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Abstract  

In the United States, freight railways are one of the major ways to transport goods from 

ports to inland destinations. According to an Association of American Railroad’s study, rail 

companies move more than 40% of the nation’s total freight. Given the fact that the freight railway 

industry is already running without much excess capacity, better planning and scheduling tools are 

needed to effectively manage the scarce resources, to cope with the rapidly increasing demand for 

railway transportation. 

The integration of freight train and passenger train scheduling and dispatching is an 

important railroad management task. Leveraging the current railroad trackage to meet the 

expanding demand in the future is a challenge. The objective of this project is to improve the 

efficiency of freight trains by reducing their travelling times while maintaining the punctuality of 

passenger trains. Thus, we propose a decomposition based heuristic that first minimizes the 

tardiness of passenger trains and second minimizes the travel times of the freight trains. Our 

proposed algorithm solves the routing and scheduling problem for real world size rail networks 

efficiently. 

We perform simulation experiments on an actual rail network in Southern California to test 

our proposed heuristic approach. The proposed solution reduces the average travel time of freight 

trains and reduces the average tardiness of passenger trains over other existing approaches. 
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1. Introduction 

1.1 Background 

In the United States, the rail industry has been at the forefront of economic growth. The 

freight rail industry in particular has a long history of being essential to the United States economy. 

This is not different in today’s world with freight trains accounting for about 1,800 million rail 

tons in 2014, according to the Association of American Railroads. Every year there are more than 

100 million tons of goods transferred through the Ports of Los Angeles and Long Beach. Rail 

transportation is a cost effective way to move cargo from the ports to distant inland destinations. 

According to the Association of American Railroad’s study, rail companies move more than 40 

percent of the nation’s total freight. As the total quantity of freight increases, the railroad industry 

expects further increases in demand. 

In addition, passenger train travel has also been increasing over the years. In the Los 

Angeles area Amtrak alone accounted for 1.3 million passengers in 2015. In California, Amtrak 

accounted for 814.9 million rail passenger miles. All these demands for passenger trains have even 

attracted the attention of California government officials who passed a bill to invest 42 billion 

dollars to build more railroad lines in 2008. 

Given that the freight industry is already running without much excess capacity, the 

industry has to either expand or manage its operations more efficiently. Investing in the expansion 

of the railroad network is an expensive venture. Moreover, in parts like Orange County or Los 

Angeles, this might be difficult due to space limitation. Thus, better planning and scheduling 

methodologies become an effective solution to the problems caused by increasing transportation 

demand under tight capacity constraints. 

1.2 Problem Description 

Passenger and freight train scheduling are rather different, passenger train schedules are 

relatively stable and periodic. For example, Amtrak trains from Los Angeles to San Diego leave 

at several fixed times every day. Therefore, a master schedule of the times for the passenger trains 

can be developed several months in advance. On the other hand, freight demand is less known and 
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the freight scheduling procedure can sometimes be initiated very close to the time of the departure 

of the train. 

In many regions around the world, it was uncommon for freight and passenger trains to 

share the same track resources. Therefore, the scheduling for both kinds of trains could be done 

separately without one impacting the other. However, in the United States, it is very common for 

both kinds of trains to compete for the same track resources. Furthermore, this is becoming 

increasingly common globally due to huge increases in both passenger and freight trains. 

Consequently, a good integrated schedule becomes vital in order to prevent melt-downs of the 

railroad network. Furthermore, in urban areas like Los Angeles the railroad system is extremely 

complex with single, double, and even triple track configurations, as well as high traffic zones and 

different speed limits. To complicate things even more, it is in urban areas that freight trains and 

passenger trains commonly share the same tracks. However, each type of train has different 

priorities and characteristics. For example, freight trains usually travel much slower than passenger 

trains. Furthermore, freight trains on average are much longer in length averaging from 6000 to 

8000 feet. This, as expected, can lead to passenger trains experiencing significant tardiness if 

freight trains are not scheduled effectively. Thus, to minimize train delays and maximize the 

capacity of the rail network in urban areas, it is important to integrate both passenger and freight 

scheduling. 

This report proposes an integrated scheduling methodology that accounts for both types of 

trains. We use the rail network from Downtown Los Angeles to Riverside as our test case. Figure 

1 shows the three main distinct rail lines in this corridor (the top two lines are served by Union 

Pacific and the bottom one is served by BNSF). Both Amtrak and Metrolink passenger trains 

travel through this corridor. Although our integrated scheduling methodology will be general and 

applicable to a number of rail corridors, we choose the Los Angeles to Riverside corridor as the 

test case for our methodology, since we currently have a detailed simulation model of the trackage 

configuration and data on the rail counts for the different types of trains traveling in this area.   
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Figure 1. Three Main Distinct Rail Lines in the Los Angeles Area 

1.3 Motivation  

As mentioned above, the rail industry has always been an essential part of the United States 

economy. However, in recent years, because of the increase in the demand for both passenger and 

freight trains, train operations have changed. Especially in Los Angeles, the demand for freight 

trains has steadily increased due to all the cargo coming into the Ports of Los Angeles and Long 

Beach. However, Los Angeles is a highly populated city which inhibits the railway network growth. 

This means that the demand for trains is growing at a much higher rate than what the current 

railway system can support, and there is a real need to optimize the usage of the railway network 

so that the demand can still be met so that industries in the area do not need to take their operations 

elsewhere. 

In the past, most freight train scheduling was done by human operators (dispatchers). Each 

dispatcher was assigned a section of the network that they would monitor. The dispatcher’s job 

was to assign trains a specific route and tell them if they had to decelerate, accelerate or stop, to 

prevent any collisions or failures in the network. It was then the central dispatcher’s job to correct 

any failures that might occur within sections. As mentioned before this was a viable option because 

passenger trains and freight trains typically operated at different times and their schedules did not 

conflict. However, in today’s world, because of the increasing usage of the network, more and 

more freight trains are conflicting with passenger trains. Therefore, just using a manual approach 

to dispatch trains may not lead to the most efficient schedule. Therefore, we propose an algorithm 
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that can schedule trains efficiently to maximize the usage of the network and minimize passenger 

train tardiness. 

1.4 Structure of the Report 

The rest of this report is organized as follows. In Section 2, a literature review of the 

relevant problems is presented. Section 3 formally defines the network structure and mathematical 

model. In Section 4, the proposed solution framework is presented. The experimental results of 

our solution framework are presented in Section 5. In Section 6, we discuss the implementation 

and applicability of our work. And the conclusions are drawn in Section 7. 
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2. Literature Review  

There have been several survey papers that focus on different aspects of the rail scheduling 

problem. Cordeau et al. (1998) surveyed optimization models for the train routing and scheduling 

problem. Caprara et al. (2006) gave a review of strategic, tactical and operational level’s decision 

models for passenger trains. Lusby et al. (2011) reviewed different models and approaches for the 

train timetabling, train dispatching and train routing problem. This review was grouped into single 

track network models, general network models and junction routing models. More recently, Harrod 

(2012) surveyed the train timetabling problem. This survey was organized by problem features 

(aperiodic or periodic, explicit track infrastructure modeling or not, etc.). 

One of the earliest works dates back to Szpigel (1973), where the author related the train 

scheduling problem on a single track with the job shop scheduling problem. A branch and bound 

algorithm was proposed to solve this problem. Also experiments were conducted on a single track 

line with five track sections and ten trains. 

