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EXECUTIVE SUMMARY  

A Pavement Management System (PMS) is a decision-support tool that aids public agencies in planning 

maintenance activities of their facilities. A complete PMS involves the following tasks: inspecting 

facilities and collecting data, predicting the deterioration of facilities through performance models, and 

optimizing the Maintenance, Rehabilitation, and Reconstruction (MR&R) policies over the planning 

horizon. Performance models are a core component of PMS. These models are also used to calibrate 

facility design procedures. 

The main objective of this project was to develop Empirical-Mechanistic (E-M) performance models 

using data from Washington State’s PMS databases. Four models were developed from that data: 

1. A model for predicting the initiation of overlay cracking in asphalt concrete (AC) pavements 

2. A model for predicting the progression of roughness for AC pavements 

3. A model for predicting the initiation of cracking in portland cement concrete (PCC) pavements 

4. A model for predicting the progression of roughness for portland cement concrete pavements 

At the start of the project, models using pavement maintenance data from the Washington State 

Department of Transportation (WSDOT) and the Arizona Department of Transportation (ADOT) were 

attempted. The initial reasoning for using PMS data from those states is that they have very measured 

pavement conditions consistently over a long period of time, and they have topographic and climate 

regions similar to parts of California. Therefore, Caltrans could use models developed using data from 

those states to manage a subset of California’s pavement infrastructure until the department develops the 

database needed to support model development. However, the research team found that the ADOT data 

were inappropriate for developing the type of performance models needed in this project, so only 

WSDOT pavement data were used. 

To develop these models, the following tasks were performed: 

1. The WSDOT PMS databases were mined for the most relevant variables, including pavement 

section structure, traffic, surface condition, and resurfacing activities. These were augmented with 

environmental data obtained from external data sources. 

2. Appropriate functional forms were selected for the empirical models and relevant explanatory 

variables included. 

3. Appropriate statistical modeling tools were used to calibrate (estimate) the parameters of the 

performance models. 
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4. Classical statistical tests were performed on all models to confirm the statistical significance of 

the various parameters and of the models as a whole. 

5. Predictions were performed using the various models to confirm that they produced realistic 

results. 

Conclusions from this research can be summarized as follows: 

1. The performance models for cracking initiation and International Roughness Index (IRI) 

developed using the WSDOT PMS data for AC pavements or overlays are satisfactory. 

2. The following explanatory variables were found to be the most relevant predictors of the 

number of Equivalent Single Axle Loads (ESALs) to cracking initiation (defined as five 

percent of the wheelpath cracked) of overlays on AC pavements: 

• The overlay thickness 

• The type of AC mix used for the overlay 

• The thickness of the underlying AC layers prior to application of the overlay 

• The existing longitudinal and alligator cracking prior to the application of the overlay 

• The base thickness and type (whether it was untreated, granular, portland cement-treated, or 

asphalt-treated) 

• The maximum temperature during the hottest month and the minimum temperature during the 

coldest month (averages taken over the life of the overlay) 

• The number of freeze-thaw cycles and the average precipitation 

3. The following explanatory variables were found to be the most relevant predictors of the 

annual increment in IRI for AC pavements and overlays: 

• The IRI in the previous year 

• The number of ESALs in the subject year 

• The cumulative number of ESALs prior to the subject year 

• The base thickness 

• The total thickness of asphalt concrete (AC), including all overlays 

• The number of years since the last overlay or bituminous surface treatment 

• The type of the last MR&R activity applied to the pavement, either AC overlay, bituminous 

surface treatment (BST, equivalent of Caltrans aggregate seal coat), or routine maintenance 

• The minimum temperature in the coldest month (average over the life of the pavement) 

• The annual precipitation (average over the life of the pavement) 

UCPRC-RR-2005-05 vi 



 

 

 

 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

4. Efforts to develop models using the WSDOT PMS data for PCC pavements (crack initiation 

and IRI) were unsuccessful. The small number of PCC observations available in the WSDOT 

PMS database made it impossible to develop adequate models. 

5. This research has also identified a list of variables that are recommended for collection by 

Caltrans. Elements of these variables are currently collected by other state departments of 

transportation. Appendix A lists of the variables. 

6. A numerical integration procedure was developed using macros in Microsoft Excel to help 

with the application of the model used to predict cracking initiation for AC overlays. The 

description of this procedure appears in Appendix B. 

The main recommendations contained in the report are: 

1. To complete the AC pavement performance model suite, a crack progression model should be 

developed. The progression model should be used jointly with the crack initiation model 

developed in this research to predict development of cracking beyond five percent of the 

wheelpath cracked. 

2. The completed AC pavement models (crack initiation and progression, IRI progression) 

should be tested on California PMS data. These data can either be collected as part of a pilot 

project or mined from data in the Caltrans PMS database after that database has been 

populated with information collected over consistently segmented sections. If the results of 

the tests are positive, then Caltrans can essentially use these models as temporary AC 

pavement performance models. 

3. Once Caltrans has populated its PMS database with sufficiently extensive condition survey 

data, the models developed in this report can be updated with the California data by using 

statistical fusion procedures, such as Bayesian Updating. 

4. The ultimate objective of the development of such models is to use them within an integrated 

Pavement Management System. The models can provide predictions to support MR&R 

planning at both the project and network levels. Therefore, to fully reap the benefits of its 

investment in this research, Caltrans should continue its efforts at modernizing its Pavement 

Management System. 
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1 INTRODUCTION 

A Pavement Management System (PMS) is a decision-support tool that aids public agencies in planning 

maintenance activities of their facilities. A complete PMS involves: inspecting facilities and collecting 

data, predicting the deterioration of facilities through performance models, and optimizing the 

Maintenance, Rehabilitation and Reconstruction (MR&R) policies over the planning horizon. 

Performance models are a core component of a PMS. These models are also used as an input in project 

design procedures. 

Several PMSs have been developed and applied to actual pavement networks. For example, in the first 

year that the Arizona Pavement Management System was implemented, it was successful in saving an 

estimated $14 million (fiscal year 1980–1981), one third of Arizona’s maintenance budget, and $101 

million in the first four years. The state of California spends an average of $350 million per year on 

contracted pavement maintenance and rehabilitation, and this expenditure may exceed $700 million per 

year in the near future. There is potential for this expense to be reduced if PMS improvements are 

developed and implemented. 

The main objective of this project is to develop a set of Empirical-Mechanistic (E-M) performance 

models using data from Washington State’s PMS databases. The research team attempted to develop four 

performance models: 

1. A model for predicting the initiation of overlay cracking in Asphalt Concrete (AC) pavements, 

2. A model for predicting the progression of roughness for AC pavements, 

3. A model for predicting the initiation of cracking in portland cement concrete (PCC) pavements, 

and 

4. A model for predicting the progression of roughness for PCC pavements. 

For the purpose of this project, models using pavement maintenance data from the Washington State DOT 

(WSDOT) and the Arizona DOT (ADOT) were attempted. The team reasoned that because Washington 

and Arizona contain topographic and climate regions similar to parts of California, as well as a degree of 

traffic similarity, the models developed for those states could be used by Caltrans to better manage a 

subset of California’s pavement infrastructure—until the department develops its own database to support 

a California-derived model development. However, when the research team found that the ADOT data 

were inappropriate for developing the type of performance models needed in this project, a decision was 

made to use only the WSDOT pavement data. 
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The research report describes Empirical-Mechanistic (E-M) models, which are deductive models. In E-M 

models, functional form and specification (choice of explanatory variables) are based on physical 

considerations and the model parameters (coefficients) are calibrated by using empirical data and 

statistical estimation procedures. This modeling approach is the only feasible one in cases where a 

mechanistic analysis is impossible either because the exact physical process of deterioration is poorly 

understood (e.g., in the case of reflection cracking of AC overlays) or too complex (e.g., roughness 

progression, where roughness is a measure of performance that includes the effects of several distresses). 

Unlike Mechanistic-Empirical (M-E) methods, E-M models require knowledge of only a small set of 

variables, many of which are routinely measured in pavement condition surveys or are available from 

maintenance records, traffic counts, and as-built records. This makes E-M models especially suitable for 

network-level pavement management systems. For project-level designs, where detailed information can 

be collected, M-E methods are more appropriate. 

This report is organized as follows: Chapter 2 presents the methodology used to develop crack initiation 

models for AC pavements. Chapter 3 presents the crack initiation models that were developed for AC 

pavements and Chapter 4 presents the IRI (International Roughness Index) progression models for AC 

pavements. Chapter 5 discusses investigations of deterioration for PCC pavements. Chapter 6 summarizes 

conclusions and recommendations. Appendix A provides a list of variables that are recommended for 

collection by Caltrans. (Elements of these variables are currently collected by other state DOTs.) 

Appendix B provides the numerical integration procedure used for computing both the expected ESALs-

to-cracking initiation for overlays placed on AC pavements and the predictions performed in Chapter 3. 
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2 REVIEW OF METHOD USED TO DEVELOP CRACK INITIATION 
MODELS 

This section presents a review of the statistical background used in the development of the Asphalt 

Concrete Overlay Crack Initiation models. 

