
STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION 
TECHNICAL REPORT DOCUMENTATION PAGE 
TR0003 (REV 10/98) 

1. REPORT NUMBER 

CA16-2873 

2. GOVERNMENT ASSOCIATION NUMBER 3. RECIPIENT'S CATALOG NUMBER 

4.  TITLE AND SUBTITLE 

Coordinating Transit Transfers in Real Time

5. REPORT DATE 

May 6, 2016 
6. PERFORMING ORGANIZATION CODE

N/A 
7. AUTHOR 

Carlos Daganzo, Paul Anderson

8. PERFORMING ORGANIZATION REPORT NO.

N/A 
9.  PERFORMING ORGANIZATION NAME AND ADDRESS

University of California at Berkeley
Institute of Transportation Studies
Berkeley, CA 94720

10.  WORK UNIT NUMBER 

N/A 
11. CONTRACT OR GRANT NUMBER 

65A0529 
12. SPONSORING AGENCY AND ADDRESS

California Department of Transportation
 Division of Research, Innovation and System Information
P.O. Box 942873
Sacramento, CA 94273-0001 

 

University of California Center on Economic 
Competitiveness in Transportation (UCCONNECT) 
2616 Dwight Way, Berkeley, CA 94720-1782

 

13. TYPE OF REPORT AND PERIOD COVERED 
Final Report, 3/1/15 – 3/31/16 

14. SPONSORING AGENCY CODE

N/A 

15. SUPPLEMENTARY NOTES

16. ABSTRACT 
Transfers are a major source of travel time variability for transit passengers. Coordinating transfers between transit routes in real time 
can reduce passenger waiting times and travel time variability, but these benefits need to be contrasted with the delays to on-board and 
downstream passengers, as well as the potential for bus bunching created by holding buses for transfers. We developed a dynamic 
holding strategy for transfer coordination based on control theory. We then obtained the optimal control strategy, where maximum 
holding time is a function of real-time estimates of bus arrivals and passengers and the uncertainty in these estimates. Total travel time 
(waiting plus in-vehicle) with the optimal control is found to be globally less than or equal to total travel time without control when 
uncertainty is bounded. The time savings from transfer coordination increase with the ratio of transferring to through passengers but 
diminish as uncertainty in the real-time estimates of bus arrivals increases. Field observations at a multimodal transfer point in Oakland 
show that the proposed control strategy could reduce net transfer delay by 30-39% in a real-world scenario. The data collected also 
confirm that the upper bound on uncertainty in bus arrivals can be satisfied with existing bus location technology. We conclude with a 
discussion of complementary measures, such as the provision of real-time information at transfer points and conditional signal priority, 
which could allow coordination to be applied in more cases. 

Reproduction of completed page authorized. 

ADA Notice 
For individuals with sensory disabilities, this document is available in 
alternate formats. For information call (916) 654-6410 or TDD (916) 654-
3880 or write Records and Forms Management, 1120 N Street, MS-89, 
Sacramento, CA 95814. 

17.  KEY WORDS
Public transportation; interlining; transfers; coordination. 

18.  DISTRIBUTION STATEMENT

No restrictions. This document is available to the public through the 
National Technical Information Service, Springfield, VA, 22161. 

19.  SECURITY CLASSIFICATION (of this report) 
Unclassified 

20.  NUMBER OF PAGES

26

21.  COST OF REPORT CHARGED

 



 

 

DISCLAIMER STATEMENT 
 

This document is disseminated in the interest of information exchange. The contents of this 
report reflect the views of the authors who are responsible for the facts and accuracy of the data 
presented herein. The contents do not necessarily reflect the official views or policies of the State 
of California or the Federal Highway Administration. This publication does not constitute a 
standard, specification or regulation. This report does not constitute an endorsement by the 
Department of any product described herein. 
 
For individuals with sensory disabilities, this document is available in alternate formats. For 
information, call (916) 654-8899, TTY 711, or write to California Department of Transportation, 
Division of Research, Innovation and System Information, MS-83, P.O. Box 942873, 
Sacramento, CA 94273-0001. 



University of 
California Center 

for Economic 
Competitiveness 
in Transportation

Coordinating Transit 
Transfers in Real Time 

Final Report 
UCCONNECT 2016 TO 021 - 65A0529 

Carlos Daganzo, Chancellor’s Professor 
University of California, Berkeley 

Paul Anderson Ph.D. Candidate  
University of California, Berkeley 

Sponsored by 



  

Coordinating Transit Transfers in Real Time 
Caltrans contract no. 65A0529 

 
 
 
  Paul Anderson Carlos Daganzo (PI) 
University of California Berkeley 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
May 6, 2016 



  

 

Contents 

1 Introduction 1 

2 Literature Review 3 

3 Development of Control Strategy 4 
3.1 Parameters ...................................................................................................................... 4 

3.1.1 Decision Variable ................................................................................................. 5 
3.2 Deterministic Form .......................................................................................................... 6 
3.3 Uncertainty ...................................................................................................................... 5 
3.4 Key Assumptions ............................................................................................................. 6 

 

4 Verification and Evaluation through Simulation 7 

5 Verification and Evaluation with Real Data: A Case Study 11 

6 Complementary Measures 15 

7 Conclusion 16 

A Appendix:  Derivation of Optimal  Control 17 

References 19 
 
Figures 

1 Location of random  OD points ........................................................................................ 2 
2 Simulations over a range of  parameter values ............................................................... 8 
3 Confirmation of Analytical Result..................................................................................... 9 
4 Comparison of deterministic and uncertainty control ..................................................... 10 
5 Histogram of walking times ........................................................................................... 12 
6 API data ......................................................................................................................... 13 