Jovanovic and Harker (1991) investigated the railway network with two stations with a 

lane connecting them and meet points along the lane, where trains can wait, overtake or be 

overtaken. Arrival and departure times at meet points together with a sequence of trains at meet 

points were introduced as decision variables to formulate a Mixed Integer Programming (MIP) 

problem. 

Brannlund et al. (1998) formulated a different model for the single track line scheduling 

problem by discretizing the time periods. Decision variables were indexed by train, track block 

and time period to indicate that the train occupied the track block at that time. Then a Lagrangian 

relaxation approach was used to solve the binary integer programming model. Experiments 

performed on the railway track in the middle of Sweden showed that near optimal schedules were 

obtained. 

Both Jovanovic and Harker (1991) and Brannlund et al. (1998) deal with a single track line 

railway system. Even though the railway infrastructure is simple, the two models proposed laid 

the foundation for problems with complex structure and formed two main streams of formulating 

the train scheduling problem. The main difference between them is that in the model originated 
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from Jovanovic and Harker (1991) times at control points are decision variables. While in the other 

stream, time is discretized to form a time-space graph. Much research has been done to modify, 

expand and improve these two basic models. 

In the first stream, times at control points are decision variables. Carey and Lockwood 

(1995) considered the train timetabling problem for an one-way single line railway system, where 

the decision variables include arrival and departure times at each station and the trains’ passing 

order at each station. They also proposed heuristic strategies to solve the formulated Mixed Integer 

Programming (MIP) problem. Carey (1994a) extended the model from one-way single line system 

to a more complex railway system containing multiple railway lines and station platforms. On the 

other hand Carey (1994b) extended the one-way single track line model to a two-way single line 

model. 

Higgins (1996) proposed a similar MIP formulation to minimize the sum of the weighted 

delays for each train and the operating cost. Also a branch and bound schema is proposed to solve 

the MIP, where the lower bound of the optimal solution is estimated through the remaining 

overtake and crossing delay, in order to reduce the search space in the branch and bound procedure. 

Dessouky et al. (2006) also proposed a MIP formulation to minimize the sum of all the 

trains’ arrival times to their destinations. Then a branch and bound scheme, which is based on the 

idea of fixing the sequence of all the trains passing the same node step by step, is introduced. 

Numerical experiments are conducted on a complex rail network with comparison between the 

proposed branch and bound scheme and the CPLEX solver. 

Zhou and Zhong (2007) presented a branch and bound procedure to solve the train 

scheduling problem for a single track line system. In the branching step, they showed that the 

subproblem can be solved as the longest path problem to determine the earliest start times for each 

train in different segments. Then for the bounding step, several methods to obtain lower bounds 

and upper bounds of the optimal solution are proposed. First, a Lagrangian relaxation lower bound 

is obtained by taking the dual of the relaxation problem. Then another way of obtaining a lower 

bound is introduced based on the idea of ignoring the existing train conflicts and the potential 

conflicts generated in the future. To obtain an upper bound, a beam search algorithm is introduced, 
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where only a certain number of search nodes are kept at each level. Numerical experiments show 

that the lower bounds and upper bounds can reduce the computation time. 

Mu and Dessouky (2011) considered the freight train scheduling problem for a complex 

railway network, where each train may have multiple feasible paths to take. Therefore another 

binary variable indicating which path to take is introduced to obtain the flexible path formulation. 

Several heuristic algorithms are proposed to solve the formulated MIP. An intuitive heuristic, 

which reduces the search space by eliminating “bad” paths, is introduced. Then a genetic algorithm 

with paths as genes is discussed. Also divide and conquer based heuristics, which either divide up 

the railway network or group trains into different clusters, are investigated. All the proposed 

heuristics are compared with a simple look-ahead greedy heuristic and a global neighborhood 

search heuristic through numerical experiments. 

Louwerse and Huisman (2014) considered the problem of adjusting the timetables for 

passenger trains when railway track disruptions happen. The problem is formulated using an event-

activity network. The set of events consists of the arrival and departure events at the stations and 

of inventory events. The set of activities consists of train activities, headway activities and 

inventory activities. An Integer Programming (IP) formulation is proposed to decide which trains 

to cancel and generate a new timetable for the remaining trains with the objective of minimizing 

the number of cancelled trains and total delay. Numerical experiments are also conducted for the 

Netherlands Railway system. 

Meng and Zhou (2014) investigated the problem of rescheduling and rerouting trains 

simultaneously on an N-track rail network. A Mixed Integer Programming (MIP) model is 

formulated to minimize the deviation between the actual arrival time and the planned arrival time. 

A Lagrangian relaxation schema is proposed to solve the formulated problem, where a label 

correcting algorithm for the time-dependent shortest path problem is used to solve the routing 

subproblem in a time-space network. Comparison between the proposed method and a sequential 

scheduling framework is analyzed through numerical experiments. 

In the second stream a time-space graph is constructed and utilized. Capara et al. (2002) 

considered the train timetabling problem for an one-way single line railway systems. Time is 

discretized so that a time-space graph is formed where nodes in the graph correspond to 
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departures/arrivals at a certain station at a given time instant. Then an integer linear programming 

(ILP) problem is formulated to maximize the sum of the profits of the scheduled trains. A 

Lagrangian relaxation problem is formulated and a subgradient optimization is proposed to obtain 

near-optimal solutions. A heuristic based on the idea of ranking the trains by decreasing the values 

of the Lagrangian profit is also proposed to solve the problem. 

Capara et al. (2006) extended the previous model by introducing several practical 

constraints such as manual block signaling between two consecutive stations, maximum number 

of trains that can be present in a station at the same time, prescribed timetable for a subset of the 

trains and maintenance operations which keep a track segment occupied for a certain period. 

Cacchiani et al. (2010) considered the problem of inserting new freight trains into a railway 

system where the passenger trains have prescribed timetables. An ILP is formulated with the 

objective to assign as many new freight trains as possible and also to make their timetables as close 

as possible to the ideal timetables. A similar Lagrangian relaxation method to Capara et al. (2002) 

is used and numerical experiments are conducted on large instances to show the efficiency of the 

proposed method. 

Recently, another method of modeling called alternative graph, which can be traced back 

to Mascis and Pacciarelli (2002), has been developed. In the alternative graph, a set of pairs of 

directed arcs is specified such that at most one arc from each pair can be selected.The alternative 

graph is used to solve the train conflict detection and resolution (CDR) problem, where the order 

of passing one track for two trains is modeled as two alternative arcs in the constructed alternative 

graph. 

Mazzarello and Ottaviani (2007) extended the alternative graph model by considering 

constraints imposed by the real railway environment. The blocking constraint denotes that a train 

travelling on a block remains on it until the next block is available. Other constraints in train 

scheduling are also taken into consideration. The minimum speed constraint enforces that a train 

must travel at a speed not less than a given speed. The passing constraint imposes a train to pass 

through a node only after a given time. The minimum dwell time and minimum connection time 

constraints make sure there is at least a certain time between two train operations. The out of order 
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constraint deals with the scenario where a block is unavailable for a certain time interval. The 

precedence constraint enforces that one train has higher priority than another train. 