The initiation of pavement distress is highly variable because distress occurs at different times at various 

locations along a homogeneous piece of road. Therefore, the time of failure should be represented by a 

probability density function rather than by a point estimate. For this reason, Duration models (or Hazard 

Rate models) were used instead of Regression models, which only provide point estimates. 

Duration/Hazard Rate models were also better suited here because they predict a survival function for the 

time of failure of an element or system. Moreover, point estimate models of the initiation of pavement 

distress lack the structure, as well as the physical significance, offered by Duration models. 

The Hazard Rate Model is discussed in this section, and followed by an explanation of the different types 

of censoring that might occur in condition surveys, and the method to account for censoring in model 

estimation. Also presented is an overview of two types of Duration models, the Weibull Model and the 

Cox Model, and explanation of the advantages of each. 

2.1 Hazard Rate Model 

Define T as the time (or Cumulative ESALs) to cracking of a pavement, where T is a random variable that 

takes values in the interval (0,∞). It has a cumulative distribution F(t) and a density function f(t). F(t) is 

given by: 

F (t) = f (s)ds = Pr ob(T ≤ t)     (1)  ∫ 
t 

0 

The probability that cracking occurs after time t is given by the survival function:   

S(t) = 1− F (t) = Pr ob(T ≥ t)     (2)   

Define g(t) as the probability that a pavement cracks in the next small interval, ∆t, given it lasts at least 

until time t: 

g(t) = Pr ob(t ≤ T < t + ∆t | T ≥ t) (3) 
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The instantaneous rate of change of g(t), defined as the Hazard Rate Function, h(t), is given by: 

g(t)h(t) = Lim      (4)  
Δt →0 Δt 

The hazard rate quantifies the instantaneous risk that the pavement sections crack at time t (1). 

2.2 Censoring 

Censoring occurs frequently in condition survey data because in most cases it is impossible or impractical 

to observe the complete lifetimes of all the pavement sections. A censored observation occurs when only 

a bound is known on the time of failure. A complete data set is when all failure times are known. A data 

set is called censored if there are one or more censored observations. There are several types of censoring. 

The most frequent type is right censoring. Right censoring occurs when there is one or more pavement 

sections for which only a lower bound is known on the lifetime. There are three special cases of right 

censoring that occur in practice. The first is Type I censoring, or time censoring, which corresponds to 

terminating the study at a particular time (Figure 1). Therefore, the number of failures is random in Type I 

censoring. Type II censoring — also called order statistic censoring — corresponds to terminating the 

study upon one of the ordered failures. Looking at Figure 2, it is seen that it corresponds to a set of n = 5 

items placed on a test that is terminated when r = 3 failures are observed. Thus, in Type II censoring the 

time to complete the test is random. The third type, random censoring, occurs when individual items are 

withdrawn from the test at any time during the study (Figure 3). Thus it is assumed in random censoring 

that the ith lifetime, ti, and the ith censoring time, ci, are independent random variables. 

Another form of censoring is left censoring. An example of cases where left censoring occurs is in 

scientific applications where the resolution of the equipment is finite (observations whose magnitude is 

below a certain threshold are missing). Left censoring might also occur in long-lived pavements where 

data collection began after the pavements were constructed or when condition survey procedures were 

changed and new variables were collected only for a certain period of time. Data can be both left and 

right-censored if the conditions described above for left and right censoring both occur. 

Moreover, there exists an additional type of censoring called interval censoring, which occurs when the 

lifetime falls into an interval. A case of interval censoring occurs when items are checked periodically for 

failure. The information known about the lifetime is thus that its failure time occurred during the interval 

prior to when failure was detected (2). 
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Figure 1: Type I right-censored data set with n=5 and r=4. 
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Figure 2: Type II right-censored data set with n = 5 and r = 3. 
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Figure 3.: Type III (randomly) right-censored data set with n = 5 and r = 2. 
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Figure 4: Lifetime data set taxonomy. 

In this project all of the data are either interval censored or right censored. Since condition surveys occur 

annually, it is only known that a cracked section i has cracked in an interval of one year [(ti – 1), ti] where 

ti is the time when section i is observed to be cracked. Sections that have not cracked by the end of the last 

condition survey at time C are right censored. Thus for each section i, it is either known that the interval is 
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[(ti – 1),ti], if ti ≤ C and the section has cracked, or the section has not cracked and there is right censoring 

with ti > C. 

The full likelihood function with n observations in this case is obtained by multiplying the product of the 

differences between the survival functions at time ti and ti – 1 for the interval-censored observations by 

the product of the survival functions at time ti for the right-censored observations: 
n 

δ 1−δi iL = ∏ [S (t i ) − S (t i − 1)]∏ S (t i ) = ∏ [S (t i ) − S (t i − 1)] [S (t i )] (5) 
δ =1 δ =0 i=1i i 

where δi is a dummy variable that takes the value 1 if observation i is interval censored and 0 if it 
is right censored. 

To estimate the parameters, maximize the log likelihood function: 

l = L = ∑ 
n 

{δ i log[S(ti ) − S(ti −1)]+ (1−δ i )log[S(ti )]} (6) 
i=1 

For the model developed in this report, interval censoring and assumed continuous condition surveys 

were ignored. This simplifies the estimation of the parameters of the models, though it probably leads to a 

small loss of precision. The full likelihood function for such a case with n observations is given by 

multiplying the respective contributions of values of density function, f, for uncensored observations and 

values of survival function, S, for right-censored observations: 
n 

δ 1 − δi iL = ∏ f (t i )∏ S (t i ) = ∏ [ f (t i )] [ S (t i )] (7) 
δ = 1 δ = 0 i = 1i i 

where δi is a dummy variable that takes the value 1 if observation i is uncensored and 0 if it is 
right censored. 

The log likelihood function is (3). 

l = L = ∑ 
n 

{δ i log[ f (t )]+ (1−δ i )log[S(ti )]} (8)i  
i=1  
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2.3 Weibull Model 

It is more general and realistic to allow the hazard rate to increase or decrease over time than to assume it 

to be constant (4). Materials degrade over time and thus are more likely to follow a distribution with a 

strictly increasing failure rate (IFR). The Weibull Distribution allows modeling of lifetimes having 

constant, strictly increasing, and strictly decreasing hazard functions. The Weibull Hazard Function, with 

parameters α and γ is given by: 

h(t) = αγt γ −1 t > 0 (9) 

where α and γ are positive constants. For γ < 1 there is a decreasing failure rate (DFR), for γ > 1 
there is an increasing failure rate (IFR), and for γ = 1 there is a constant failure 
rate (CFR). 

The cumulative Weibull Distribution F(t) is given by: 

⎛ t ⎞
F (t) = 1 − exp⎜⎜− ∫h(s)ds⎟⎟ = 1 − exp(− αtγ ) t > 0 (10) 

⎝ 0 ⎠ 

The density function f(t) is given by: 
γ −1f (t) = αγt exp(−αt γ ) t > 0 (11) 

The survival function is given by:  

S(t) = 1− F (t) = exp(−αt γ )     (12)   

If a vector of explanatory variables x is observed with the duration data, the Weibull Hazard Function is 

given by: 

−γμ γ −1 −γ x β γ −1h(t, x, β )= e γt = e
T 

γt , t>0 (13) 

where μ = xT β . (14) 

In this case the cumulative distribution function, the density function, and the survival function are 

respectively given by: 
T−γ x β γF (t, x, β )= 1− exp(− e t )     (15)  

−γ x β γ −1 −γ x β γf (t, x, β ) = e
T 

γt exp(−e 
T

t )    (16)  

T−γ x βS(t) = exp(− e t γ )      (17)  
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The parameters of the model, γ and β , can be estimated by maximum likelihood. Meeker and Escobar 

(5) give the expected time to cracking for a Weibull Model by: 

μ ⎛ 1 ⎞ x β ⎛ 1 ⎞[ ]= e Γ⎜⎜1+ ⎟⎟ = e
T 

Γ⎜⎜1+ ⎟⎟ (18)E t x
γ γ⎝ ⎠ ⎝ ⎠ 

The gamma function, Γ(z) , is defined as: 

∞ 
z 1 −wΓ(z) = ∫w − e dw for z > 0.  (19) 

0 

2.4 The Cox Model 

Parametric models like the Weibull Model have nice properties in that in most cases they allow closed 

form estimation of the survival and hazard functions. Moreover, they can be interpreted in a direct and 

simple manner, and are easier to use for prediction. Parametric models however impose more restrictions 

and structure on the survival and the hazard rate functions. Such restrictions might be inappropriate in 

certain cases when the data is more complex and appear to have a less structured distribution. 

In these cases more general models that impose less structure on the survival and the hazard functions are 

more appropriate. The semiparametric family of models allows this flexibility and the Cox model — also 

known as the “proportional hazard model” or the “relative risk model” — is one of the most flexible and 

widely used models of this type. The Cox model’s analysis requires no assumptions regarding the form of 

the baseline hazard, and this is the main reason for the model’s flexibility. For non-time variant 

covariates, the Cox hazard function is given by: 

h(t) = h0 (t)Ψ(x) (20) 

where h0 (t) is an arbitrary unspecified baseline hazard function that will be estimated, and 
xΨ(x) = e

T β (21) 

where x is a vector of explanatory variables observed with the duration data and β is a vector of 
parameters that will be estimated by maximum likelihood. 

