Estimate Hammer Stroke of a Single Acting Hammer

Given:

Hammer Data: Delmag 36-32
Ram Weight $=\quad \mid 7938 \mathrm{lbs}$
Maximum Stroke $=\quad 10.42 \mathrm{ft}$
From Field Observations: Ram Blows per Minute $(b p m)=43$

From the SAXIMETER Formula,

$$
H=4.01(60 / \mathrm{bpm})^{2}-0.3
$$

$H=$ hammer stroke in feet
$\mathrm{bpm}=$ field observation of hammer blows per minute

$$
\begin{aligned}
H & =4.01(60 / \mathrm{bpm})^{2}-0.3 \\
& =4.01(60 / 43 \mathrm{bpm})^{2}-0.3 \\
& =7.81-0.3 \\
& =7.51 \approx \underline{\underline{7.5 \mathrm{ft}}}
\end{aligned}
$$

Example Battered Pile Blow Count Chart
battered pile

PILE CAPACITY	140000	POUNDS
HAMMER	D $30-23$	
PISTON WEIGHT	6,600	POUNDS

$E=W$ * $H^{*} \operatorname{SIN} 71.565$
。

STROKE	BLOW S
FEET	PER FOOT

10	15.0
9.5	15.9
9	16.9
8.5	18.0
8	19.3
7.5	20.8
7	22.6
6.5	24.6
6	27.1
5.5	30.2
5	34.0

Example Wave Equation Field Acceptance Charts

Fleld Aeceptanee Chorta for Hydro and Diesel Hammers using both
Wave Equation Analygis and ENR formula

Figure E-2. Example Field Acceptance Charts.

[^0]: ${ }^{1} 2010$ SS, Section 49-2.01A(4)(b), Pile Driving Acceptance Criteria, or 2006 SS, Section 49-1.08, Pile Driving Acceptance Criteria.
 Caltrans • Foundation Manual

[^1]: ${ }^{2} 2010$ SS, Section 49-2.01C(2), Driving Equipment, or 2006 SS, Section 49-1.05, Driving Equipment.

