LIST OF FIGURES

Figure 3-1. Cone Penetration Test (CPT) Boring	3-6
Figure 3-2. Typical CPT Plot.	3-7
Figure 3-3. Mohr-Coulomb Criteria	3-9
Figure 4-1. Active and passive earth pressure coefficient as a function of wall displacement.	4-2
Figure 4-2. Comparison of Plane versus Curve Failure Surfaces	4-4
Figure 4-3. Lateral Earth Pressure Variation with Depth	4-5
Figure 4-4. Mohr Circle Representation of Earth Pressure for Cohesionless Backfill	4-7
Figure 4-5. Rankine's active wedge	4-12
Figure 4-6. Rankine's passive wedge	4-13
Figure 4-7. Coulomb's active wedge	4-15
Figure 4-8. Coulomb's passive wedge	4-16
Figure 4-9. Mohr Circle Representation of Earth Pressure for Cohesive Backfill	4-19
Figure 4-10. Tension crack with hydrostatic water pressure	4-20
Figure 4-11. Cohesive Soil Active Passive Earth Pressure Distribution	4-21
Figure 4-12: Load Distribution for Cohesive Backfill	4-22
Figure 4-13. Sloping Ground	4-24
Figure 4-14. Active Trial Wedge	4-26
Figure 4-15. Passive Trial Wedge	4-27
Figure 4-16. Single Wedge and Force Polygon	4-28
Figure 4-17. Culmann Trial Wedges	4-30
Figure 4-18. Culmann Graphical Solution to Scale	4-32
Figure 4-19. Retaining Wall with Irregular backfill by Culmann Method	4-33
Figure 4-20. Culmann Trial Wedge Method to Scale	4-34
Figure 4-21. Culmann Graphical Solution Using Force Polygon	4-36
Figure 4-22. Critical Active Wedge	4-37
Figure 4-23. Culmann AREMA page 8-5-12	4-39
Figure 4-24. Culmann Trial Wedge	4-40
Figure 4-25. Culmann Graphical Solution Using Force Polygon	4-42
Figure 4-26. Critical Active Wedge Method	4-43
Figure 4-27. Retaining Wall with Irregular backfill	4-45
Figure 4-28. Culmann Trial Wedge	4-46
Figure 4-29. Culmann Force Polygon	4-47
Figure 4-30. Critical Active Wedge	4-48
Figure 4-31. Passive Active failure surface: straight line versus spiral surface of sliding	4-50
Figure 4-32. Geometry of the developing mobilized failure plane (Shamsabadi, <i>et al.</i> , 2005).	4-51
Figure 4-33. Geometry of the failure surface and associated interslice forces.	4-54
Figure 4-34. Geometry of the failure surface due to weight	4-55
Figure 4-35. Geometry of the failure surface due to cohesion	4-56
Figure 4-36. Moment Method	4-57
Figure 4-37. Passive earth pressure coefficient (Caquot and Kerisel, 1948)	4-59
Figure 4-38. Mobilized full log spiral failure surface	4-60
Figure 4-39. Mobilized full log spiral failure surface for cohesion component	4-61
Figure 4-40. Log Spiral – Forces Method – Full Log Spiral – Trial	4-62
Figure 4-41. Log Spiral – Forces Method – Full Log Spiral – No Trial	4-63
Figure 4-42. Log Spiral – Forces Method – Composite Failure Surface	4-64
Figure 4-43. Log Spiral – Modified Moment Method – Composite Failure Surface	4-65
Figure 4-43. Log Spiral – Mounted Montent Method – Composite Failure Surface	.4-05

CT TRENCHING AND SHORING MANUAL

Figure 4-44. Log Spiral – Moment Method – Full Log Spiral Failure Surface	4-66
Figure 4-45. Log Spiral – Moment Method – Composite Failure Surface	4-67
Figure 4-46. Log Spiral – see Figure 4-37	4-68
Figure 4-47. Minimum Lateral Surcharge Load	4-70
Figure 4-48. Boussinesq Type Strip Load	4-72
Figure 4-49. Boussinesq Type Line Load	4-73
Figure 4-50. Boussinesq Type Point Load	4-74
Figure 4-51. Boussinesq Type Point Load with Lateral Offset	4-75
Figure 4-52. Alternate Traffic Surcharge Loading	
Figure 5-1. Soil Arching	5-7
Figure 6-1. Sheet Pile Wall with Cap Beam	6-1
Figure 6-2. Soldier Pile Wall with Cap Beam	6-2
Figure 6-3. Cantilever Retaining Walls	6-3
Figure 6-4. Loading Diagram for Single Layer	6-4
Figure 6-5. Loading Diagram for Multi-Layer Soil	6-5
Figure 6-6. Loading Diagram for Multi-Layer	6-6
Figure 6-7. Loading Diagram for Multi-Layer	6-7
Figure 6-8. Loading Diagram for Multi-Layer	6-8
Figure 6-9. Soldier Pile with Arching	6-9
Figure 6-10. Deflected Shape for Unrestrained System	6-12
Figure 6-11. Multilayer soil pressure	6-13
Figure 6-12. Example 6-1	6-14
Figure 6-13. Pressure Loading Diagram	6-15
Figure 6-14. Force Loading Diagram	6-16
Figure 6-15. Soldier pile with sloping ground Example 6-2	6-17
Figure 6-16. Active and Passive Earth Pressure Coefficients	6-18
Figure 6-17. Pressure Diagram	6-20
Figure 6-18. Location of Zero Shear and Maximum Moment	6-21
Figure 6-19. Loading Diagram	6-24
Figure 6-20. Shear Diagram	6-24
Figure 6-21. Moment Diagram	6-25
Figure 6-22. Deflected Shape	
Figure 6-23. Moment Area diagram	
Figure 6-24. Redeveloped shear and moments diagrams	
Figure 6-25. Loading Diagram	
Figure 6-26. Shear Diagram	6-30
Figure 6-27. Moment Diagram	6-30
Figure 6-28 Deflection Diagram	6-30
Figure 7-1 Lateral Farth Pressure for Anchored/Braced Walls	0 50 7-1
Figure 7-2 Pressure Diagram for Single Anchored/Braced Wall	
Figure 7-3. Pressure Diagram for Multi Anchored/Braced Wall	7-4
Figure 7-4 Pressure Diagram for Multi Anchored/Braced Wall for Cohesive Backfill	
Figure 7-5 Single Tieback System	
Figure 7-6 Multiple Tieback System	
Figure 7-7 Detail Hinge Method for Tieback Analysis	/ - 1 1 7_17
Figure 7-8 Deflected Shape for Restrained System	7_12
1 Igure / 0. Deficeted Shape for Restrained System	/ - 1 J