The cumulative distribution function, the density function, and the survival function are respectively 

given by (6): 
Ψ(x)F (t) =1−[S 0(t)] (22) 

Ψ ( x)−1f (t) = f0 (t)Ψ(x)[S0 (t)] (23) 
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Ψ( x)S(t) = [S (t)]      (24)  0

where S0 and f0 are the baseline survival and density functions respectively, and are equal to S(t) 
and f(t) respectively when Ψ(x) = 1,( x = 0) 

The baseline hazard function is: 

f0 (t)
h0 (t) =      (25)  

S0 (t) 
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3 CRACK INITIATION MODEL OF ASPHALT CONCRETE OVERLAY 

The PMS database provided by WSDOT (Washington State Department of Transportation) for use in this 

research included data for the years 1983 through 1999. The research team used the data to develop the 

crack initiation model of the AC (asphalt concrete) overlay. No new flexible pavements were included in 

the data set used for the model development. All observations used were of AC overlays of existing AC 

pavements. 

3.1 Measurements and Characterization of Cracking 

Alligator cracking and longitudinal cracking were the main types of overlay cracking of concern in this 

project. Below are the WSDOT definitions of each type of cracking and the agency’s the measurement 

and recording methods (7). 

3.1.1 Alligator Cracking 

Definition: 

Alligator cracking is associated with loads and is usually limited to areas of repeated traffic 

loading. Most load related cracking of this type begins as a single longitudinal, discontinuous 

crack within the wheelpath that progresses with time and loads to a more branched pattern that 

begins to interconnect. The stage at which several discontinuous longitudinal cracks begin to 

interconnect is defined by WSDOT as alligator cracking. Eventually the cracks interconnect 

sufficiently to form many pieces, resembling the pattern of an alligator’s hide. 

Extent: 

The extent of alligator cracking is related to the length of the wheelpaths. A 100-foot segment has 

200 feet of wheelpath. WSDOT measures and records cracking as a percentage of wheelpath 

length. The lengths along the surveyed lane of alligator cracking in both wheelpaths are 

accumulated then divided by twice the length of the segment (two wheelpaths per lane) then 

multiplied by 100 to get a percentage. 
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Example: 

Segment length: 1/10 mile = 528 feet (1,056 feet of wheelpaths). 

Cracking in left wheelpath Cracking in right wheelpath

 Segment Total 

125 ft    100 ft 

225 ft (21%) 

3.1.2 Longitudinal Cracking 

Definition: 

Longitudinal cracks run roughly parallel to the roadway centerline. Longitudinal cracks 

associated with the beginning of alligator cracking are generally discontinuous, broken, and occur 

in the wheelpath. However, any longitudinal crack that is clearly within the traveled lane is rated 

even if outside the wheelpath. 

Extent: 

The extent of longitudinal cracking is recorded as a percentage of the length of the surveyed 

segment. The lengths along the surveyed lane of longitudinal cracking are accumulated then 

divided by the length of the segment and multiplied by 100 to get a percentage. 

Example: 

Segment length: 1/10 mile = 528 feet 

Recorded: 75 feet or 14% 

Note: Since many longitudinal cracks might appear in parallel on the same lane, the recorded 

cracking according to the WSDOT method can exceed 100%. 

In this project, the threshold for overlay crack initiation is set at 5%. A pavement with 5% 

longitudinal or alligator cracking is considered to have cracked. 

3.2 Washington PMS Data Description 

The WSDOT has performed pavement condition surveys annually since 1983. The condition surveys 

covered most of the state highways. The surveys segmented the highways into 1/10-mile sections and 

measured variables such as pavement cracking and maintenance activity. This allowed the identification 

of different pavement types (concrete, asphalt, or composite) and the types of cracking (alligator, 

longitudinal, and transverse). The research team also compiled traffic information and climate data for the 

different sections. 
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Following is a description of the relevant variables found in the Washington PMS database that were used 

in the model. The variables’ names are those used in the model and are not necessarily WSDOT names. 

• E_Long and E_Alli: Existing longitudinal cracking and alligator cracking, before 

rehabilitation. These variables represent the last measured cracking before the last 

rehabilitation activity was performed. They represent the distress level of the pavement 

before the overlay. These are important variables in modeling overlay cracking because 

overlay cracking is partly due to reflection cracking, which requires cracks in the previous 

pavement surface layer and their propagation through the overlay. 

• Long and Alli: Overlay longitudinal cracking and alligator cracking. Each of these overlay 

cracks is reported on a yearly basis until the end of the experiment, which is defined by either 

the occurrence of further maintenance activity or the absence of more surveys. 

• CUM_ESAL: Cumulative ESALs to initiation. CUM_ESAL is the sum of the ESAL from the 

year of the last overlay to the year when crack initiation occurs. If cracking does not occur by 

the end of the experiment then CUM_ESAL is the sum of the ESAL from the last overlay to 

the end of the experiment. 

• SURFTHK: Layer thickness of the last overlay (in ft.) 

• ULT: Sum of the thickness of the underlying asphalt concrete pavement layers (in ft.) 

• Untrthick: the thickness of the non-treated base (in ft.) 

• Actbthick: the thickness of asphalt concrete-treated base (in ft.) 

• Pctbthick: the thickness of portland cement-treated base (in ft.) 

• BA, AA: Dummy variables that take the value 1 if the material type of the overlay is “BA” or 

“AA,” and 0 otherwise. The Washington PMS defines material types “BA” and “AA” as 

Asphalt Concrete Cements (ACP) that have the same binder type (AR4000W) and different 

mix classes. “BA,” a class B mix, is described as a standard mix, with a maximum aggregate 

size of 5/8 in. “AA” is a Type A mix that also has a maximum aggregate size of 5/8 in., but it 

uses a higher grade aggregate with more fractured rocks. A comparison of WSDOT and 

Caltrans specifications showed that the WSDOT Type A mix specification is very similar to 

the Caltrans specification for Type A dense-graded asphalt concrete; the largest aggregates in 

the gradation constitutes the primary difference between the two mixes. The WSDOT Type B 

mix falls in between the Caltrans Type A and Type B mixes: the WSDOT Type B mixes 

require more fractured faces than the Caltrans Type B mixes. 

• Tmax: Average monthly maximum temperature of the hottest month (July, in oC) In hot 

climates, day and night temperature changes cause repeated thermal stresses in the surfacing 

that, in conjunction with stresses produced by traffic, contribute to reflection cracking.  
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• Tmin: Average monthly minimum temperature of the coldest month (December, in oC). Low 

temperatures contribute to cracking because cracks in the underlying asphalt open due to 

thermal contraction. This causes tensile strains in the overlay above the cracks. Moreover, 

cold temperatures make the AC overlay less viscous, which increases the rate of crack 

propagation because the unbound layers can not relax stresses. 

• Prep: Annual precipitation (in mm). Precipitation and moisture in asphalt pavements can 

cause significant loss of strength of the underlying granular layers and the subgrade, thus 

weakening support for the asphalt concrete layers. In addition rainfall can also weaken the 

asphalt. All these factors will result in higher cracking.  

• FTCycle: Annual number of Freeze-Thaw Cycles (number per year): Number of times that 

the air temperature trend crosses the freezing point, per year. 

• FTprep: Product of FTCycle and Prep: Water that accumulates in the voids and cracks of the 

pavement freezes and increases in volume, creating more stresses and cracking. Water may 

also increase loss of cohesion in the asphalt mix. To reflect this in the model, the variable 

FTprep was created as the product of FTCycle and Prep. 

• Prob_ba, Prob_aa, Prob_other: The probability of choosing material types BA, AA, or some 

other type, respectively. These variables are further explained in Section 3.3. 

• Newoverlay1: Instrumented overlay thickness (in ft.). This variable is further explained in 

Section 3.3. 

Table 1 shows the minimum, mean, and maximum values of each explanatory variable in the sample. The 

mean thickness of the overlay is relatively low (0.15 ft.), as are the mean values of the existing 

longitudinal (equivalent to Caltrans Alligator A) and alligator cracking (equivalent to Caltrans alligator B) 

of 29.4% and 4.98%, respectively. This suggests that WSDOT’s overlaying strategy is to apply thin 

overlays on a frequent basis. The climate variables reflect the wide range of climate in the state, from the 

cool wet western part, to the hot in dryer, hot in summer and cold in winter eastern part. 
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Table 1: The Minimum, Mean, and Maximum of Each Explanatory   
Variable in the Sample  

Variable Minimum Mean Maximum 
E_Alli (%) 0.00E+00 4.98E+00 8.00E+01 
E_long (%) 0.00E+00 2.94E+01 2.55E+02 

actbthick (ft.) 0.00E+00 3.90E-01 6.50E-01 
pctbthick (ft.) 0.00E+00 5.00E-01 7.50E-01 
untrthick (ft.) 0.00E+00 8.00E-01 2.83E+00 

ULT (ft.) 6.00E-02 4.60E-01 1.90E+00 
Tmax (°C) 1.40E+01 2.54E+01 3.80E+01 
Tmin (°C) -1.10E+01 -1.45E+00 4.00E+00 
Prep (mm) 1.00E+02 7.57E+02 2.70E+03 

Ftcycles (Number) 2.00E+00 8.60E+01 2.75E+02 
SURFTHK (ft.) 3.00E-02 1.50E-01 6.00E-01 

3.3 Model Specification 

A Cox model was developed using approximately 7,500 observations from the Washington data source 

described earlier. Observations were chosen based on systematic sampling by picking the first observation 

from every set of three observations. This sampling technique was used in order to reduce the risk of 

serial correlation in the data since the WSDOT database records are contiguous sections. 