Tables 

1 Action plan ..................................................................................................................... 14 
2 Out of vehicle passenger  delay (min) ........................................................................... 15 



  

  
1 

Abstract 

Transfers are a major source of travel time variability for transit passengers. Coordinating 
transfers between transit routes in real time can reduce passenger waiting times and travel time 
variability, but these benefits need to be contrasted with the delays to on-board and downstream 
passengers, as well as the potential for bus bunching created by holding buses for transfers.  We 
developed   a dynamic holding strategy for transfer coordination based on control theory. We then 
obtained the optimal control strategy, where maximum holding time is a function of real-time 
estimates of bus arrivals and passengers and the uncertainty in these estimates. Total travel time 
(waiting plus in-vehicle) with the optimal control is found to be globally less than or equal to total 
travel time without control when uncertainty is bounded. The time savings from transfer 
coordination increase with the ratio of transferring to through passengers but diminish as 
uncertainty in the real-time estimates of bus arrivals increases. Field observations at a multimodal 
transfer point in Oakland show that the proposed control strategy could reduce net transfer delay 
by 30-39% in a real-world scenario. The data collected also confirm that the upper bound on 
uncertainty in bus arrivals can be satisfied with existing bus location technology. We conclude 
with a discussion of complementary measures, such as the provision of real-time information at 
transfer points and conditional signal priority, which could allow coordination to be applied in more 
cases. 

 
1 Introduction 

Public transit networks usually resemble one of several common patterns including ring-radial, 
grid, hierarchical (e.g. feeder-trunk), etc. These designs are closely tied to the historical 
development of cities and to the layout of the street network. They also tend to be efficient 
methods for achieving spatial coverage. Transfers are essential for reaching destinations in grid 
and hierarchical systems and increasingly in ring-radial systems too because travel demand has 
become much more polycentric in recent years. 

Transfers take on particular importance in California transit systems. California metropolitan 
statistical areas (MSAs) developed much after the automobile, and this has led to considerable 
spatial growth (sometimes referred to as sprawl). Constraints such as inland mountain ranges 
have led to increases in density in parts of these MSAs. The major cities in California now have 
enough density in many areas to support good transit coverage, but in most cases not enough 
for high frequency service. Many other North American cities face a similar problem. 

To illustrate this qualitative conclusion, we consider the whole region served by AC Transit, 
which provides bus service in Alameda and Contra Costa Counties. Of the 90 possible trips 
between the randomly selected points shown on the map in Figure 1, 38% of the trips did not 
require a transfer, 51% required one transfer, and 11% required two transfers. All of these points 
were served by BART or AC Transit routes, which shows that the East Bay can indeed support 
transit, albeit many of the routes run with large scheduled headways (20, 30, 40, or 60 minutes), 
as we anticipated. Headways like these1 mean that there is a huge penalty for missing a transfer, 
which is likely to discourage people from riding the bus if missed transfers are a regular 
occurrence. With 62% of the trips in this example requiring at least one transfer, it is clear that 
transfers are critically important for transit accessibility in California. Transfer waiting time could 
be greatly reduced with real-time coordination. 

The literature on travel behavior, summarized in the following section, has established that 
transit users do not value all components of their trip equally.  This finding sets the stage for our 
work by suggesting that a control strategy which exchanges out of vehicle time for in vehicle time 
is beneficial for the system. 
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1The actual headways may be even longer because buses tend to bunch 
 

 

Figure 1:  Location of random OD points 
 

 
 

Unfortunately there are real world phenomena that stand in the way of real-time coordination 
as we propose to investigate. The main phenomenon is generically known as “bus bunching”. 
This is the tendency of buses to form clusters as they move along their routes, especially where 
they travel in traffic. Bus bunching is a common problem on public transportation systems 
worldwide. The trigger is usually traffic, which continually knocks buses o  schedule. Once a bus 
is sufficiently delayed so there is a large gap between it and the bus in front, a positive feedback 
loop that makes matters worse kicks in. The bus encounters more passengers, which delay it 
further and compound the problem. Conversely, if the bus runs ahead of schedule so its gap is 
small, it encounters fewer passengers and tends to catch up with the bus in front. This is why 
bunches form. 

The literature on control measures for bus bunching is described in detail in the following 
section. There are three types of approaches: optimization strategies that use real-time 
information and “rolling horizon” heuristics, informal strategies that are reactive and use measures 
like boarding limits and stop skipping, and control theory which uses simple preventative 
principles. To our knowledge, no works exist at present which have extended this third approach 
to a network of routes including transfers, or even to two connecting routes, although the issue 
was identified as a direction for future research in Daganzo and Pilachowski (2011). Therefore, 
this is the main task of the proposed research. We believe that the analysis methods used in the 
control approach can and should be extended to account for transfers and improve their reliability. 
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Transfer coordination is a logical extension of control measures for bus bunching; transfer 
coordination is concerned with interactions between buses on connecting routes while bus 
bunching control strategies focus on interactions between sequential buses on the same route. 
Having a control strategy in place for bus bunching is not explicitly required for transfer 
coordination, but would keep buses closer to their scheduled headways, which makes arrivals 
more predictable. 