D’Ariano et al. (2007) considered the problem of obtaining a new conflict-free timetable 

when train operations are perturbed. They presented a branch and bound procedure to solve the 

conflict resolution problem using an alternative graph model, where the upper bound in the branch 

and bound procedure is obtained by the best value among three heuristics. The first heuristic is to 

apply a First Come First Serve (FCFS) rule and the second is to apply a First Leave First Serve 

(FLFS). The third heuristic is a greedy algorithm in which each time chooses the pair of unselected 

alternatives with the best value and therefore increases the size of the solution iteratively. 

Corman et al. (2010) took advantage of the tabu search heuristic to improve the solution 

quality and computation time for the train conflict detection and resolution problem. Three 

neighborhood structures for the tabu search are considered. The first is the complete neighborhood 

containing all the feasible solutions in which only one train follows a different route compared to 

the incumbent solution. The second is a subset of the first neighborhood with the constraints that 

trains must have one operation in a backward ramified critical path set (BRCP). The third 

neighborhood structure extends the second one by considering also the forward ramifications. 
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3. Problem Statement and Formulation  

The objective is to integrate passenger and freight rail scheduling when they share the same 

trackage to improve the efficiency of freight trains by reducing their travel times while maintaining 

the punctuality of passenger trains in the same railway network. This objective can be optimized 

by controlling three kinds of decision variables: 

1.  Routing decisions: The sequence of track segments that each train travels through. 

2.  Arrival/Departure time decisions: The time that each train arrives/departs at each track 

segment. 

3.  Priority decision: If two or more trains travel on the same track segment, the priority on 

which train seizes the track segment first. 

Considering the structure of a general railway network and the characteristics of the train 

movement process, the control variables have to be feasible in two aspects: 

1.  The routes between any two trains should be deadlock free. Deadlock can happen when 

two or more trains travelling opposite directions request the same resource at the same time. 

2.  Between any two trains, a minimum safety headway should be guaranteed. 

We quantify the freight train efficiency by its travel time, and the passenger train 

punctuality by its tardiness at its station stops. The freight train travel time is directly related to its 

delay since delay is typically defined as the difference between the actual travel time when there 

are other trains in the rail network and its free flow travel time when there are no trains in the 

network. Passenger train tardiness is defined as the difference between its actual arrival time and 

scheduled arrival time if the actual arrival is later than the scheduled arrival, else it equals to zero. 

Intuitively, these two performances are competing with each other since freight trains and 

passenger trains share the same track resources. 

This section first presents the model representation of a generic complex railway network. 

The abstract network model structure inherits the idea from Dessouky and Leachman (1995) and 

Lu and Dessouky (2004), which can be used to model a general railway network including single-

track lines, double-track lines and triple-track lines. Corresponding to the model structure, the train 

information consists of origin and destination, speed limit, length and timetable if it is a passenger 
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train. Then we present the mathematical formulation of the model. In order to effectively model 

and solve this train routing and scheduling problem, we setup metrics to evaluate the freight trains’ 

travel time and the passenger trains’ tardiness. We model it as a bi-objective optimization problem, 

with a set of constraints that guarantee traffic flow conservation, travel time feasibility and a safety 

headway between the trains. 

3.1 Network Construction 

To describe the problem using a mathematical model, the actual network should be 

translated to an arc based network. The actual railway network consists of tracks, sidings, junctions, 

and platforms. According to their characteristics, we classify the network into two resources: track 

segments and rail junctions. Track segments are basically segments of track which can be travelled 

by a train. Rail junctions are used for train crossover movements between track segments. A track 

segment is a minimum unit in the network, and each segment is represented as a unique resource 

with one unit of capacity. A rail junction is also represented as a resource with one unit of capacity. 

By the definition of unit capacity, each segment and each junction can be occupied by at most one 

train at any time. Here we present the characteristics of the track segments: 

a) Each segment has a fixed speed limit. A train follows the minimum of the speed limit of the 

track segment and the maximum speed of the train. Each junction also has a fixed speed limit 

(usually smaller) which forces trains to slow down to guarantee a safe switching between 

segments. Note that the speed limits of consecutive segments are not necessarily the same. 

Speed limits at stations and curve segments are generally lower. 

b)  Segments are defined between junctions, which means that there are no junctions that exist 

within a segment. According to this rule, the simplest way to divide the network is to break it 

down at all the junctions, and to treat the track between the two junctions as a segment. But 

this division oversimplifies the network and usually breaks rule (a), because of various speed 

limits between the two junctions. A more precise division is to break down the network into 

segments at speed limit changing points. However, a long segment with a constant speed limit 

would be a waste of the track resource since we assume each segment only has capacity for 

one train. Therefore, the headway distance between trains would be too large when the segment 

is too big, which decreases the total capacity of the railway network. Thus, we restrict the 
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length of a segment as no longer than the maximum train length to minimize the unnecessary 

headway between the trains. A train, however, can occupy several segments simultaneously. 

As an illustration of the track segment characteristics, Figure 2 shows a small sample 

railway network. 

Figure 2. Sample Railway Network Trackage 

To translate the sample railway network into our network structure, the rail track is first 

divided into segments according to the segment characteristics as previously defined. According 

to our representation, the track segment division is shown in Figure 3. In Figure 3, the network is 

divided into 12 segments. For example, B-D is a track segment. 
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Figure 3. Sample Railway Network 

The network we use is an arc based graph. The basic components of the network are nodes 

and arcs.  

Node: Each node defines a combination of one or more contiguous segments. The node is 

the basic component of a complete route, which means that it might contain junctions within it. 

Note that the railway network itself is an undirected graph, so a track could be entered in any 

direction. However, given the running direction of a train (e.g., westbound or eastbound), some of 

the nodes are not enterable. For example, in Figure 3, movements C—F—J—K and D—E—P— 

L are allowed, but movement P—E—I—H is not allowed. Hence each node is assigned two ports 

indices, which indicates the entering direction. The two ports are indexed by 0 and 1 respectively. 

Port 0 is the starting point of travel for a train moving in the node from one direction. Port 1 is the 

starting point of travel in the opposite direction. 

Arc: Arcs are connections between the nodes, and they represent the movement of trains 

between nodes. Depending on the way we divide the track into segments, the arc may be a junction 

or not. Arcs are undirected and have zero length. Therefore, the total travel distance of a train 
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equals to the sum of the length of all the nodes that it visits. Sometimes nodes are connected by 

arcs without junctions. The reason is that if we divide the segment into too few nodes, it generates 

unnecessary spacing between the trains, since only one train can travel on a node at any time. 

Resource: From a modelling point of view, track segments and junctions are represented 

as a resource in the system, which are utilized by the train entity. A junction itself is a resource. A 

node may contain several continuous segments, and each is represented as a resource. The distance 

of a resource on the node is marked as (൒േ, ൒ൈ), where ൒േ is the distance from the end of the 

segment to port 1, and ൒ൈ is the length of the segment. Each resource has a speed limit, but the 

speed limit of the junction is not necessarily applied for a train, which depends on whether or not 

the train utilizes the junction for crossover. In Figure 3, the resource of junction JC_5 is not utilized 

by the train travelling along E—I—H, since the train does not use the junction for crossover. 

However, the resource of junction JC_5 is utilized by the train travelling along K—J—I—H. To 

differentiate these two cases, the resource is marked with a * after the resource name if the junction 

is needed for the train to pass it, but the speed limit of the junction is not applied since it is not 

used for crossover. 