The dependent variable is the number of Cumulative ESALs to failure, where failure is defined as 5% 

alligator cracking or 5% longitudinal cracking, whichever occurs first. Several specifications that are 

linear in the parameters were tried using different combinations of the explanatory variables. 

xT βThe function Ψ(x) = e  that gives the best model is of the form 

Ψ(x) = Exp (β1E_Alli + β2E_Long+ β3 actbthick + β4 pctbthick + β5 untrthick+ β6ULT + β7Tmax + 

β8Tmin + β9FTprep+ β10Prob_ba + β11 Prob_aa + β12 newoverlay1)  (26) 

The variables E_Alli, E_Long, actbthick, pctbthick, untrthick, ULT, Tmax, Tmin, and FTprep are defined 

in Section 3.2. The variables newoverlay1, Prob_ba, and Prob_aa are the instrumented variables for 

SURFTHK, BA, and AA, respectively. In fact, the choice of the overlay thickness as well as the material 

type depends on the projected yearly ESALs, the previous conditions (existing cracking, etc.), and the 

previous structural strength. In order to correct for the endogeneity of the thickness of the AC overlay, the 
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variable SURFTHK was regressed on projected yearly ESAL (1999 ESAL), structural variables (base 

thickness, thickness of previous AC layers), existing cracking, and climate variables. Based on this 

regression, a corrected or instrumented AC overlay thickness was created (newoverlay1) and later used in 

the Duration Model. In order to correct for the endogeneity of the material type, a multinomial logistic 

regression was performed on some of the same variables above as well as the instrumented AC overlay 

thickness (newoverlay1). This regression allowed the computation of the probability of choosing a certain 

material type (Prob_ba, Prob_aa, and Prob_other). 

3.4 Model Results and Analysis 

The expectations of the effects of explanatory variables on the overlay life are as follows: it is expected 

that better structural conditions increase the overlay life. Accordingly an increase in the thickness of the 

overlay, an increase of the untreated or treated base, and an increase in the thickness of underlying asphalt 

concrete layers, would increase the overlay life (Cumulative ESALs to failure) by increasing the strength 

of the pavement. An increase in the existing cracking before rehabilitation is expected to decrease the life 

of the overlay. If existing cracking before rehabilitation is a significant explanatory variable, this would 

support the hypothesis that overlay cracking is at least partly due to reflection cracking. It would also be 

expected that as the minimum temperature increases, the occurrence of low temperature cracking in the 

asphalt overlay decreases, which increases the life of the overlay. Precipitation is expected to decrease the 

life of the overlay and to accelerate cracking because water infiltrates to the granular layers and the 

subgrade, and makes them softer, which weakens support for the asphalt layers and renders them more 

susceptible to cracking. Moreover precipitation can weaken the asphalt overlay. Freeze-thaw cycles, in 

the presence of water from precipitation, also tend to decrease the life of the overlay because they lead to 

an increase in volume, which widens existing cracks. Higher maximum temperatures were expected to 

soften the asphalt, reducing the support of underlying asphalt layers, increasing the strains in the overlays, 

and shortening lives. 

Table 2 shows the results of the estimation of the parameters of Equation (26). These results confirmed 

the expectations of the correctness of the signs. Furthermore, the t-statistics show that each variable is a 

significant explanatory variable of crack initiation at the five percent significance level. Moreover, it was 

learned from the models that the AA material type is better than the BA material type, but that both are 

worse than the average material type in the sample. In addition, treated base appears to be significantly 

better (by one order of magnitude) in extending the life of the overlay than the non-treated base, and 

asphalt-treated base appears to be slightly better than portland cement-treated base. 
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In order to test the prediction power of the Cox model, the estimated survival and hazard functions 

(Figures 7 and 8, respectively) were plotted and compared to the nonparametric estimates of the survival 

and hazard functions plotted using the sample data (Figures 5 and 6, respectively). It is clear comparing 

Figure 7 to Figure 5, and Figure 8 to Figure 6, that the new model has good predictive power. (Note: The 

model estimations and predictions were made using the Stata 9 software and manuals developed by the 

Stata Corporation [8].)It is important to note that in figures 5 to 8, analysis time means cumulative ESALs 

to failure. 

Table 2: Cox Model Coefficients Estimates. (Note: Positive coefficients indicate negative 

effect on the the cumulative ESALs to 5% cracking) 

Variable Coefficient t-statistic 

E_Alli  2.89E-02 1.38E+01 

E_long  6.40E-03  1.13E+02 

Actbthick -2.04E+00 -1.17E+01 

Pctbthick -7.81E-01 -8.57E+00 

Untrthick -5.66E-01 -1.33E+01 

ULT -5.50E-01 -7.99E+00 

Tmax -5.63E-02 -1.21E+01 

Tmin -1.88E-01 -2.43E+01 

Ftprep  6.62E-05  2.01E+01 

newoverlay1 -3.31E+01 -1.08E+01 

Prob_aa  8.73E+00  1.33E+01 

Prob_ba  1.11E+01  1.64E+01 

Number of observations 7132 

The survival function estimates shown in Figure 7.0 indicates that overlay sections will not survive past 

around 7,500,000 ESALs (Failure criteria is defined as 5% Alligator A cracking). Figure 6 shows a 

similar trend for hazard rates. The hazard rate shoots high after reaching 7,500,000 cumulative ESALs. 

This hazard rate trend suggests that weak overlays fail early, and that overlays that live long enough have 

a lower probability of failure until they reach a certain point. After that point they deteriorate rapidly, 

which leads to a rapid increase for their probability of failure. This hazard rate shape is often observed in 

natural phenomena (e.g., the hazard function depicting human life with a high infant mortality that is 

followed by a low death rate, which is in turn followed by a death-rate increase due to old age) and is 

referred to as a “bathtub hazard function.” Another explanation for this hazard function’s behavior is this: 

sections that live long enough receive routine maintenance that further extends their life and reduces their 
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hazard rate. When these sections pass a certain life they start deteriorating rapidly and routine 

maintenance becomes ineffective. Neither of these explanations has been investigated further in this 

study. 

Figure 5: Non-parametric plot of the survival function. 

Figure 6: Non-parametric plot of the hazard function. 
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Figure 7. Model prediction of the survival function. 

Figure 8: Model prediction of the hazard function. 
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3.5 Model Predictions and Sensitivity 

This section presents a discussion of a parametric study performed to illustrate the importance of 

performance models on infrastructure maintenance policies. 

The expected ESALs to 5% cracking were calculated for each variable at its Mean sample value, at the 

mean +/- one standard deviation (S), and at mean +/- 3S (Table 3), while keeping all other explanatory 

variables fixed at their mean values. For all the graphs produced, the overlay material type AA is used 

which is very similar to Type A dense-graded asphalt concrete for Caltrans. It should be noted that for 

some variables, the Mean-S, or Mean-3S fell outside a meaningful range (such as a negative value for the 

overlay thickness) and were omitted from the graphs. 

The results presented in Figure 9 show that an overlay’s thickness has the largest effect on its life. The 

overlay material type is another important variable; choosing a different material type can more than 

triple the life of an overlay. The thickness of the underlying layers (Figure 10) and the thickness and type 

of the base also appear to be important (Figures 11, 12, and 13). These findings are particularly important 

since surface thickness, material type, and thickness of the underlying layers are among the main 

variables considered in maintenance policies. The decrease of the overlay life with an increasing 

percentage of existing alligator and longitudinal cracking (Figures 14 and 15) confirms the hypothesis that 

overlay cracking is at least partly due to reflection cracking. Consideration of climate variables, such as 

the average minimum temperature of the coldest month (Figure 16), the average maximum temperature of 

the hottest month (Figure 17), and the product of freeze-thaw cycles and annual precipitation (Figure 18), 

is also important in determining the life of the overlay, but less so than that of the main structure 

variables. Figures 19 through 21 compare the relative effect of each explanatory variable on the life of the 

overlay. However, it should be noted that the Mean-S, the Mean, and the Mean+S values differ for each 

explanatory variable, and this should be considered when making comparisons. 
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Table 3: The Mean, Mean +/-S, and Mean +/- 3Ss of Each Explanatory Variable in the Sample 