This work looks at ways of controlling buses at transfer stations, and at traffic signals while en 
route, in order to improve the reliability of passenger connections between transit routes. A 
literature review is given (section 2) which describes relevant work in travel behavior and bus 
control strategies as well as other papers that have treated transfers. We first developed a 
mathematical framework for optimal holding control at transfer stations (section 3). We verified the 
analytical findings through simulation (section 4), and then conducted experiments to evaluate the 
performance of the proposed control strategy in real world situations (section 5). We conclude with 
a discussion of complimentary measures that could shorten the required holding time or reduce 
the downstream effects and therefore allow coordination in more cases (section 6).  The 
overarching goal of these control measures is to improve the reliability of transfers and reduce out-
of-vehicle passenger delay, the type of delay that is most annoying. 

 
2 Literature Review 
A first set of works illustrate the importance of efficient transfers for the traveling public. There is 
an extensive literature on travel behavior, including the way that users perceive the time spent on 
various components of their trip (Hickman and Wilson, 1995; Dziekan and Kottenho , 2007; 
Watkins et al., 2011), and transfer time is always valued very highly. Two findings from the 
literature support this conclusion. First, users place a higher value on out-of-vehicle waiting time, 
such as when transferring, than in-vehicle time (Ben-Akiva and Lerman, 1985; Dube et al., 1991). 
Second, travel time reliability is consistently found to be amongst the most important components 
of transit utility, even more important than the total travel time (de Palma and Picard, 2005; Bhat 
and Sardesai, 2006; Perk et al., 2008). Since transfers are an important source of travel time 
variability, and may be the dominant source of variability in bus systems with long headways, 
coordinating transfers in real time has the potential for improving matters considerably and 
increasing ridership. Various control strategies have been developed to mitigate bus bunching. 
Newell and Potts (1964) was the first work to study the bus bunching phenomenon and showed 
the inherent instability of bus systems. Osuna and Newell (1972) proposed to build slack time into 
the schedule, which would allow buses to get back on schedule at control points. This strategy 
and others of the same vintage do not involve any system coordination; drivers merely check the 
time against a schedule at control points. Strategies of this type are commonly used today but are 
largely in effective because the slack time required to prevent bunching is impractically large, and 
therefore the slack time provided is much smaller. 

More recent papers have examined bus control strategies that incorporate coordination, using 
real-time information and “rolling horizon” heuristic optimization methods; see e.g., Eberlein et al. 
(2001). Other papers have proposed to deal with bunching less formally, using passenger 
boarding limits (Delgado et al., 2009) and skipping stops (Sun and Hickman, 2005; Liu et al., 
2013) as control mechanisms to react to bunching. Unfortunately, the optimization strategies 
increase in complexity with the size of the system and cannot be scaled easily; and the informal 
approaches only act after bunching has taken hold. A third type of approach that overcomes these 
two drawbacks is based on control theory (Daganzo, 2009; Daganzo and Pilachowski, 2011; Xuan 
et al., 2011). The approach uses simple preventive principles rather than detailed optimization. 
As such it is scalable and averts bunching before it happens. 



3.1 Parameters

Arrival time A; [s]: arrival time of the next bus on route i at the transfer point.

Headway Hi [s]: real time headway on route i

Standard Deviation # [s]: standard deviation of variable x

Affected Passengers Pa [persons]: passengers on route i who would be affected by a hold

Transferring Passengers Pt [persons]: passengers transferring from route i to j at the transfer 
point
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There are relatively few papers about transfers. Several works have proposed ways of 
designing bus schedules to reduce expected transfer waiting times (Hall, 1985; Abkowitz et al., 
1987; Lee and Schonfeld, 1991; Bookbinder and Desilets, 1992; Knoppers and Muller, 1995; Hall 
et al., 2001; Hadas and Ceder, 2010). In addition to schedule design, Hadas and Ceder (2010) 
propose using informal strategies to help buses reach transfer points on time. Dessouky et al. 
(2003) develop holding strategies to preserve timed transfers.  Lo and Chang (2012) propose a 
real time fuzzy bus holding system. Delgado et al. (2013) consider transfer coordination on a 
heavy rail system using a rolling horizon approach.  An innovation of this paper is that it considers 
a trapezoidal distribution of passenger walking time, so it is possible for some to make the transfer 
while others miss it. Most recently, Nesheli and Ceder (2014, 2015) propose a combination of 
holding and segment skipping (i.e. skipping several stops in a row) to effectuate transfer 
coordination. 

 
3 Development of Control Strategy 

The control strategy that we propose for transfer coordination is distributed. This means that there 
is no centralized controller. Instead, each bus becomes a decision maker (subscript d in the 
notation) when it arrives at a transfer point. The basic procedure is that the decision-making bus 
arrives at the transfer point, consults the real-time information, calculates its maximum hold time, 
and then looks to see if there is a connecting bus (subscript c) arriving at or before that maximum 
hold time. If there is a connecting trip, the decision maker holds until the transferring passengers 
from that connecting bus arrive (even if it is late), and then departs. If there is no connecting bus 
expected before the maximum hold time, the decision maker departs as soon as it is done 
boarding and alighting passengers and any transferring passengers must wait for the next bus on 
the decision maker’s route. 

The information needed to implement this control strategy consists of estimates of upcoming   
bus arrivals and counts of transferring and affected passengers. The decision making bus may 
already have some of the real-time information it needs, like the number of passengers on board 
and the backward headway (part of some bus bunching control strategies). The arrival times of 
connecting buses can be requested when the decision making bus is approaching the transfer 
point. Other parameters, like the standard deviations, transferring passengers, and recovery, are 
difficult to estimate in real time so historical values can be used and stored locally. 