Based on these definitions, the sample rail network is translated into an abstract graph as 

shown in Figure 4. There are 11 nodes in the abstract graph, and each node contains one or more 

track segments and junctions. For example, node N1 contains one segment A—C, node N5 

contains two segments F—O and O—G, node N7 contains segment H—I and junction JC_5. A 

track segment can be included in multiple nodes. For example, track segment H—I is included in 

nodes N6 and N7. In the abstract graph, the advantage of defining ports on a node is shown. Train 

movement PEIH is not allowed in reality, and in our abstract graph, the movement of 

N8N4N6 is not allowed since the entering port of N8 is 1 and the entering port of N6 is 0. 

22  



 
 

 

   

   

         

            

          

       

   

   

Figure 4. Abstract Graph of Sample Network 

3.2 Train Movement Process 

The proposed network structure allows for flexible train routing. There are multiple 

feasible routes for each origin – destination pair. The travel time along the route is influenced by 

the length and speed limit along the route. The acceleration and deceleration rates of trains may 

also be considered. In a pre-defined route, the travel time for a train can be expressed as the sum 

of the travel time of the nodes in the route. We next discuss how to compute the travel time of a 

train on its route. 
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During the movement of a train on a node, the length of the train itself is non-negligible 

because of the division rule of the network. Therefore, the movement of a train cannot be viewed 

as the movement of a single point. We define three time variables to indicate the position of a train 

on a node. 

a)  Arrival time at the beginning of a node: The time when the head of train ൟ arrives to the 

beginning of node ൗ is denoted as ൢ෶෦ෳ෮. 

b)  Arrival time at the end of a node: The time when the head of train ൟ arrives at the end of node 

ൗ is denoted as ൢ෶෦ෳ෮൐േ. 

c)  Departure time at the end of a node: The time when the tail of train ൟ departs from the end of 

node ൗ is denoted as ൢ෶෩ෳ෮. 

Figure 5. Arrival and Departure Time in Train Movement 

Figure 5 gives an example of these time points when a train is travelling through a node. 

Note that the time points cannot be precisely predicted in advance, because of the congestion of 

traffic. To evaluate the time that a train spends on a node, we define two measurements. 

േ ෦ ෦ശ෶ෳ෮ ൞ ൢ෶ෳ෮൐േ ൘ ൢ෶ෳ෮ 
ൈ ෩ ෦ശ෶ෳ෮ ൞ ൢ෶ෳ෮ ൘ ൢ෶ෳ෮ 

The related constraints are that the departure time from a node should not be earlier than 

the arrival time plus the node travel time. The minimal travel time should be estimated so that the 

constraints can guarantee the relationship between the arrival and departure times. 

The travel time on a node depends on the entering speed ൤෮൑േ and exiting speed ൤෮. These 

two speeds are related to the state of the train on the preceding and succeeding nodes, which are 

further dependent on the neighboring nodes. In the problem we are studying, trains have flexible 
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routes. Without knowing the complete route, it is difficult to know the entering speed and exiting 

speed. To get a lower bound on the travel time, we approximate the travel time to make it 

independent of the entering/exiting speeds. Here we present our estimation methods, which 

assumes infinite acceleration and deceleration rates. 

Under this assumption, the speed of a train can shift to a new speed limit as soon as the 

speed limit changes. This gives the linear travel time with respect to the length of each segment 

and train length. Denote the maximum speed of the train as ൚െ, and length of the train as ൡെ. Assume 
෫that there are ൜෮ track segments in node ൗ, each track segment has a speed limit of ൚෰ෳ෮, and has 

෫length of ൡ෰ෳ෮ෳ ൙ ൞ අ෷൜෮ . The effective speed limit of segment ൙ on node ൗ is denoted as ീ෰ෳ෮ ൞ 
෫

ඡඝජ(൚෰ෳ෮ෳ ൚െ) ෳ ൙ ൞ අ෷൜෮ . The succeeding node of node ൗ is node ൘, and the speed limit of the first 

segment on node ൘ is ൚േෳ෯. Note that a node could have multiple succeeding nodes on different 
ൈ ൈ ൈ ැාroutes and ശ෶ෳ෮ depends on ൚േෳ෯, so we modify ശ෶ෳ෮ to be ശ෶ෳ෮ෳ෯, and add a dummy end node ෶ൂ 

after the last node on the route. The dummy end node has equal length to train ൟ with a speed limit 

equal to the speed limit of the last segment of the previous node. We then have the following 

equations. 
෣
ෳ෦ 

ശ෶
േ
ෳ෮ ൞ ∑ 

ൡ෰ෳ෮ 
ീ෰ෳ෮ 

൙൞අ 

ൈ േ
ൡെ

ശ෶ෳ෮ෳ෯ ൞ ശ෶ෳ෮ ൗ 
ඡඝජൌ ൚േෳ෯ෳ ൚െ് 

3.3 Optimization Model 

We formulate the model as a mixed integer programming problem, which extends the 

model structure from Dessouky et al. (2006). In their model, only freight trains are considered and 

the objective is to only minimize the travel time for the freight trains. The objective of our model 

is to minimize the sum of the freight trains’ travel time, and the sum of the passenger trains’ 

tardiness at all the stations. We now formally introduce the notation of the model: 
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N Node set of network 

൅෫ Set of freight trains 

൅෵ Set of passenger trains 

൅ ൞ ൅෫ ෽ ൅෵ Set of trains, including freight and passenger trains 

෶ൃ The origin node of train ൟ’s schedule 

സ෶ The destination node of train ൟ’s schedule 

േ෶ The set of station stop nodes along passenger train ൟ’s schedule, including 

origin and destination 

෶ൂ
ැා The auxiliary dummy end node after destination സ෶ 

ൈ෶ෳ෸ The scheduled arrival time of passenger train ൟ at node ൡ which has a 

passenger station stop  

ൈැ The end time of daily operation, which is set to be 23:59  

෶ Minimum safety headway between trains  

ു A sufficiently large number  
෦ൢ෶ෳ෮ The arrival time of train ൟ to node ൗ  
෩ The departure time of train ൟ from node ൗ ൢ෶ෳ෮ 

ഽ෶ෳ෮ෳ෯ Binary variable to indicate if train ൟ travels from node ൗ to node ൘ 

൦෶ിෳ෶ീෳ෮ Binary variable to indicate if train ൟേ passes node ൗ before train ൟൈ 

There are three sets of decision variables in the model: ൢ෶෦ෳ෮ and ൢ෶෩ෳ෮ are referred as the time 

decisions. ഽ෶ෳ෮ෳ෯ are referred as the route decisions and ൦෶ിෳ෶ീෳ෮ are referred as the priority decisions. 

The time decisions are related to the time that each train enters or exits the nodes, the route 

decisions are the set of nodes that each train uses, and the priority decisions are the sequence of 

trains traveling on each node. 

The flexible route assumption in our model enables the trains to travel through multiple 

routes in the network. For each node along the route, there is a set of decision variables associated 

with it. The size of the problem grows with the number of nodes. However, given the origin station, 

destination station and running direction, some of the nodes in the network are not reachable. 