Variable Mean-3S Mean-S Mean Mean+S Mean+3S 

E_Alli N/A N/A 4.98 12.33 27.02 

E_long N/A 5.58 29.39 53.19 100.81 

actbthick 0.05 0.28 0.39 0.50 0.72 

pctbthick 0.42 0.47 0.50 0.52 0.57 

untrthick -0.40 0.40 0.80 1.20 2.00 

ULT -0.19 0.24 0.46 0.67 1.10 

Tmax 14.55 21.81 25.44 29.08 36.34 

Tmin -11.29 -4.73 -1.45 1.83 8.39 

Ftprep N/A N/A 22,192.30 45,277.68 91,448.44 

newoverlay1 N/A 0.09 0.15 0.21 0.33 
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Figure 9: The effect of AC overlay thickness on overlay life. 
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Figure 10: The effect of the thickness of previous AC layers on overlay life. 
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Figure 11: The effect of the thickness of AC-treated base on overlay life.  
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Figure 12: The effect of the thickness of PC treated base on overlay life.  
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Figure 13: The effect of the thickness of untreated base on overlay life. 
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Figure 14: The effect of the percentage of existing alligator cracking on overlay life. 
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Figure 15: The effect of the percentage of existing longitudinal cracking on overlay life. 
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Figure 16: The effect of the average minimum temperature of the coldest month on overlay life. 
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Figure 17: The effect of the average maximum temperature of the hottest month on overlay life. 
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Figure 18: The effect of the product of freeze-thaw cycles and precipitation (mm) per year on 
overlay life. 
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Figure 19: Comparison of the effect of existing alligator cracking, existing longitudinal cracking, 
thickness of previous layers, and overlay thickness on life of the overlay. 
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Figure 20: Comparison of the effect of the average maximum temperature of the hottest month, the 
average minimum temperature of the coldest month, and the product of precipitation and freeze-

thaw cycles on the life of the overlay. 
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Figure 21: Comparison of the effect of the AC-treated base, PC-treated base, and none treated 
base on the life of the overlay. 
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4 ASPHALT CONCRETE ROUGHNESS PROGRESSION MODEL 

4.1 Review of Linear Regression 

Linear regression is used to develop a model that predicts incremental roughness progression based on the 

Washington State Pavement Management System (WSPMS) database. Initially, Ordinary Least Squares 

(OLS) regression is employed to find a model that is both statistically significant and valid in the sense 

that the explanatory variables are causally linked to roughness progression. Once a reasonable model is 

obtained using OLS, a second one is estimated using the Random Effects Model approach to account for 

unobserved heterogeneity. 

OLS regression is performed to estimate a linear model that helps explain the effects on a dependent 

variable resulting from shifts in specified explanatory variables. Equation 27 exhibits the general form of 

the linear regression model where y represents the dependent variable and xK is the explanatory variable 

value with an estimated coefficient of βK for each variable denoted by the value of subscript K. β0  is the 

estimated constant, ε is the random error term, and the subscript i denotes each observation in the 

dataset. 

y = β + β x + β x + K + β x + ε    (27)  i 0 1 i1 2 i2 K iK i 

The following assumptions are made when employing OLS (9). 

• Equation 27 gives the model specification. 

• The x’s are nonstochastic. In addition, no exact linear relationship exists between two or 

more of the independent variables. 

• The error term has 0 expected value and constant variance for all observations. 

• Errors corresponding to different observations are uncorrelated.  

• The error variable is normally distributed. 

The coefficients of the linear model are estimated by minimizing the sum of the squared deviations of the 

observed dependent variable values from the fitted line. This concept is restated formally in Equation 28, 

where i denotes each observation, Yi is the observed value of Y, the dependent variable, and Ŷ 
i  is the 

estimated value of Y that lies on the fitted line. 

Minimize ∑ (Yi − Ŷ 
i )

2     (28)  
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The use of matrix notation provides a concise solution to the estimation of coefficients based on the 

objective described by Equation 28. Equation 29 shows the solution, where β̂ = k*1, a dimensioned 

column vector of estimated coefficients including the constant, Y = N*1 column vector of dependent 

variable observations, and X = N*k matrix of explanatory variable observations. N is the number of 

observations in the dataset, and k is the number of explanatory variables including the constant which 

takes on the value 1 for all observations. The derivation of this result involves the use of calculus and can 

be found in standard econometrics literature (9).  

β̂ = (X’X)-1(X’Y)     (29)  

After finding a valid model through OLS, further refinement can be made by accounting for the fact that 

the observations take the form of a panel dataset. This refinement requires considering each observation 

to be a measurement of the characteristics of a length of pavement section at a particular point in time 

(which is why it comprises a panel dataset.) Further calibration is necessary because panel datasets often 

have some unobserved heterogeneity, or cross-sectional variation, which persists through time. Therefore, 

a second error term is added that captures this variation; this approach is known as a Random Effects 

Model. It accounts for the panel dataset by including error terms for both observations and sections. 

Equation 30 shows the form of the model equation; in it the coefficients and explanatory variables 

described for Equation 28 reappear. 

y jt = β0 + β1 x jt1 + β 2 x jt 2 + K + βK x jtK + ε jt +ν j (30) 

The aforementioned assumptions for OLS apply to the Random Effects Model as well, except that 

Equation 30 now gives the model specification, the variance for the error term across observations is not 

assumed to be constant, and the errors for different observations may be correlated. The two error terms 

are also assumed to be uncorrelated with one another, errors for different sections are assumed to be 

uncorrelated, and the expected value for the new error term is equal to 0. 

For the Random Effects model, a two-step Generalized Least-Squares (GLS) is applied. GLS can be 

applied to cases in which serial correlation and heteroscedasticity are present. In the first step, the 

variance components are estimated by using the residuals from OLS regression. In the second step, 

feasible GLS estimates are computed using the estimated variances. Equation 31 presents the resulting 

formula used to estimate the coefficients using the Random Effects approach. The matrices used to 

estimate the slopes for OLS are again used for the Random Effects Model. In addition, V represents a 
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consistently estimated N*N-dimensioned matrix of correlation coefficients for the error term values. The 

derivation of this result can be found in standard econometrics literature (10). 

β̂ = (X’V-1X)-1(X’V-1Y) (31) 

4.2 Dataset 

The WSPMS database uses the value International Roughness Index (IRI) to represent the extent of 

roughness on pavement sections. IRI, which is measured in the dimensionless unit cm/km, represents the 

results of simulation of a quarter of a passenger car responding to the vertical deviations in a pavement 

surface per length of roadway in terms of the vertical movement of the car body and therefore the 

passenger. This model uses the change in IRI (ΔIRI) divided by the number of years between 

observations as its dependent variable. 

The model also contains eleven explanatory variables, which are listed in Table 4 with their estimated 

coefficients and t-statistics. The first variable is the previous year’s IRI because it indicates how great the 

rate of IRI progression is affected by the extent of previously recorded roughness. Accordingly, the 

previous IRI variable contributes to indicating the curvature for the IRI curve as a function of time. 

The length of time that has passed since the last AC or bituminous surface treatment (BST) overlay also 

affects the curvature of the IRI function because it provides a representation of how long has passed since 

the last major repair activity. 

The final variable affecting the curvature is the cumulative ESALs variable, which accounts for the effect 

of total traffic loading since the most recent AC overlay.  

Recognizing that many of the valid observations in the dataset actually exhibit a decrease in IRI, three 

independent variables have been incorporated into the model to capture the effects of maintenance and 

rehabilitation. The maintenance dummy is set equal to 1 for observations that do not occur during a 

recorded AC or BST overlay year, but do have a negative ΔIRI. On the other hand the AC overlay 

dummy is set equal to 1 for observations made during an AC overlay year and exhibit a negative ΔIRI; 

the BST dummy is set equal to one in the case of a BST overlay year and a negative ΔIRI. Observations 

that have a positive ΔIRI are assigned values of 0 for all three dummy variables. 
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These variables allow four different intercept parameters to be computed for the cases of maintenance, 

AC overlay, BST overlay, and deterioration only. The intercepts are calculated by the addition of the 

estimated constant and the appropriate dummy coefficient in the case of repair, and only by the constant 

in the case of no repair. 

Two variables are included to represent the strength of the pavement structure. The first variable is the 

total thickness of the asphalt surface layers, which is directly impacted by traffic and is also the layer on 

which roughness is measured. The base thickness is included to represent the strength of the underlying 

layers. The base layer provides support for the surface layers. 

The model also captures the effects of yearly traffic and the environment through three variables. The 

ΔESALs variable provides a representation of traffic loading, which has impacted the pavement during 

the observation year, because heavy traffic can significantly increase the deterioration rate. Two final 

variables incorporated capture the effects of the environment on pavement deterioration. Because water 

can significantly damage pavements; an annual precipitation variable has been included. Finally, the 

model includes a variable for minimum yearly air temperature because low temperatures can severely 

weaken pavements by causing them to become very brittle. 

Certain observations are omitted from the dataset. These include observations for in which valid 

measurements are not available for the explanatory or dependent variables. They are also omitted because 

the concept of pavement management had not begun implementation until around 1980. Accordingly, 

observations made of pavement sections where overlay was applied before 1980 have been removed 

because it is assumed that measurements at that time were inaccurate. After these data were removed, 

only half of the pavement sections were used to estimate the model. The predictive capability of the 

model was tested on the remaining sections. 
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4.3 Estimation Results 

Table 4 displays the estimated Random Effects Model for roughness progression. 