The notation is as follows: 

 



Recovery p []: reflects time portion of holding time experienced by the average affected passenger. 
p = 1 means no holding time is recovered en route, p < 1 means some of the holding time is 
recovered before affected passengers get off the bus

This amax is the optimal control strategy. We can see that it is simply the ratio of transferring 
to affected passengers multiplied by the headway on the deciding bus route. The affected passengers 
are adjusted by the recovery factor because of our assumption that passengers only experience the 
schedule deviation when they get off the bus. Therefore, if most of the holding time can be made 
up before the on-board passengers get off, transfer coordination becomes very attractive.

(1)

(2)
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3.1.1   Decision Variable 

Maximum Hold Time amax [s]: maximum time that a bus should be willing to hold to receive 
transferring passengers 

 
For all variables, the notation Ai refers to the true value, while the notation Aˆi refers to the estimate 
available at the time of decision. 

 
3.2      Deterministic Form 

The simplest case to describe is the deterministic one, where all real time estimates are equal to 
the true value. Each instance of this control strategy begins when the decision-making bus arrives 
at the transfer point and consults the real-time information. As such, we call its arrival time Ad = 
0. We mentioned above that the decision-making bus should calculate the maximum time that it 
is willing to hold and then compare the arrival times of connecting buses to this value. This simple 
rule forms the basis of our control strategy. We call the cost of our control strategy the net transfer 
delay, which can be expressed in terms of the maximum holding time: 

 

We are interested in finding the optimal control strategy, which is the expression for maximum 
holding time that would minimize the expectation of net transfer delay. In the deterministic case, 
this  is  easy  to  find  because  the  cost  of  coordinating,  ρPaAc,  and  the  cost  of  not  
coordinating, Pt(Hd - AC ), both scale linearly with Ac.  We can set these two equal to find the point 
where coordinating and not coordinating give us the same cost: 
 

 
3.3    Uncertainty 

However, real bus systems experience perturbations from traffic signals, mixed traffic, variable 
dwell times, and so on. We know that the information available at the time of decision consists of 
several estimates. The optimal control strategy could be improved by taking the uncertainty in 
these estimates into account. We assume the following distributions for the parameters: 

 



(3)

(4)

(5)

(6)
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Ac  ⇠ U (Aˆc, Aˆc + aa
p

12) 
Ac  ⇠ U (0, Hd) 
Pˆa  = E(Pa) (distribution and variance do not matter if the estimate is unbiased) 
Pˆt  = E(Pt) (distribution and variance do not matter if the estimate is unbiased) 
Hd  ~ U (Hˆd, Hˆd + aH σ12) 

The distributions for bus arrivals are biased: buses may be later than the estimate, but not 
earlier. We think that this construction is reasonable because buses are unlikely to be significantly 
earlier than a near-term arrival estimate but could be late due to some unexpected delay. Early 
arrivals would also be beneficial for the control (lower than expected cost of the selected action), 
so it is more useful to test potentially harmful disturbances. 

The entire derivation of cost with uncertainty, incorporating uncertainty one parameter at a 
time, is contained in the appendix. The resulting cost with uncertainty in all parameters is as 
follows: 

Now that the true parameter values have been replaced with real-time estimates, we can solve 
for the value of amax that minimizes expected cost. This value will represent the optimal control 
action, based on the information available.  We take a derivative with respect to amax: 

By setting the derivative equal to 0 and solving for amax, we obtain an expression for the 
maximum holding time in terms of real-time information: 

 
 

 
3.4 Key Assumptions 

We make two key assumptions to reduce the complexity of the analytical expressions. Their 
validity and impact on real-world applications will be discussed later. The first is a constraint 
placed on the uncertainty in the connecting bus’ arrival time: 

This assumption means that a bus whose expected arrival time is within the maximum holding 
time of the decision-making bus will actually arrive within one headway. 

 The second assumption is:

In effect, we replace the true value of Hd in the upper bound of the distribution with its expected 
value, E(Hd), to avoid complicated integration. 
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4 Verification and Evaluation through Simulation 

We use simulation for two purposes.  The first is to confirm the analytical findings, and the second 
is to explore some reasonable combinations of parameter values to see what kind of results can 
be expected from the proposed control scheme. 

In the first case, we hold all of the parameters constant except for Aˆc  and Ac, which are drawn 
from the specified distributions. Simulations of two different sets of parameter values are plotted in 
Figure 3. Each point in the scatter represents one simulation run. One simulation run consists of a 
bus arriving at the transfer point, analyzing the situation represented by the constant parameters 
and a randomly drawn Aˆc, making its control decision, and calculating the cost of that decision 
based on the true value Ac. The optimal amax from the analytical model is plotted with a dashed 
line. We can see that, in both plots, the expected costs of holding for a coordinated transfer (the 
ascending green points) and not holding (the red scatter) are equal at the analytical amax.  This   is 
what we expect, as amax should represent an equilibrium point between the two control actions. To 
the left of amax, coordination is the better control action as a short hold can eliminate a long wait for 
transferring passengers. To the right of amax, the best action is not to wait because the transferring 
passengers do not have as long to wait for the next bus, and the cost of holding is high. The slope 
of the two lines and their intersection depends on the numbers of transferring and through 
passengers. 

The second purpose of simulation is to explore how the control scheme performs under 
different parameter combinations.  Figure 2 includes three dimensionless plots of the cost in 
passenger   delay relative to the no control case vs. x, the ratio of transferring to through 
passengers. The difference between the three plots is the uncertainty parameters aa and aH, 
which are given in the captions. 