Before we formulate the complete model, we deploy a route elimination for each train. Note that 

now the graph is acyclic directed, so we can use a tree searching algorithm such as breadth first 
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search or depth first search. The route elimination step returns the subset of the candidate nodes, 

which are reachable for each of the trains. For each node in the reduced node set, the succeeding 

and preceding node sets are also known. The reduced node set for train ൟ is denoted as ෶ൂ෹, and the 
෸෺෨ ෵෷෪ succeeding and preceding node sets are ෮ൂෳ෶ and ෮ൂෳ෶ for ൗ ෢ ෶ൂ෹. Similarly, ഽ෶ෳ෮ෳ෯ and ൦෶ിෳ෶ീෳ෮ are 

also defined only within the reduced node set of each train. After the route elimination, the size of 

the problem can be significantly reduced. Corresponding constraints can be defined only on the 

reduced node set. Our optimization model is presented as follows. 

Objective function: 

෦ ෦ൃ൐൘අ෵ ඡඝජ ∑ ൌൢ෶ෳා෮ ൘ ൢ෶ෳේ෮് 
෶෢ො෣ 

ൃ൐൘ආ෵ ඡඝජ ∑ ∑ ඡඕඬൌൢ෶෦ෳ෸ ൘ ൈ෶ෳ෸ ෳ඄് 
෶෢ො෭ ෸෢ෞ෮ 

Subject to: 

∑ ഽ෶ෳේ෮ෳ෯ ൞ අෳ ොൟ ෢ ൅ ൌආ് 
෰ෲ෠ ෯෢ෙි෮ෳ෮ 

∑ ഽ෶ෳ෮ෳා෮ ൞ අෳ ොൟ ෢ ൅ ൌඇ് 
෭෯෢ 

෮෢ෙ෇෮ෳ෮ 

∑ ഽ෶ෳ෸ෳ෯ ൞ අෳ ොൟ ෢ ൅෵ෳ ൡ ෢ േ෶൅ൎ ෶ൃෳ സ෶൏ ൌඈ് 
෰ෲ෠ ෯෢ෙ෰ෳ෮ 

∑ ഽ෶ෳ෮ෳ෯ ൞ ∑ ഽ෶ෳ෯ෳ෰ ෳ ොൟ ෢ ൅ෳ ො൘ ෢ ෶ൂ෹ ൌඉ് 
෭෯෢ ෰ෲ෠ 

෮෢ෙ
෧ෳ෮ 

෰෢ෙ෧ෳ෮ 

෦ ෦ േ ෸෺෨ (අ ൘ ഽ෶ෳ෮ෳ෯)ു ൗ ൢ෶ෳ෯ ൘ ൢ෶ෳ෮ ≥ ശ෶ෳ෮ෳ ොൟ ෢ ൅ෳ ൗ ෢ ෶ൂ෹ෳ ൘ ෢ ෮ൂෳ෶ ൌඊ് 

෩ ෩ േ ෸෺෨ (අ ൘ ഽ෶ෳ෮ෳ෯)ു ൗ ൢ෶ෳ෯ ൘ ൢ෶ෳ෮ ≥ ശ෶ෳ෯ෳ ොൟ ෢ ൅ෳ ൗ ෢ ෶ൂ෹ෳ ൘ ෢ ෮ൂෳ෶ ൌඋ് 

෩ ෦ ൈൢ෶ෳා෮ ൘ ൢ෶ෳා෮ ≥ ശ
෶ෳා෮ෳෙ෮

෈෇ ෳ ොൟ ෢ ൅ (8) 
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෩ ෦ ൈ േ ෸෺෨ (අ ൘ ഽ෶ෳ෮ෳ෯)ു ൗ ൢ෶ෳ෮ ൘ ൢ෶ෳ෯ ≥ ശ෶ෳ෮ෳ෯ ൘ ശ෶ෳ෮ෳ ොൟ ෢ ൅ෳ ൗ ෢ ෶ൂ
෹ෳ ൘ ෢ ෮ൂෳ෶ ൌඍ് 

෦ ෩ ෹ ෹(අ ൘ ൦෶ിෳ෶ീෳ෮)ു ൗ ൢ෶ീෳ෮ ≥ ൢ෶ിෳ෮ ൗ ෶ෳ ොൟേෳ ൟൈ ෢ ൅ෳ ൗ ෢ ෶ൂി ෼ ෶ൂീ ൌඅ඄് 

෦ ෩(ආ ൘ ∑ ഽ෶ിෳ෮ෳ෯ ൘ ∑ ഽ෶ീෳ෮ෳ෰) ു  ൗ ൦෶ിෳ෶ീෳ෮ു ൗ ൢ෶ിෳ෮ ≥ ൢ෶ീෳ෮ ൗ ෶ෳ 
෰ෲ෠ ෰ෲ෠ ෯෢ෙ෦ෳ෮ി ෰෢ෙ෦ෳ෮ീ  

෹ ෹ ොൟേෳ ൟൈ ෢ ൅ෳ ൟേ ൟ ൟൈ ෳ ൗ ෢ ෶ൂി ෼ ෶ൂീ ൌඅඅ് 

෹ ෹൦෶ിෳ෶ീෳ෮ ≤ ∑ ഽ෶ിෳ෮ෳ෯ ൗ ∑ ഽ෶ീෳ෮ෳ෰ ෳ ොൟേෳ ൟൈ ෢ ൅ෳ ൟേ ൟ ൟൈ ෳ ൗ ෢ ෶ൂി ෼ ෶ൂീ ൌඅආ് 
෰ෲ෠ ෰ෲ෠ ෯෢ෙ෦ෳ෮ി ෰෢ෙ෦ෳ෮ീ 

ൢ෶
෦
ෳේ෮ ≥ ൈ෶ෳේ෮ෳ ොൟ ෢ ൅෵ (13) 

෦ൢ෶ෳා෮ ≤ ൈැෳ ොൟ ෢ ൅ ൌඅඈ് 

ൢ෶
෦
ෳ෮ ≥ ඄ෳ ොൟ ෢ ൅ෳ ൗ ෢ ෶ൂ෹ ൌඅඉ് 

ൢ෶
෩
ෳ෮ ≥ ඄ෳ ොൟ ෢ ൅ෳ ൗ ෢ ෶ൂ෹ ൌඅඊ് 

෹ ෹൦෶ിෳ෶ീෳ෮ ෢ ൎ඄ෳඅ൏ෳ ොൟേෳ ൟൈ ෢ ൅ෳ ൟേ ൟ ൟൈ ෳ ൗ ෢ ෶ൂി ෼ ෶ൂീ ൌඅඋ് 

෹ෳ ෸෺෨ ഽ෶ෳ෮ෳ෯ ൞ ൎ඄ෳඅ൏ෳ ොൟ ෢ ൅ෳ ൗ ෢ ෶ൂ ൘ ෢ ෮ൂෳ෶ ൌඅඌ് 

The bio-objective function minimizes both the total travel times for the freight trains (Obj1) 

and the total tardiness for the passenger trains (Obj2). Constraints (2) - (3) ensure the route of a 

train has to start from the origin node and end at the destination node. Constraints (4) state that 

passenger trains have to visit their intermediate station stops. Constraints (5) guarantee the flow 

conservation on each node. Constraints (6) – (8) ensure the minimum travel time on each node. If 

the train encounters any waiting such as congestion, the travel time is greater than the minimum 

travel time which is the free flow travel time. Constraints (9) ensure the minimum travel time for 

a train to completely clear the occupation of the current node. Constraints (10) – (11) are the 

deadlock avoidance mechanism that keeps the distance between the trains to be above the 

minimum safety headway. Constraints (12) force ൦෶ിෳ෶ീෳ෮ ൞ ඄ when both trains ൟേ and ൟൈ do not 
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travel on node ൗ. Constraints (13) state that the departure time of a passenger train from the origin 

station can not be earlier than the scheduled departure time. Constraints (14) ensure that the train 

reaches its destination within the daily operation horizon. Constraints (15) – (18) are the domain 

constraints for the decision variables. 