Table 4: Estimated Roughness Progression Model  

Explanatory Variable Coefficient t-statistic 

Constant 52.0918 89.276 
IRI in previous year (cm/km) -0.171 -111.615 
ΔESALs in year of observation (millions of ESALs) 3.371 2.949 
Cumulative ESALs (millions of ESALs) -1.713 -10.075 
Base Thickness (ft.) -1.868 -8.166 
Total Thickness of AC Overlays (ft.) -5.661 -15.151 
Time since last AC or BST overlay (yrs.) 0.826 24.668 
AC Overlay Dummy -64.196 -120.851 
BST Overlay Dummy -50.512 -25.323 
Maintenance Dummy -50.603 -262.981 
Minimum Air Temperature (°C) -0.174 -10.066 
Yearly Precipitation (in.) 0.026 5.963 

Number of Observations = 109,107 Number of Sections = 16,659 
R-squared = .526 Dependent Variable: ΔIRI (cm/km) 

The magnitude of the error terms indicates that the variation across sections does not have a large effect 

relative to the variation across observations, since εjt is an order of magnitude greater than νj The t-

statistics indicate that all coefficients have a level of significance greater than 99.5%, since the lowest is 

2.949. This shows that all the explanatory variables along with their coefficients have significant effects 

on roughness progression. Also, the R-squared value is reasonably high considering that the model is 

predicted using field data. The value indicates that 52.6% of the total variation in the dependent variable 

is explained by the model. 

The signs for the coefficients are generally as expected with the layer thicknesses, minimum air 

temperature, and dummies having negative signs, indicating that thicker pavements, higher minimum air 

temperatures, and repair activities reduce roughness progression. In addition, the positive signs on the 

yearly traffic loading and precipitation coefficients correspond with the increase in ΔIRI caused by these 

variables. The sign for the time since the last overlay indicates that the rate of roughness progression 

increases with age; however, the signs of the previous IRI and cumulative ESALs coefficients are 

negative, suggesting that ΔIRI decreases with increases in the previously recorded IRI and total traffic 

loading, contrary to expectation. This is a somewhat counterintuitive result; however, the data has some 

measurement error and certain assumptions have been made in its structuring. For instance the many 

negative values for the ΔIRI found in the dataset are a significant concern, since the roughness should be 
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generally increasing. In addition, the overlay years do not necessarily match the significant decreases in 

IRI, and information regarding the timing of surveys in relation to those for overlays is not provided. 

These problems may also be exhibited in the magnitudes of the dummy coefficients, since the 

maintenance dummy coefficient is nearly equal to the BST dummy coefficient and the two are fairly close 

to the magnitude of the AC dummy coefficient. One would expect a contrary result with the AC dummy 

coefficient far more negative than the other two, and the BST dummy more negative than the 

maintenance dummy. 

4.4 Prediction Results 

Figures 22 through 24 display the observed versus predicted ΔIRI on different axes scales. The predicted 

ΔIRI values are calculated using the estimated roughness model on the second half of the pavement 

sections, which were separated prior to model estimation. As can be inferred from Figure 23, the model 

generally does not tend to underestimate or overestimate the ΔIRI when the observed value is between 

about -70 to -15 cm/km, and between 5 to 40 cm/km, since the data spreads evenly above and below the 

45-degree line. This line represents cases in which the predicted value equals the observed value. For 

observed values of ΔIRI between about -15 and 5 cm/km, the model does tend to overestimate the 

magnitude of ΔIRI as can be seen in Figure 24. In this range, many of the data points lie above the line for 

observed ΔIRI values greater then 0, and for observed values below 0, the predicted ΔIRI often lies below 

the line. On the other hand, for cases in which the observed ΔIRI has a high magnitude, above 40 cm/km 

or below -70 cm/km, the model tends to underestimate the dependent variable. To some extent, this result 

can be expected because of the presence of outliers. Figure 25 indicates that over 85% of the observations 

have observed ΔIRI values between -70 cm/km and 40 cm/km. Therefore, only a small percentage of the 

observations have been underestimated. On the other hand a larger percentage—about 30%—of the 

observed ΔIRI values is close to 0, in which case the magnitudes are sometimes overestimated. 

Figures 26 through 30 display deterioration predictions for roughness progression based on the mean 

values for the half of the dataset on which the model has been estimated. Also, the ΔESALs, base 

thickness, asphalt surface thickness, minimum temperature, and yearly precipitation values are varied by 

one and two standard deviations from the Mean, producing multiple curves in the figures. This provides 

an indication of the shift in roughness progression resulting from variation in the explanatory variable 

values. As displayed in Figure 28, variations in the asphalt surface layer thickness value causes significant 

shifts in the resulting IRI curve. Variations in base thickness, minimum temperature, and yearly 

temperature cause some shift in the IRI curve and nearly no change occurs due to variations in ΔESALs. 
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The differences in the curves are a result of two factors. The first is the magnitude of the effect that a 

variable multiplied by its coefficient has in comparison to the other terms in the model. The second factor 

is the variation for each variable within the dataset, i.e., the size of the standard deviation. Accordingly, a 

larger standard deviation causes greater variation in the curves. 

The roughness progression model discussed above is based on WSDOT PMS database, however, the 

number of Cumulative ESALs to Failure variable was incorrectly used in the model development. This 

interpretation of the ESALs data resulted in a lower number of ESALs to failure than is correct. However, 

the overall trends in the model are correct. This model needs to be tested and calibrated with California 

PMS data. Once Caltrans has populated its PMS database with sufficient, IRI data, the coefficients for 

each variable in the model can be updated and used for pavement performance. 

Figure 22: Observed vs. Predicted ΔIRI with outliers. 
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Figure 23: Observed vs. Predicted ΔIRI capturing the range in which the model  
does not underestimate or overestimate the dependent variable. 

Figure 24: Observed vs. Predicted ΔIRI for the range where the model sometimes overestimates 
magnitude of the dependent variable. 
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Figure 25: Cumulative Distribution Function for Observed ΔIRI for the half of the  
dataset that had been removed prior to model estimation and used in predictions. 
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Figure 26: IRI deterioration curves with ΔESALs varied. 

UCPRC-RR-2005-05 38 



 

 

Figure 27: IRI deterioration curves with base thickness varied. 
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Figure 28: IRI deterioration curves with asphalt surface thickness varied. 
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Figure 29: IRI deterioration curves with minimum temperature varied. 
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Figure 30: IRI deterioration curves with yearly precipitation varied. 
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5 PORTLAND CEMENT CONCRETE PAVEMENT DETERIORATION 

In contrast to the large data sets and rich information available for AC pavements, the WSPMS database 

contains only a small number of observations on PCC pavements. Furthermore the number of useful 

observations of them is even smaller they are “censored” observations: a large fraction consist of 

pavements for which the initiation of the distress of interest was not observed. As explained in Section 

2.2, a censored observation occurs when only a bound is known on the time of failure. There are several 

types of censoring. Right censoring occurs when there is one or more pavement sections for which only a 

lower bound is known on the lifetime. Another form of censoring is left censoring. An example of left 

censoring is when a pavement section’s failure occurs before the beginning of an observation period. Data 

can be both left- and right-censored if the conditions described above for the two types occur. In the 

WSPMS database, a large fraction of the condition data for PCC pavements is either left censored or right 

censored. 

Given the small sample sizes and the prevalence of censoring in the PCC pavement condition data, it was 

not possible to develop statistically significant models of PCC pavement cracking initiation for either 

longitudinal or transverse cracking. Similarly, it was not possible to develop a meaningful model of IRI 

progression for PCC pavements. 

Distributional analysis was performed using data in the WSPMS database for the Mean Time to Failure 

(MTTF), where failure was defined as the initiation of longitudinal and transverse cracking in portland 

cement concrete (PCC) pavements. Here, cracking initiation is defined as greater than zero percent of 

slabs cracked. In the longitudinal cracking analysis, 74 pavement sections are used, 38 of which are 

censored. For the data analysis of the transverse cracking data analysis, the number of pavement sections 

is 75 sections, 45 of which are censored. 

Data summaries are given in Table 5 for the longitudinal cracking distribution. 

Table 5: Characteristics of the Longitudinal   
Cracking Distribution  

Estimate Standard Error 

Mean (MTTF) (yrs.) 2.601 0.190 

Standard Deviation 1.464 0.070 

Median 2.4 0.201 
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It can be seen that the MTTF is unrealistically small. This is so because more than a third of the initiation 

times of longitudinal cracking for the PCC pavement sections (30 out of 74) are left-censored, and, as 

such, the MTTF for these sections appears to be zero, which biases the results reported in Table 5. 

A similar distributional analysis of the transverse cracking data produced the results shown in Table 6. 

Table 6: Characteristics of the Transverse   
Cracking Distribution  

Estimate Standard Error 

Mean (MTTF) (yrs.) 3.032 0.294 

Standard Deviation 1.440 0.0656 

Median 2.904 0.310 

It should be noted that in most of the sections, cracking had occurred at the time of first observation or it 

did not appear at all over the set of observations, so a large fraction of the data is either left- or right-

censored. The observed transverse cracking was never of great severity. 
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6 CONCLUSIONS 

The major conclusions of this research can be summarized as follows. 

1. The two performance models developed using the WSDOT PMS data for AC pavements or 

overlays (cracking initiation and IRI) are satisfactory. 

2. The following explanatory variables were found to be the most relevant predictors of the 

number of ESALs-to-cracking initiation of overlays on AC pavements. 