The interesting result in these figures is that our proposed control scheme is always better 
than or equal to no control, with or without uncertainty in the bus arrival estimates, and for any 
value of x. The percent reduction in passenger travel time with control varies widely, but very large 
reductions on the order of 60-70% are possible if transferring passengers significantly outnumber 
through passengers and the uncertainty in bus arrival estimates is not too large. We see that there 
is a high cost of uncertainty, particularly uncertainty in Ac, the connecting bus’ arrival. However, 
uncertainty does not undermine the control strategy as it remains superior to no control. What is 
lost are the potential benefits that could be realized with perfect information. 

Figure 4 compares deterministic and uncertainty control under more parameter combinations. 
Each point in these scatter plots is the average of 10,000 simulations. One parameter varies per 
plot, the other parameters are held constant with the values given in the plot title. Like the other 
simulations, Aˆc and Ac, are drawn from the specified distributions.  As we can see, deterministic 
and uncertainty control have virtually the same net benefit per transferring passenger for most 
parameter combinations.  The exceptions are when the ratio of transferring to affected 
passengers   is small  (Pt/Pa   <  0.1)  and  when  uncertainty  in  bus  arrivals  is  high  (aa   >  150s,  
aH   > 250s). 

The intuition for the first case is that when there are relatively few transfers, the cost of holding 
increases much faster than the cost of leaving the transferring passengers to wait for the next 
bus, so a late arrival of the connecting bus is costly. For the second case, obviously when 
uncertainty is high it pays to take it into account. 
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(a) Simulation with aa = 0.10 and aH = 0.10 (b) Simulation with aa = 0.10 and aH = 0.15 

 
(c) Simulation with aa = 0.15 and aH = 0.05 
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Figure 2:  Simulations over a range of parameter values 
 

 
 

(a) Passenger delay vs. arrival time of connecting bus with low uncertainty 

(b) Passenger delay vs. arrival time of connecting bus with high uncertainty 
 

Figure 3:  Confirmation of Analytical Result 
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(a) Simulations with di erent connecting route 
headway 

(b) Simulations varying the ratio of transferring 
to affected passengers 

 

  
(c) Simulations with different values of aa (d) Simulations with different values of  aH 

Figure 4: Comparison of deterministic and uncertainty control 
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5 Verification and Evaluation with Real Data: A Case Study 

In order to test the proposed control scheme in a real-world scenario, we collected data at a 
subway- to-bus transfer point in Oakland, California. The Rockridge BART station is elevated and 
the main exit leads directly to the westbound bus stop. This bus stop is the starting point for AC 
Transit’s 51B route, which heads west to the UC Berkeley campus and west Berkeley. We used 
two observers, one at the exit to the BART station and one at the bus stop. The observer at the 
exit started shooting video when a train arrived (which could be observed because the tracks are 
elevated) and stopped when all the passengers had exited the station. The observer at the bus 
stop counted transferring passengers and shot video of the bus boarding process.  At the same 
time, we ran     a script to request information on upcoming trips from the BART and AC Transit 
APIs once a minute. This experiment obtained the time that every BART passenger exited the 
station, the numbers of transferring and total passengers boarding each bus, and forecasted 
arrival times for each BART and bus trip over time. 

These data were used to associate BART passengers to trains and determine the walking 
time from train platform to bus stop. The station exit and bus boarding videos were compared to 
confirm the number of transferring passengers and determine their arrival time at the bus stop. A 
histogram of train platform to bus stop walking times is shown in Figure 5.  The mean walking 
time is 00:01:33 (HH:MM:SS), with a standard deviation of 00:00:43.  In 160 observations, 82% 
fall between 00:00:30-00:02:00, and 95% of the observations are contained between 00:00:30 
and 00:02:30. 

The API data was used to evaluate the quality of forecasts and to estimate the parameters aa 
and aH.  The standard deviation of bus arrival forecasts depends on the prediction horizon.  If we 
use all the data to calculate standard deviation (with respect to the actual arrival time), we obtain 
aH = 1.47 min.  However, the AC Transit API includes forecasts up to 90 minutes in advance of 
arrival (see Figure 6).  As we can see in the figure, the long-range forecasts are probably not real 
time, and are just quoting the schedule.   We can see that two estimates are revised backwards 
at around 30 minutes before arrival, so perhaps this is the limit of real-time forecasting. Using all 
forecasts within 33 minutes of arrival, we obtain a standard deviation aH = 1.10 min. The route’s 
scheduled headway is 10 minutes, and if we consider only forecasts within 10 minutes of arrival, 
the standard deviation drops to aH = 0.519 min.  The BART forecasts do not show much deviation 
from schedule, probably because rail systems have fewer disturbances than buses. The BART 
API does not give forecasts as far in advance, as the most long-range estimate for all but one trip 
is 15-20 minutes before arrival. We simply use all the data to calculate standard deviation and 
obtain aa = 0.50 min. Recalling Equation 5, we need to check that this value of aa satisfies our 
assumption. Using the smallest observed headway, Hd = 7 min, we need aa < 1.35 min. The BART 
forecasts easily satisfy the condition. The condition does not apply to aH, but we can see that the 
10 min and 33 min horizon values for aH satisfy the condition. This finding means that the upper 
bound on aa can be satisfied with existing bus location technology, which is necessary to apply 
the control scheme to bus-to-bus transfers. 