The problem is hard to solve in two aspects: One is that it is a bi-objective problem, and 

conflicts occur between freight trains and passenger trains when they request the same track 

resources. A balance has to be made when resources are allocated. In this study, we assign weights 

to each of the objectives and optimize the weighted objective. The other difficulty comes from the 

scalability of the problem. The number of integer variables ൦෶ിෳ෶ീෳ෮ exist for every pair of trains on 

every node and the number of integer routing variables explodes as the size of the rail network 

grows, especially with additional junctions. The exponential growth in the number of integer 

variables also makes real size problems computationally hard to solve optimally. Thus, we propose 

a decomposition based solution procedure that vertically decomposes the original problem and 

then deploys either optimization or heuristic techniques on each of the subproblems. 
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4. Solution Procedure  

For a general railway network, the optimal dispatching time is an NP-hard problem (Lu 

and Dessouky, 2004). Recall the three decision variables (times, routes and priorities) are 

computationally hard to solve simultaneously. Thus we develop a heuristic algorithm that 

decomposes the problem into subproblems to solve problems of realistic size. In Figure 6, the 

overall logic of the heuristic algorithm is presented. 

Figure 6. The Flow Chart of the Solution Procedure 
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The algorithm we propose is based on a two-step decomposition of the original problem. 

The first decomposition is train based, which decomposes the problem into a subproblem 

containing only decisions for passenger trains and a subproblem containing only decisions for 

freight trains. The second decomposition is route based, which decomposes the freight train 

subproblem into another set of subproblems and solves the priority variable for each route. 

Specifically, the algorithm is as follows. First, passenger trains are scheduled together by solving 

three subproblems, which are passenger train priority assignment subproblem in Step 1, passenger 

train routing subproblem in Step 2 and passenger train departure time subproblem in Step 3. The 

heuristic algorithms for these subproblems are presented in Section 4.1. Second, freight trains are 

scheduled sequentially according to a predefined scheduling order, and the freight train scheduling 

order is defined in Step 4. For each of the freight trains, the k-best routes are identified based on 

the current traffic condition, which is implemented in Step 5. Each of the routes are then evaluated 

with the best priority assignment in Step 6. After the priority assignment of the freight train, the 

departure times of all the passenger and freight trains are updated by solving a linear programming 

problem in Step 7. The details of the freight train scheduling subproblem are presented in Section 

4.2. 

In summary, our algorithm employs a decomposition based hybrid heuristic. First, the train 

schedules are vertically decomposed into two phases, passenger train scheduling and freight train 

scheduling. In the passenger train scheduling phase, only the objective related to passenger 

tardiness is considered. In the freight train scheduling phase, the weighted objective is considered 

and we solve the scheduling of freight trains in an iterative approach. We update the passenger 

train schedules to reduce the freight train travel time if the weighted objective can be improved. 

4.1 Passenger Train Scheduling 

The objective of this step is to construct a schedule such that there is no tardiness for any 

passenger train at any station if possible. We maximize the earliness of passenger trains in order 

to maximize the slack when freight trains are scheduled later. The earliness of a passenger train is 

defined as the difference between the actual arrival time and the scheduled arrival time. Note that 

the earliness is negative when a train is tardy. 
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First, we construct a Max-Min Earliness subproblem related to passenger trains. The 

objective of this problem is to construct the routes and priorities of passenger trains such that the 

minimum earliness of the passenger trains in each of the stations is maximized, thus making 

passenger trains arrive as early as possible. Here maximizing the minimum earliness is preferred 

rather than maximizing the sum of the earliness, because the former gives a relatively uniform 

earliness, thus avoiding an unbalanced schedule in terms of on-time performance. The 

mathematical formulation is expressed as follows. 

Subproblem-1: 

Objective function: 

ඡඕඬ ඡඝජ ൈ෶ෳ෸൘ൢ෶෦ෳ෸
෶෢ො෭ෳ෸෢ෞ෮ 

Subject to: 

Constraints (2)-(18) are from the original problem in which only the passenger train set ൅෵ is 

considered. 

4.1.1 Passenger Train Priority Assignment 

To solve the Max-Min Earliness Subproblem-1, we first identify some heuristic rules to 

solve for the priority decision variables. Since the routes of the passenger trains are flexible, the 

heuristics rules for priority assignment should be general such that they can fit any of the routes 

for each passenger train. We propose four priority assignment heuristic rules and compare them 

through experiments. 

Priority Assignment I: An intuitive assignment rule to make for the priority decision is to follow 

the timetable order, which means that the train with an earlier scheduled departure time should 

have a higher priority compared to another train with a later scheduled departure time at all the 

nodes along the routes. This method works fine when the schedules are less dense. However, in 

general, there are drawbacks when we directly deploy this method. The actual departure time is 

unknown. The timetable only shows the scheduled departure time, but the actual departure time is 

not guaranteed to be on-time because of congestion. When a late departure occurs but priority is 

still assigned based on the timetable, it tends to make some trains become very tardy. 
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Priority Assignment II: Another assignment rule is to estimate the arrival time of the train at the 

nodes along its route, and allocate the track resources to trains on a first-come-first-serve (FCFS) 

order. Train ൟ’s earliest possible arrival time at some node ൗ in its routes is calculated as follows. 

The complete candidate routes set for train ൟ is െ෶. We denote ൢ෶෦ෳ෮ෳ෷ as the arrival time of train ൟ 

at node ൗ through route ൠ. In route ൠ, the node set before node ൗ is denoted as ෶ൂ෨ෳ෮ෳ෷. 

Objective function: 

ඡඝජ ൈ෶෦ෳ෮ 

Subject to: 

෦ൢ෶ෳේ෮ෳ෷ ≥ ൈ෶ෳේ෮ෳ ොൠ ෢ െ෶ ൌඅඍ് 

෦ ෦ േ ෨ൢ෶ෳ෯൐േෳ෷ ≥ ൢ෶ෳ෯ෳ෷ ൗ ശ෶ෳ෯ෳ ො ൘ ෢ ෶ൂෳ෮ෳ෷ෳ ൠ ෢ െ෶ ൌආ඄് 

ൈ෶
෦
ෳ෮ ≥ ൢ෶෦ෳ෮ෳ෷ෳ ොൠ ෢ െ෶ ൌආඅ് 

The priority at node ൗ is then based on the ranked order of ൈ෶෦ෳ෮ from smallest to largest for 

all ൟ. Since the actual departure time and traffic congestion is unknown, the arrival time at any 

given node cannot be precisely estimated. The solution to the problem gives us the earliest arrival 

time ൈ෶෦ෳ෮ under an arbitrary route, with the assumption of an on-time departure and zero congestion 

(free flow travel time). If the candidate route sets for trains are disjoint in time and space, this 

assignment rule works fine because the FCFS rule allocates the track resources to trains as early 

as possible. This would lead to passenger train running times to be greatly reduced; however, this 

assignment rule does not consider the anticipated tardiness of passenger trains at its next station. 