• The overlay thickness 

• The type of AC mix used for the overlay 

• The thickness of the underlying AC layers prior to application of the overlay 

• The existing longitudinal and alligator cracking prior to application of the overlay 

• The base thickness and type (whether it was untreated, granular material, PC-treated, or AC-

treated) 

• The maximum temperature during the hottest month and the minimum temperature during the 

coldest month (averages taken over the life of the overlay) 

• The number of freeze-thaw cycles and the average precipitation 

3. The following explanatory variables were found to be the most relevant predictors of the 

annual increment in IRI for AC pavements and overlays. 

• The IRI in the previous year 

• The number of ESALs in the subject year 

• The cumulative number of ESALs prior to the subject year 

• The base thickness 

• The total thickness of AC (including all overlays) 

• The number of years since the last overlay or bituminous surface treatment 

• The type of the last MR&R activity applied to the pavement (overlay, BST or routine 

maintenance) 

• The minimum temperature in the coldest month (the average over the life of the pavement) 

• The annual precipitation (the average over the life of the pavement) 

4. The attempts at developing models using the WSDOT PMS data for PCC pavements (crack 

initiation and IRI) were not successful. The main reason for this was the small number of 

PCC observations available in the WSDOT PMS database. 
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5. This research has identified a list of variables recommended for collection by Caltrans. Other 

state DOTs currently collect elements of these variables. Appendix A provides a list of these 

variables. 

6. To assist in making predictions using the model of cracking initiation for AC overlays, the 

research team developed a numerical integration procedure using Macros in Microsoft Excel. 

The description of this procedure appears in Appendix B. 

The conclusions from this research lead to the following recommendations: 

1. To complete the AC Pavement Performance Model suite, a crack progression model should 

be developed. The progression model should be used jointly with the crack initiation model 

developed in this research. 

2. The completed AC pavement models (crack initiation and progression, IRI progression) 

should be tested on California PMS data. These data can either be collected as part of a pilot 

project or drawn from the extant Caltrans’ PMS database. (If the latter source is chosen, that 

database will need to populated with consistent information before testing the model.) If the 

results of the tests are positive, then Caltrans can essentially use these as temporary AC 

Pavement Performance models. 

3. Once Caltrans has populated its PMS database with sufficiently extensive condition survey 

data, the models developed in this report can be updated with the California data by using 

statistical fusion procedures such as Bayesian Updating. 

4. The ultimate objective of the development of such models is to use them within an integrated 

Pavement Management System. The models can provide predictions to support MR&R 

planning at both the project and network levels. Therefore, to fully reap the benefits of its 

investment in this research, Caltrans should continue its efforts at modernizing its Pavement 

Management System. 
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APPENDIX A: LIST OF VARIABLES REQUIRED FOR THE CALTRANS 
PMS 

The purpose of this chapter is to recommend variables that are important for modeling that should be 

included in the Caltrans PMS. These variables are divided into two parts: variables that are essential and 

variables that are useful, though not critical. 

A.1 First Level of Priority: Essential for Modeling 

A.1.1 Condition Data for Rigid Pavements 

Type: Faulting 

Severity: Difference in elevation at the joint (mm). Extract from profilometer data. 

Extent: Collect the sample of fault height within the section, either the entire section when collected with 

the profilometer or from a representative subsection of random sampling if not collected automatically. 

Report the average and standard deviation of fault heights within the section. 

Type: Transverse Cracking 

Severity: Cracked or not cracked (per slab) 

Extent: Percentage of slabs cracked 

Type: Longitudinal cracking 

Severity: No cracks, one crack, or two cracks per slab 

Extent: Percentage of slabs that have one crack in wheelpath, percentage of slabs that have two cracks in 

wheelpath; percentage of slabs that have one crack in centerline, percentage of slabs that have two cracks 

in centerline 
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Type: Corner cracking 

Severity: 0, 1, 2, 3, 4 cracks per slab 

Extent: Percentage of slabs with one, two, three, or four cracks 

A.1.2 Condition Data for Flexible Pavements 

Type: Alligator cracking 

Severity: Combination of crack width and a qualitative measure 

• Low: Branched, longitudinal, discontinuous thin cracks are beginning to interconnect and form 

the typical alligator pattern. There is no spalling along the cracks. A single, continuous crack may 

appear, usually along the wheelpath, with frequent, intermittent smaller cracks running at angles 

to the primary crack. 

• Medium: Cracking is completely interconnected and has fully developed an alligator pattern. 

Spalling appears at the edges of cracks. The predominant pieces formed by the cracking may be 

large ones (12 in. or more in the longest dimension). The cracks may be greater than 1/4 in. wide, 

but the pavement pieces are still in place. 

• High: The pattern of cracking is well developed with small pieces (less than 12 in. in the longest 

length) predominating. Spalling is very apparent at the crack. Individual pieces may be loosened 

and may rock under traffic. Pieces may be missing. Pumping of fines up through the cracks may 

be evident. 

Extent: Separate the alligator cracking measurements into the three severity types. Add together the 

lengths for each type in both wheelpaths of the surveyed lane. Divide the accumulated lengths by twice 

the length of the segment (two wheelpaths per lane). 

Type: Longitudinal cracking 

Severity: Width of the crack 

Extent: The extent of longitudinal cracking is recorded as a percentage of the length of the surveyed 

segment. Separate the measurements for each type of crack severity, then add together the length data for 

the surveyed lane. Divide the accumulated lengths by the length of the segment. 

Note: The result for this measure may be greater than 100% if there are many parallel cracks. 
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Type: Thermal cracking 

Severity: Width of crack 

Extent: Percentage of section length with no cracking, and percentage of section length with cracking plus 

the distribution of crack spacing 

Type: Rutting 

Severity: N/A 

Extent: Record the average rut depth in the wheelpath and the standard deviation of the rut depths for the 

segment. This can be done automatically with vehicles using laser sensors. At least five sensors are 

needed: two outside of wheelpaths, two in wheelpaths, and one between wheelpaths. 

Type: Reflection cracking for AC/AC  

Note: Flexible pavement crack types previously defined.   

Type: Reflection cracking for AC/PCC or CTB (cement treated base) 

 Transverse Longitudinal Corner 

Severity: Width Width Width 

Extent: Cracks per 100 m Length Cracks per 100 m 

Type: Roughness 

Severity: N/A 

Extent: Measured and reported in units of IRI 
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A.1.3 Climate Data 

• Rainfall: Total annual rainfall in mm 

• Temperatures: Annual temperature distribution and daily air temperature change distribution 

A.1.4 Traffic Data 

• Monthly truck axle load distribution 

• Monthly truck type distribution 

A.1.5 Pavement Structures 

• Subgrade soil type by Unified Classification System 

• Total thickness of granular layer 

• Total thickness of cemented soils 

• Total thickness of portland cement concrete 

• Total thickness of asphalt layers 

• Thickness of overlay 

• Visible maintenance activity type (qualitative description) 

A.2  Second Level of Priority: Useful but Not Critical for Modeling 

A.2.1 Condition Data for Rigid Pavements 

Type: Joint spalling 

Severity: The severity of joint spalling is quantified by the size of the spalls in the joints that are spalled. 

• Low: 1/8-in. to 1-in. spalls  

• Medium: 1-in. to 3-in. spalls 

• High: Greater than 3-in. spalls 

Example: A segment can have 20% low spalls, 15% medium spalls and 10% high spalls. 

Extent: The extent of the joint spalling is quantified as the percentage of spalled joints out of the total 

number of joints in the segment. 
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Type: Crack Spalling 

Severity: The severity of the crack spalling is quantified by the size of the spalls in the cracks that are 

spalled: 

• Low 1/8-in. to 1-in. spalls  

• Medium 1-in. to 3-in. spalls 

• High Greater than 3-in. spalls 

Example: a segment can have 20% low spalls, 15% medium spalls and 10% high spalls. 

Extent: The extent of the crack spalling is quantified as the percentage of spalled cracks out of the total 

number of cracks in the segment. 

Type: Pumping 

Severity: Qualitative measure 

• Low: Slight shoulder depression evident, little or no staining 

• Medium: Moderate shoulder depression with obvious staining 

• High: Severe shoulder depression and/or significant staining 

Extent: The extent is quantified by the percentage of the number of joints and cracks in the segment that 

exhibit pumping. 

Type: Patching 

Severity: The severity of patching is quantified by a representative percentage of area of patch within a 

typical patched panel. 

Extent: The extent of patching is quantified by the percentage of panels in a segment that have patches. 

Type: Raveling or scaling 

Severity: The severity of raveling or scaling is determined from personal judgment on the basis of the 

following descriptions. 

• Slight: The aggregate or binder has started to wear away but has not progressed significantly. The 

pavement only appears slightly aged and slightly rough. 
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• Moderate: The aggregate or binder has worn away and the surface texture is moderately rough 

and pitted. Loose particles may be present, and fine aggregate is partially missing from the 

surface. 

• Severe: The aggregate and/or binder have worn away significantly, and the surface texture is 

deeply pitted and very rough. Fine aggregate is essentially missing from the surface, and pitting 

extends to a depth approaching one half the size of the coarse aggregate. 