We then used the data collected in this experiment to virtually apply our control scheme. The 
uncertainty parameters are those obtained from the API data. We use the 33 minute horizon for 
the bus route.  The estimated arrival times, Aˆc  and Hˆd, are directly observed in  the API data. 
Because this stop is the beginning of the bus route, there are no through passengers on board. 
Instead, we counted the passengers who were waiting at the stop when the bus arrived as the 
affected passengers, Pa.  The remaining unknown is the number of transferring passengers, Pˆt.  
In the data, each BART train contains between 0-4 transferring passengers, with 9 out of 12 trains 
(and 7 out of 8 westbound trains) containing at least one transferring passenger. 
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(a) Time-space diagram of 51B route from API   requests 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Time-space diagram of Rockridge BART  from API   requests 
 

Figure 6:  API data 
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Table 1:  Action plan 
 

bus through transfers amax passenger time train time action 
08:14:56 14 1 

2 
3 

0.25 
1.11 
1.81 

08:16:38 
08:16:45 
08:21:28 

1.70 
1.82 
6.53 

Daly City 
Daly City 
Pittsburg/Bay Point 

08:15:33 
08:15:33 
08:20:21 

depart 
depart 
depart 

08:21:55 10 1 
2 
3 
4 
5 
6 
7 
8 

1.28 
2.82 
3.97 
4.87 
5.59 
6.17 
6.66 
7.08 

08:22:04 
08:22:53 
08:23:07 
08:23:22 
08:30:59 
08:31:01 
08:31:01 
08:31:23 

0.15 
0.97 
1.20 
1.45 
9.07 
9.10 
9.10 
9.47 

Pittsburg/Bay Point 
SF Airport 
SF Airport 
SF Airport 
Daly City 
Daly City 
Daly City 
Daly City 

08:20:21 
08:21:10 
08:21:10 
08:21:10 
08:29:41 
08:29:41 
08:29:41 
08:29:41 

wait   
wait 
wait  
wait 
depart 
depart 
depart 
depart 

08:33:09 12 1 
2 
3 

0.98 
2.36 
3.44 

08:36:46 
08:36:48 
08:43:45 

3.62 
3.65 

10.6

SF Airport 
SF Airport 
Daly City 

08:35:23 
08:35:23 
08:42:22 

depart 
depart 
depart 

08:45:02 5 1 2.25 08:51:12 6.17 SF Airport 08:50:13 depart 
08:55:07 7        

 

Table 1 shows the data on bus trips and transferring passengers. The left two columns show 
the actual bus departure time and Pa, the passengers waiting at the stop when the bus arrived. 
This Pa figure includes transferring passengers who did not get a coordinated transfer and had to 
wait for the next trip. The number of transfers is unknown, so we present in the fourth column the 
amax (in minutes) calculated from the other real-time estimates for that trip and the Pˆt value in the 
third column. The fifth through eight columns show the passenger’s arrival time, the relative time 
(in minutes) after the bus available for coordination, the BART train the passenger came from, 
and that train’s arrival time. The rightmost column shows the correct control action if we knew the 
number of transferring passengers in advance. 

We can see that the first bus trip is close to a Daly City train, but would not be able to 
coordinate if fewer than 3 passengers are expected because it already has 14 people on board 
and has a short headway behind it. The second trip departed in real life while Pittsburg/Bay Point 
passengers were still exiting the station and after the SF Airport train had already arrived. It has 
fewer passengers on board, so both the Pittsburg/Bay Point and SF Airport trains look like good 
possibilities for coordination if at least 1 transfer is expected. The third trip has a long headway 
behind it, but many onboard passengers.   An average passenger from the Daly City train would    
not be expected for nearly 4 minutes, so it is not a likely target for coordination unless at least 4 
transfers are expected. The fourth bus trip has relatively few onboard passengers, but the SF 
Airport train is too far away to coordinate. We can see that if we use the average value for Pˆt, 
which is 2 transferring passengers per BART train, it would produce the correct control actions. 
That might not be true in general because amax is very sensitive to Pˆt. However, we might be able 
to come up with estimates on the number of transfers to expect from individual trains if we 
collected data over a longer period of time. 
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Table 2:  Out of vehicle passenger delay (min) 
 

 no control control (0% recovery) control (50% recovery) 
through transfer through transfer through transfer 

Trip 1 0.0 10.9 0.0 10.9 0.0 10.9 
Trip 2 0.0 49.4 14.5 10.2 7.2 10.2 
Trip 3 0.0 17.8 0.0 17.8 0.0 17.8 
Trip 4 0.0 3.9 0.0 3.9 0.0 3.9 
Total  82.0  57.3  50.1 
Savings    30%  39% 

 
6 Complementary Measures 
We observed in the preceding results that the ratio of transferring to affected passengers is the   
single most important variable for determining whether transfer coordination can be applied in a 
particular instance. Therefore, we expect that transfer coordination could be enhanced by 
complementary measures that increase this ratio, either by improving our knowledge of incoming 
transfers, or by reducing the number of affected passengers. 

One idea for a complementary measure is a feature in smartphone apps that allows users           
to announce their travel plans to the transit agency. In current practice, the flow of real time 
information is unidirectional: transit agencies make their estimates of bus arrivals available, and 
users can modify their route or departure time accordingly. If users could communicate their travel 
plans to the transit agency (perhaps by “accepting” a set of directions calculated by an app), this 
knowledge could be factored into the estimate of transferring passengers at a particular stop. The 
impact that this would have on transfer coordination depends on the transit system and the day-
to- day variability that it experiences.  By default, we estimate the number of transferring 
passengers   at a particular stop using historical data. Knowing users’ travel plans would set a 
floor for the number of transfers to expect and would make coordination more likely when this 
floor is greater than the long-term average. 