Intuitively, some of the tardiness can be avoided if a higher priority is assigned along the route of 

a tardy passenger train. 

Priority Assignment III: In this assignment rule, we assign the priority according to the minimal 

anticipated tardiness at the next station. The minimal anticipated tardiness can be solved through 

a similar model as in Priority Assignment II, with only a slight transformation. We denote the 
෹ ෹ ෦ ෧ ෧minimal anticipated tardiness of train ൟ at node ൗ as ൈ෶ෳ෮, where ൈ෶ෳ෮ ൞ ൈ෶ෳ෮ ൗ ൈ෶ෳ෮ෳ෸ ൘ ൈ෶ෳ෸. ൈ෶ෳ෮ෳ෸ is 

the shortest free flow travel time of train ൟ from node ൗ to node s that contains the next station and 
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ൈ෶ෳ෸ is the scheduled arrival time at ൡ. Note that if the train is early, the anticipated tardiness value 

is defined to be negative. The priority is then based on the ranked order of ൈ෶෹ෳ෮ from largest to 

smallest for all ൟ at node ൗ. The advantage of this assignment rule is that it directly takes the 

anticipated tardiness into account. The disadvantage is that the tardiness measure is very sensitive 

to the time estimation. If the time estimation is not accurate, trains may unnecessarily be held back. 

Priority Assignment IV: In most of the cases, the FCFS rule in Priority Assignment II minimizes 

the waiting times of the trains. However, when some of schedules are tighter than the others, 

Priority Assignment III considers the tardiness and increases the priority of trains that are running 

late. A hybrid assignment rule is to combine Priority Assignment II and Priority Assignment III. 

This priority assignment is based on the weighted average of the arrival time and the anticipated 

tardiness. We assign priority mainly according to a FCFS rule, but when the anticipated tardiness 

is detected to be too large, the train’s priority increases. This method considers the anticipated 

tardiness, but does not necessarily hold a train back. We define a metric to measure the weighted 
෦ ෹ ෼sum of the earliest arrival time ൈ෶ෳ෮ and anticipated tardiness ൈ෶ෳ෮, as a weighted sum time ൈ෶ෳ෮: 

෼ ෦ ෹ൈ෶ෳ෮ ൞ ෫ ෭ ൈ෶ෳ෮ ൘ ൌඅ ൘ ෫് ෭ ൈ෶ෳ෮ෳ ොൟ ෢ ൅෵ ൌආආ് 

A smaller weighted sum ൈ෶෼ෳ෮ gives the train a higher priority to pass node ൗ . The weighted 

coefficients are tuned in the following experiments. 

4.1.1.1 Priority Assignment Experiments 

The performance of the priority assignment rules depends on the network structure and the 

density of the passenger train schedules. Experiments should be done to evaluate each assignment 

rule on a specific network and schedule. We use part of the railway network for the Los Angeles 

area, from Downtown to Fullerton. In these experiments, we only consider the daily passenger 

trains. The test network contains about 20 miles of track, including double-track and triple-track 

segments. Specifically, there are 77 track segments and 31 junctions in total. In our abstract graph, 

there are 69 nodes and 62 arcs. The daily passenger train schedule contains 51 passenger trains in 

total in both directions. There are a total of four passenger train station stops in this area. This same 

network is also used in the rest of this report to test the other aspects of the solution procedure. 
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Recall that the earliest arrival time ൈ෶෦ෳ෮ and minimal anticipated tardiness ൈ෶෹ෳ෮ are defined 

under the complete candidate route set െ෶, which contains all the routes between the origin station 

෶ൃ and the current node ൗ. However, the number of routes grows exponentially with the number of 

junctions. In this sample network and schedule, Subproblem-1 has 138,085 integer variables, 

hence it is computationally prohibitive to solve the problem to compute ൈ෶෦ෳ෮ and ൈ෶෹ෳ෮ for every ൟෳ ൗ 

combination considering all possible routes. Thus we randomly select a route for each passenger 

train ൟ and we compute ൈ෶෦ෳ෮ and ൈ෶෹ෳ෮ for every node ൗ along the selected route. To compare the 

performance of the Priority Assignment rules I-IV, we perform 1,000 random samples for the 

passenger trains route combination, and evaluate the objective of Subproblem-1, which is 

computed by fixing the passenger trains’ routes as the sampled routes, setting the priorities based 

on the priority assignment rule, and solving the arrival/departure times as a linear programming 

problem. Since by fixing the routing variables and priority variables, Subproblem-1 reduces to a 

linear programming problem. Table 1 records the average Max-Min Earliness of the 1,000 random 

samples. Note that a negative Max-Min earliness value indicates that all the passenger trains are 

tardy. Table 2 presents the sensitivity analysis on the weighted coefficient in Priority Assignment 

IV. 

Priority Assignment Rule Average Max-Min Earliness 

I -30.453 

II -16.616 

III -120.834 

Table 1. Performance Comparison Between Priority Assignments I-III 
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Coefficient Max-min Earliness 

෫ Average Max 

0.99 -14.370 1.098 

0.95 -15.766 3.426 

0.92 -13.668 1.924 

0.9 -13.065 3.139 

0.87 -15.257 2.975 

0.85 -13.035 1.825 

0.83 -14.264 0.379 

0.8 -16.211 0.010 

0.7 -24.042 -1.415 

0.6 -21.752 -0.470 

0.5 -31.306 -13.007 

0.4 -39.397 -31.259 

0.3 -65.031 -48.988 

Table 2. Calibration of Priority Assignment IV on Random Routes 

From the results, we can conclude that for the random routes, Priority Assignment IV 

outperforms the other three priority assignment rules for our test network and timetable. For this 

reason, we employ Priority Assignment IV with a coefficient setting of ෫ ൞ ඄෶ඍ to decide the 

relative priority of passenger trains in the following section. 

The primary reason that all priority assignment rules have a negative average Max-Min 

Earliness is because the routes are randomly generated. The randomly selected route combination 

does not provide any guarantee to a low traffic congestion or a selection of a route with the least 

free flow travel time, thus making the average Max-Min earliness to be negative. However, the 

Max column in Table 2 indicates that at least some of the route combinations can generate positive 

Max-Min earliness, which means zero tardiness for all the passenger trains. The next step in 

solving the Max-Min Earliness subproblem is to construct a route combination between passenger 

trains such that the Max-Min Earliness is positive and maximized. 
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4.1.2 Passenger Train Route Construction 

For a general railway network, the routing of trains is flexible. Shorter distances and higher 

speed limits are preferred when a route is selected. Due to the fact that the track resources are 

shared by multiple trains, assigning similar routes to different trains may generate extra congestion. 

Therefore, route construction should balance individual train travel time and network congestion. 

In this section, we present a genetic algorithm based heuristic to construct the routes for passenger 

trains. 

The genetic algorithm is a search heuristic that mimics the process of natural selection. It 

is widely used to solve many optimization problems. In a genetic algorithm, an evolution process 

is performed on a population of candidate solutions to guide the search towards a better solution. 

A typical genetic algorithm requires a chromosome representation of candidate solutions and a 

fitness function to evaluate the solutions. First, we define the chromosome representation and then 

we introduce the fitness function. 