LIST OF FIGURES

Figure 7-9. Example 7-1	.7-14
Figure 7-10. Pressure Diagram for Single Tieback Wall	.7-16
Figure 7-11. Pressure Diagram	.7-17
Figure 7-12. Pressure Diagram For Single-Tieback Above Dredge Line	.7-19
Figure 7-13. Zero shear	. 7-21
Figure 7-14. Pressure Diagram	.7-22
Figure 7-15. Shear Diagram	.7-22
Figure 7-16. Moment Diagram	. 7-22
Figure 7-17. Deflection Diagram	. 7-22
Figure 7-18. Example 7-2	.7-23
Figure 7-19. Pressure Diagram For Multi-Tieback	.7-24
Figure 7-20. Pressure Diagram For Multi-Tieback Above Dredge Line	.7-26
Figure 7-21. Point of zero shear	. 7-29
Figure 7-22. Pressure Diagram	.7-31
Figure 7-23. Shear Diagram	.7-31
Figure 7-24. Moment Diagram	. 7-31
Figure 7-25. Deflection Diagram	.7-31
Figure 8-1. Railroad Boussinesg Strip Load	8-2
Figure 8-2. General Railroad Requirements (GTS section 6, p6)	.8-11
Figure 8-3. Live Load Pressure due to Cooper E80 (GTS section 7, p8)	.8-12
Figure 8-4. Cooper E80 Loading (GTS section 7, p8)	.8-13
Figure 8-5. EXAMPLE 8-1	. 8-14
Figure 8-6. Final Trial Wedge For EXAMPLE 8-1	. 8-15
Figure 8-7. Boussinesq Type Strip Load for Railroad	. 8-18
Figure 8-8. General Pressure Diagram.	. 8-19
Figure 8-9. Combined Pressure Diagram (No Scale)	. 8-20
Figure 8-10. Final Load, Shear, and Moment Diagrams for EXAMPLE 8-1	. 8-23
Figure 8-11. Deflected Shape of Shoring System	. 8-27
Figure 8-12. Schematic of Load, Moment and Deflection Diagrams for EXAMPLE 8-1	. 8-28
Figure 8-13. Deflected Shape of Shoring System above the Tieback	. 8-30
Figure 8-14. Final Deflected Shape of Shoring System	.8-31
Figure 8-15. Diagrams per CT-TSP	.8-32
Figure 9-1. Anchor Block and Tie Rod	9-2
Figure 9-2. Anchor block	9-2
Figure 9-3. Anchor block in cohesionless soil near ground surface	9-3
Figure 9-4. Anchor block in 3D (Shamsabadi, A., Nordal, S. (2006))	9-5
Figure 9-5. Section A-A (Shamsabadi, A., et al., 2007)	9-5
Figure 9-6. Anchor block not near the ground surface	9-7
Figure 9-7. Anchor block in cohesionless soil $1.5 \le D/H \le 5.5$	9-9
Figure 9-8. Anchor block in cohesive soil near ground $D < H/2$.9-10
Figure 9-9. Anchor block in cohesive soil $D \ge H/2$.9-12
Figure 9-10. Anchor blockExample 9-1	.9-13
Figure 9-11. Anchor block Example 9-1 solution	.9-14
Figure 9-12. Bottom Heave	.9-17
Figure 9-13. Bearing Capacity Factor.	.9-18
Figure 9-14. Factor of safety.	.9-19

CT TRENCHING AND SHORING MANUAL

Figure 9-15. Heave example problem	
Figure 9-16. Hydraulic forces on cofferdams	
Figure 9-17. Common pattern of soil slope failure (USGS)	
Figure 9-18. Method of slices and forces acting on a slice	
Figure 9-19. A Trial Surface, for Fellenius and Bishop method of slices	
Figure 9-20. Slice i, Fellenius Method	
Figure 9-21. Example of Fellenius and Bishop method of slices	
Figure 9-22. Slice i, Bishop Method	
Figure 9-23. Mechanism of Translational Slide	
Figure 9-24. Mechanism of Translational Slide	
Figure 9-25. Example of a Translational Slide	
Figure 9-26. Stability failure modes	
Figure 9-27. Typical temporary tieback	
Figure 9-28. Anchor shapes	
Figure 9-29. Bond Length	
Figure 9-30. Proof Testing	
Figure 9-31. Bar or Strand Tendons	