A second complementary measure is conditional signal priority (CSP). Transit signal priority 
(TSP) allows a bus to send a priority request when it is approaching a traffic signal. When a signal 
receives a priority request, it adjust the phase timing subject to feasibility constraints, using a 
green extension or an early green to pass the bus through the intersection with zero (or at least 
reduced) delay. In current practice, buses typically request priority at every equipped signal. The 
idea of conditional signal priority is to establish a virtual schedule and only allow buses which are 
behind schedule to request priority. Conventional TSP slightly improves regularity by reducing 
signal delay; the main benefit is an increase in commercial speed. CSP also improves commercial 
speed, but not as much since buses do not request priority every time.  The main benefit of CSP 
is that it dramatically improves regularity and appears to bound deviations from schedule: early 
buses are left to experience the full signal delay and soon return to schedule, while late buses 
can use priority at every signal until they have caught up. 

CSP would aid transfer coordination by reducing the number of affected passengers and by 
reducing the uncertainty on the connecting bus arrival and the real time headway. After holding for 
transferring passengers, the deciding bus will likely be behind its virtual schedule. CSP would allow it 
to request priority at the next few intersections until it has caught up to schedule. Since our assumption 
is that passengers do not care about schedule delay that is made up before they disembark, CSP 
would reduce the number of affected passengers by helping the bus return to schedule more quickly. 
If both the deciding and connecting routes adopt CSP, we would expect the uncertainties in the bus 
arrival estimates to decrease, which also decreases the cost of transfer coordination. 
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So far we have only mentioned the synergies of using transfer coordination and conditional 
signal priority on the transit system. The two control strategies could be more explicitly linked by 
adjusting virtual schedules to benefit transfer coordination.  For example, a connecting bus could 
be allowed to use priority until it reaches the transfer point to reduce the time that the deciding 
bus has to hold. 

 
7 Conclusion 

In this work, we developed a dynamic holding strategy for coordinating transit transfers in real 
time that is based on control theory. The strategy is simple and scalable: when a bus arrives at a 
transfer point, it looks at the real-time information and immediately makes a decision on whether 
to depart   or to hold for a connecting route. We started with an expression for expected cost of 
the control strategy given full knowledge of the system. True parameter values are replaced with 
real-time estimates one by one to obtain an expression for expected cost that depends only on 
parameters known at the time of decision. We then obtained an expression for the maximum 
holding time that minimizes expected cost.  A bus using the control strategy calculates its 
maximum holding time and then checks to see if any connecting vehicles are expected within this 
time horizon. 

We used simulation to confirm the analytical results and to explore the expected performance 
of the control strategy over a range of parameter values. Two simulations with all fixed parameters 
except for random arrivals of the connecting bus confirm that the optimal amax obtained in the 
analysis is indeed the equilibrium point where the expected costs of holding and not holding 
intersect. Dimensionless plots of relative cost vs. the ratio of transferring to through passengers 
show that the proposed control strategy is universally better than or equivalent to no control. Very 
large reductions in passenger delay are possible when transfer volumes are high relative to 
through passengers. We showed that uncertainty increases costs significantly, but that the control 
strategy remains superior to no control. 

We then conducted field observations at a multimodal transfer point in Oakland. All of the 
parameters for the control strategy were either measured directly or estimated from the data. The 
observations showed that real time estimates of bus arrivals are accurate enough to satisfy one 
of the key assumptions in the analytical model, an upper bound on uncertainty in bus arrivals. 
This finding suggests that our control scheme can be used with existing bus location technology. 
We showed that if our control strategy were used in the four real-world scenarios contained in the 
data, we would hold one bus for a coordinated transfer. This control action would reduce net 
transfer delay by 30%, even assuming that the bus is not able to make up the schedule delay 
incurred. If, through complementary measures, the bus were able to make up the schedule delay 
so that the average through passenger experiences only half of the hold time, the reduction in net 
transfer delay increases to 39%. 

A promising complementary measure is conditional signal priority. Conditional priority can help 
to speed up late buses by allowing them to use signal priority while denying priority to buses that 
are ahead of schedule. Priority would be granted to all late buses, not just those recovering from 
holding for transfer coordination, but it could greatly reduce the downstream effects of transfer 
coordination. If small schedule delays could be made up in a few blocks, transfer coordination 
would be less costly and could be used in more cases. 

 
 
 
 
 



  

 
17 

We acknowledge that the analytical model does not fully account for downstream effects and 
the walking time of transferring passengers. The model currently compares the schedule delay 
experienced by through passengers at the time they alight with the out of vehicle waiting time 
transferring passengers experience if they are left to wait for the next bus.  However, holding for a 
transfer would increase out of vehicle time for passengers waiting at downstream stops.   It is    very 
difficult to measure passengers who are not yet in the transit system, but we could estimate a 
demand rate for downstream stops. Accounting for these passengers would further underline the 
importance of using complementary measures to make up schedule delay.   The analytical model      
is best suited for a case where all of the transferring passengers from a connecting vehicle arrive 
simultaneously.  In our real world data, the train platform and bus stop are not adjacent, and there    
is some walking time in between. We collected data on walking time and showed that there is a 
relatively tight distribution, but have not fully accounted for the uncertainty that variable walking time 
introduces. There is also potential for complementary measures, like directional signage and 
screens with real-time information that could encourage transferring passengers to walk faster. 
Future work will extend the model to consider dispersed passenger arrivals and to fully account for 
downstream effects of holding for transfers. 
 