Extent: The extent of raveling or scaling is the percentage of the surface area of the pavement that is 

raveled or scaled. 

Type: Blowups 

Severity: N/A 

Extent: The number of occurrences in the segment are counted and recorded. 

Type: Wear 

Severity: N/A 

Extent:  Record the average wear (rut) depth in the wheelpath and the standard deviation of the wear 

depths for the segment or for a sample. This can be done automatically with vehicles using laser sensors. 

At least five sensors are needed: two outside of wheelpaths, two in wheelpaths, and one between 

wheelpaths. 

A.2.2 Condition Data for Flexible Pavements 

Type: Flushing, bleeding 

Severity: Qualitative measure 

• Low: Minor amounts of the aggregate have been covered by excess asphalt, but the condition 

has not progressed significantly. 

• Medium: Significant quantities of the surface aggregate have been covered with asphalt. 

However, much of the coarse surface aggregate is exposed, even in areas that show flushing. 

• High: Most of the aggregate is covered by asphalt in the affected area. The area appears wet 

and is sticky in hot weather. 

Extent: Percentage of wheelpath 
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Type: Raveling 

Severity: Qualitative measure 

• Low: The aggregate or binder has started to wear away but has not progressed significantly. 

The pavement only appears slightly aged and slightly rough. 

• Medium: The aggregate or binder has worn away and the surface texture is moderately rough 

and pitted. Loose particles may be present, and fine aggregate is partially missing from the 

surface. 

• High: The aggregate and/or binder have worn away significantly, and the surface texture is 

deeply pitted and very rough. Fine aggregate is essentially missing from the surface, and 

pitting extends to a depth approaching one half the size of the coarse aggregate. 

Extent: The extent of raveling is estimated and expressed as a percentage of the surface area of the 

segment.  

Type: Patching 

Severity: N/A 

Extent: Percentage of area of segment 

Type: Pavement edge 

Severity: Pavement edge is further broken down into three categories: 

• Edge raveling: This occurs when the pavement edge breaks away from roadways without 

curbs or paved shoulders. 

• Edge patching: Edge conditions can still occur with paved shoulders, and edge patching is the 

repair of this condition. 

• Lane less than 10 feet: This indicates that the edge raveling has progressed to the point where 

pavement width from the center line to the outer edge of roadway has been reduced to less 

than 10 feet. 

Extent: Percentage of lane length 
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Type: Block cracking 

Severity: The severity of block cracking is defined by the average size of the blocks and the average 

width of the cracks that separate them. 

Block size: 

• Low: 12-ft. x 12-ft. blocks (9x9 and larger) 

• Medium: 6-ft. x 6-ft. blocks (5x5 to 8x8) 

• High: 3-ft. x 3-ft. blocks (2x2 to 4x4) 

Crack size: 

• Low: Less than 1/4 inch 

• Medium: Over 1/4 inch 

• High: Spalled 

Extent: Percentage of area of segment 

Type: Corrugations 

Severity: Qualitative measure 

• Low: Caused some vehicle vibration, which creates no discomfort 

• Medium: Causes significant vehicle vibration, which creates some discomfort 

• High: Causes excessive vehicle vibration, which creates substantial discomfort and/or vehicle 

damage requiring a reduction in speed 

Extent: Percentage of extent of segment length 

Type: Delamination 

Severity: N/A 

Extent: Record the number and locations in a segment 
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Type: Potholes 

Severity: Pothole area and pothole depth (average in segment): 

• Small: Less than 1.0 ft. (0.30 m) square 

• Medium: Between 1.0 ft. (0.30 m) and 3.0-ft (0.91-m) square 

• Large: Greater than 3.0-ft. (0.91 m) square 

Extent: Report number of potholes in a segment. 

Type: Shoving (slippage) 

Severity:  N/A 

Extent:  Note the size of the area in a segment. 

A.2.3 Climate Data 

• Wind: Wind speed distribution 

• Clouds: Cloud cover distribution 

• Humidity: Relative humidity 

A.2.4 Traffic Data 

• AADT (Average Annual Daily Traffic) 

• Daily truck axle load distribution 

• Daily truck type distribution 

• Speed (daily speed distribution) 
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A.2.5 Pavement Structures 

• Material type of overlay 

• Maintenance surfacing type: 

· Fog seal 

· Slurry seal 

· Chip seal 

· Sand seal 

· Microsurfacing 

• Geometric (distribution of vertical grade): check if possible to collect it by profilometer. 

• Construction quality: If dense graded asphalt, measure percentage air void of overlay 

(distribution). 

A.2.6 Additional Pavement Structure Data for PCC Pavements 

• Check for dowels or no dowels  

• Check if it is CRC (continuously reinforced).  

Note: Additional condition survey procedures should be developed for CRC.  

• Check if tied concrete shoulder, AC shoulder, or wide truck lane.  
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APPENDIX B: NUMERICAL COMPUTATION OF THE EXPECTED 
CUMULATIVE ESALS-TO-CRACKING INITIATION 

This appendix describes the numerical integration procedure used to predict the expected number of 

ESALs-to-cracking initiation of AC overlays placed on AC pavements. This numerical procedure can be 

used in conjunction with the model described in Chapter 3. 

As explained in Chapter 3, the stochastic Duration Model for predicting ESALs to overlay cracking 

initiation is a semi-parametric (Cox) model. In a Cox Model, the baseline hazard function is a not a 

parametric distribution but an entirely empirical one. Therefore, unlike a parametric model such as the 

Weibull Model, the Hazard Rate Function does not have a closed-form expression that can be integrated 

in order to compute the expected ESALs-to-cracking. Instead, a numerical integration procedure was 

developed that is described herein. 

The data includes n observations, so there are n rows in Excel. For every observation, there are values for 

the cumulative ESALs to failure , t, and values for the different explanatory variables x (Tmin, Tmax, 

overlay thickness, etc.). Assume for simplicity that there is one explanatory variable, x. 

Let column A include all the values of t  (n rows) and Column B include all the values of x  (n rows, as 

well). 

After estimation of the model, the econometric software Stata 8 gives a value of S0 for every value of t. 

Thus there is an extra column C that includes the values of S0 (n rows, as well). 

For every value of x, there is a distribution of the cumulative ESALs to failure t. So given x, the expected 

cumulative ESALs to failure is given by: 

Ψ ( x)E[t / x] = ∑
∞ 

S(t)Δt = ∑
∞ 

S0 Δt     (B.1)  
t =0 t=0 

where t is the cumulative ESALs to failure, S0 is the base survival function, and Ψ(x) = eβx . 
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For every x, there is one value of Ψ(x), let column D include the n values of Ψ(x). The upper bound of the 

expected value of t given x is calculated using the equation: 
n−1 

Ψ ( x)E[t / x] = ∑S (t − t )     (B.2)  0,i i+1 i  
i=0  

where i=1 corresponds to the first row of the data, t0 = 0, S0,0 = 1, and E[t / x] is the upper bound 
of the expected value of t given x. 

The lower bound of the expected value of t given x is calculated using the equation: 
n−1 

Ψ ( x)E[t / x] = ∑S0,i+1 (ti+1 − ti )     (B.3)  
i=0 

where i=1 corresponds to the first row of the data, t0 = 0, S0,0 = 1, and E[t / x] is the lower bound 
of the expected value of t given x. 

The expected value of t given x is thus the arithmetic mean of the results of equations B.2 and B.3 and is 

given by: 

E[t / x] + E[t / x]E[t / x] =     (B.4)  
2 

Note: The observations that are right censored are excluded form the sample for prediction. (They 

are only used for the estimation of the parameters of the model). 

Equations B.2 and B.3 are simple to compute and one does not need a computer program to calculate 

them. However, in order to calculate the expected value for every value of x in the data, two Excel macros 

were written to compute equations B.2 and B.3. The two programs are very similar; the differences are 

the underlined parts of the programs below. 
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B.1 Program for equation B.2 

Number of first row = 1 
Number of last row = n 
Number of first row of x = 1 
Number of last row of x = n 
Column A = 1 
Column C = 3 
Output Column E =5 

For j = Number of first row of x To Number of last row of x 
s = t1 ….Note: this corresponds to the value of equation 2 for i=0

For i = Number of first row To number of last row 
s = s + (Cells(i+1, Column A) - Cells(i , Column A)) * (Cells(i, ColumnC)) ^ (Cells(number of 
first row of x, Column D))

Next i 
Cells(j, Output Column E) = s
Next j
End 

The output of this program will be the upper bound of the expected value of t for every value of x, and 

will appear in a column E. 

B.2 Program for equation B.3: 
Number of first row = 1 
Number of last row = n 
Number of first row of x = 1 
Number of last row of x = n 
Column A = 1 
Column C = 3 
Output Column F =6
For j = Number of first row of x To Number of last row of x 
s = t1 ….Note: this corresponds to the value of equation 2 for i=0

For i = Number of first row To number of last row 
s = s + (Cells(i+1, Column A) - Cells(i , Column A)) * (Cells(i+1, ColumnC)) ^ (Cells(number of 
first row of x, Column D))

Next i 
Cells(j, Output Column F) = s
Next j
End 

The output of this program will be the lower bound of the expected value of t for every value of x, and 

will appear in a column F. 
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