  



We point out that the two conditional expressions are linear functions of the parameters Pa and 
respectively. As a result, we can simply replace the true values of these parameters with their

estimates, provided the estimates are unbiased.
Now' we aim to write expected cost without knowing Ac. This can be accomplished by integrat- 

ing out Ac in both conditional expressions. The interval (amax Hd] is subdivided into cases where 
the entire distribution of Ac falls before Hd and cases where Ac can fall before or after Hd The 
integration is as follows:

The next step is to eliminate Ac We have assumed that the two routes are completely un- 
coordinated, and that the connecting bus could arrive at any time within one headway. We now 
integrate out Ac:

and results in the following expected cost:
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A.  Appendix: Derivation of Optimal Control 

We start by writing an expression for the expected value of the cost of the control strategy, 
assuming the true values of all parameters are known. This expression is: 

 

 
 

 

A c ::=; amax 
A c > amax 

We point out that the two conditional expressions are linear functions of t he parameters Pa and 
Pt , respectively. As a result , we can simply replace t he true values of t hese parameters with their 
estimates, provided the estimates are unbiased. 

ow we aim to write expected cost without knowing A c. T his can b e accomplished by integrat-
ing out A c in both conditional expressions. The interval (amax, H d] is subdivided into cases where 
t he entire distribution of A c falls before H d and cases where A c can fall before or after Hd· The 
integra tion is as follows: 
E(CIAc, l3a, Fa, Ft , arnax ;H d) = 

A c ::=; arnax 

arnax < A c < H d - O"aJI2 

arnax < Hd - (Ja JI2 ::=; A c ::=; Hd 

{

PAcFa + ../3pFa(Ja 
- A cFt + H dp t - v'3Ft(J a 

- A cPt + ~HdPt - v'3Pto-a 

A c ::=; arnax 
amax < A c < H d - (JaJI2 
amax < H d - (JaJI2 ::=; .4c ::=; H d 

The next st ep is to eliminat e Ac. V-Je have assumed that the two routes are complet ely un-
coordinated, and that the connecting bus could arrive at any time within one headway. \Ve now 
integra te out Ac: 



and obtain the following expected cost:

Now we can eliminate leaving us with only parameters that will be known at the time of 
decision. hd is assumed to follow a one-sided uniform distribution, with all probability density 
falling at or after the estimate. Integrating over the probability density of Hd:

Now that the true parameter values have been replaced with real-time estimates, we can solve 
for the value of amax that minimizes expected cost. This value will represent the optimal control 
action, based on the information available. We take a derivative with respect to amax:

By setting the derivative equal to 0 and solving for amax we obtain an expression for the 
maximum holding time in terms of real-time information:

By substituting this expression for amax back into expected cost, we can obtain an expression 
for expected cost in terms of the real time estimates alone:

This expression can be rearranged:
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The fraction on the first line is the deterministic component while the rest represents the added 
cost due to uncertainty. 

' ' • I ( ramax ' ' l<l • ' rHa-uav'f'i • ' E(CICJa , Pa , Pt, a11UJx, Hd, Hd) = . :lZ!i Jo (PAcPa + v3pPaila)dAc + Ja (-AcPt + 
Hd+UH 2 wun: 

HdFt - v'3Ftila)dAc + J%:- u.v'l'i( -AcFt + ~HdFt- v'3Ftila}dAc) 
and obtain the following expected cost: 

' ' • I (I 2 ' I 2 ' • I 2 ' l<l ' E(CICJa , Pa , Pt, a11UJx, Hd, Hd) = Ha+v'3uH ?.PamaxPa+7J.amaxPt-~xHdPt+'J.HdPt+v 3pamaxPaila+ 

J3amaxFtila) 
Now we can eliminate Hd , leaving us with only parameters that will be known at the time of 

decision. II d is assumed to follow a one-sided uniform distribution, with all probability density 
falling at or after the estimate. Integrating over the probability density of Hd: 

'' • Jfid+uHv'f'i I (I 2 ' 12 ' ' 12 ' E(CICJa , Pa , Pt, a11UJ.x, Hd, ilH) = Ha Ha+v'3uH d,PamaxPa + 7J.amaxPt -am=HdPt+ 'J.HdPt + 

J3amaxFaila + J3amaxFtila) ( <7H~I'J. )dHd 
we obtain the expected cost: 

E(CICJa , Pa , Pt ,a11UJx> fld , ilH) = 4 =H 1 
2 (2J3a~ax(PFa + Ft) - amax(4J3fldpt- 3pFaila-v3 a+l uH 

12Ftila + 12FtilH) + 2Ft(v'3fl;j + 6HdilH + 4v'3CJ~)) 
Now that the true parameter values have been replaced with real-time estimates, we can solve 

for the value of amax that minimizes expected cost. This value will represent the optimal control 
action, based on the information available. Vtle take a derivative with respect to a,.=: 
_ d_ E(Ci P, P, fi ) _ 2J3am.,(pP.+Ptl _ 2../3(fi4 P,+../3P,uH-../3pf'>.u. - ../3f'>,u.) 
damaz ila , a, t, Omax, d,iJH - 2(../3Ha+3uH) 2(../3Ha+3uH) 

By setting the derivative equal to 0 and solving for Omax> we obtain an expression for the 
maximum holding t ime in terms of real-time information: 

(7) 

By substituting this expression for am= back into expected cost, we can obtain an expression 
for expected cost in terms of the real time estimates alone: 

E(CICJa , Pa , Pt,a11UJx ,Hd, ilH) = S(pP.+P, )(~Ha+3uH) (4J3H;jpFaFt + 12HdFt(2Ftila + 2pFa(ila + 

iJH)) + J3( -12p2 PJ(J~ + 4??( -3CJJ + 6CJaiJH + (J~) + 8pFaFt( -3CJ~ + 3CJaiJH + 2CJ~)}) 
This expression can be rearranged: 

(8) 
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