Population initialization: A chromosome is defined as a bit string that represents the route 

combinations of all passenger trains. Each bit of the chromosome is mapped to a route of a specific 

train. The routes domain of a train is defined under some rules so that the space of the chromosome 

is limited to a reasonable size. For each passenger train, the total number of routes that are 

generated is restricted to a maximum of ൜෨, so that each bit of the chromosome is an integer with 

a range of ൐අෳ ൜෨൑. There are ഓ൅෵ഓ passenger trains so that the length of the chromosome is ഓ൅෵ഓ. In 

Figures 7 and 8, an example of chromosome-routes mapping on a segment of a double-track rail 

network is shown. In the example, we set ൜෨ ൞ ආ and ൅෵ ൞ ൎൟേෳ ൟൈෳ ൟ൉൏ 

37  



 
 

 

   

  

    

      

       

        

        

  

      

         

            

        

 

            

        

      

       

        

       

    

Figure 7. Example Route Encoded Gene 

Figure 8. Example Chromosome of Route Combination 

Note that the number of possible routes between the two stations grows exponentially with 

the number of junctions along the track. Therefore, the candidate route set is limited to the size of 

൜෨ for each train. The criteria to construct the candidate route set determines the overlap of the 

routes between the trains and influences the congestion along the track. Here we introduce three 

criteria in the candidate route set construction: 

1.  Trains that travel in the same direction prefer to use the same track. Two trains that travel on 

exactly the same route but in the opposite directions generate extreme tardiness for the later 

train, since it has to wait until its beginning node is released by the other train. Given that many 

of the tracks are either double track or triple track segments, the first criteria is that trains prefer 

to use the left most track if possible. 

2.  Trains are not allowed to make frequent track changes during their travel. The speed limits of 

junctions are usually much lower than that of normal track, for safety reasons during the 

crossover. Frequently crossing the junctions adds additional travel time. Therefore, in our 

algorithm, each passenger train is only allowed to do one track change every 5 times its length. 

3.  After changing track to the non-left track, the train changes back to its preferred track (left 

track) within 3 possible junctions. Without a recovery mechanism, the train could possibly 

occupy the preferred track of another train travelling in the opposite direction. 
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The candidate route set is filled randomly according to the criteria above until ൜෨ distinct routes 

are generated. 

Fitness function: The fitness value is defined as the objective value of the Max-Min Earliness 

subproblem. The route combination is retrieved from a given chromosome and then routes and 

priority integer variables are substituted in the Max-Min Earliness subproblem. Since after the 

priority decision and route construction, all integer variables are fixed, the problem is now a linear 

program and can be solved efficiently. Note that constraints (14) state that all operations should 

be completed within a daily period. Thus it is possible that some of the chromosomes yield 

infeasible solutions. For example, if the scheduled arrival time of a passenger train is near the end 

of the day, a large tardiness makes Subproblem-1 infeasible. In this case, the objective value is 

set as ൘෍ so the chromosome is eliminated in the selection process. The fitness function solves 

the Max-Min Earliness subproblem and obtains the arrival and departure times of each passenger 

train at each node. The arrival and departure times for each train at each node are recorded, and 

they are used in the scheduling of freight trains in the next section. 

The basic operations of the genetic algorithm consists of selection, crossover and mutation, which 

are defined as follows. This generation process is repeated until a termination criterion is met. 

Selection: Three selection methods are implemented: top-K, roulette wheel and tournament 

selection. In the top-K selection method, we sort the new population according to the fitness values, 

and return the top K individuals as the new generation. The Roulette method first sorts the 

population, then randomly appends the ൛෹෭ highest individual to the new generation. The 

tournament randomly picks several 3-individual groups, and adds the individual with the highest 

fitness value from a group to the new generation. Preliminary experiments show that the 

tournament method performs best to find the individual with the highest fitness value. 

Crossover: The crossover step generates new route combinations from the parent generation with 

probability ෲ෨. A two-point crossover is then executed to swap the bit segments between the two 

parents. Two randomly continuous bit strings of the same size from the parents are extracted and 

exchanged, and consequently two children are generated. Figure 9 shows an example of a 

crossover. The bit string that is selected is from the ඇ෷෩ to the ඊ෹෭ string. 
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Figure 9. Example of the Crossover Operation 

Mutation: The mutation operation is performed after the crossover step with probability ෲෲ. It 

imitates the mutation as seen in natural evolution, which adds the variation to chromosomes in 

generating the children. Mutation happens randomly with a small probability and changes the 

chromosome into a feasible neighborhood solution. We define the neighborhood solution as being 

the current solution, with the exception of one route. Each time when a mutation is triggered, a 

train changes its route to another one within the candidate route set. The mutation uses a single 

point mutation strategy so that each mutation changes a random bit in the chromosome. Figure 10 

presents an example of the mutation operation. 

Figure 10. Example of the Mutation Operation 

Termination criteria: The termination criteria is met when either one of the following two 

conditions is satisfied. 

a) The maximum minimum earliness ൓ෘ is reached. 

b) The maximum number of generations ൜ි is reached 

Figure 11 summarizes the flow chart of the genetic algorithm. Note that in the fitness valuation 

step, the route combination from the chromosome and the priority decision from Priority IV 

Assignment Rule are fed to Subproblem-1. We then solve for the arrival and departure time 

decisions and the objective value of Subproblem-1. 
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Figure 11. The Flow Chart of the Genetic Algorithm Procedure 

4.1.2.1 Route Construction Experiments 

We use the same sample network as in Section 4.1.1.1 to perform experiments in selecting 

the best combination of crossover probability ෲ෨ and mutation probability ෲෲ. The total population 

size is set to be 200, ൜෨ is set to be 20 and the maximum number of generations ൜ි is set as 100 

and ൓ෘ ൞ අඊ෶උඋ. We compute this ൓ෘ value by first identifying for each train its maximum 

earliness along all its stops and routes with the assumption of on-time departure and zero 

congestion on the route (free flow travel time), and then ൓ෘ is set to be the minimum of these 

values across all the trains. Table 3 shows the Max-Min Earliness for different combinations of ෲ෨ 
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and ෲෲ. For each combination, we run it five times and record the best value. The results in Table 

3 use the genetic algorithm for routing and Priority Assignment IV rule with ෫ ൞ ඄෶ඍ. According 

to this result, ෲ෨ ൞ ඄෶ඉ and ෲෲ ൞ ඄෶ආ are the best settings for the parameters. The result of 5.41 for 

the Max-Min Earliness compares favorably with the average and maximum results in Table 2. 

Clearly the genetic algorithm provides solutions that outperform the average of the 1,000 random 

sampled routes, but it also outperforms the maximum value of these random samples. 

Max-Min Earliness 

ෲ෨ 

ෲෲ 

0.1 0.3 0.5 0.7 

0.1 -0.41 1.17 1.17 -0.41 

0.2 2.31 3.67 5.41 2.31 

0.3 1.87 1.17 1.87 1.87 

0.4 1.17 -0.41 -1.11 -1.11 

Table 3. Calibration of Crossover and Mutation Probabilities 

4.2 Freight Train Scheduling 

Unlike passenger trains, freight trains have more flexibility in selecting their departure 

times from their origin stations, as long as the arrival time to the destination is on time. The routing 

of freight trains is also flexible, but it should strive towards having minimum impact on the rail 

traffic along the corridor. Freight train scheduling cannot follow the same strategy used for 

passenger trains because of the following reasons: 

1.  The priority assignment rules are different. Priority assignment rules for passenger trains are 

determined by the anticipated arrival time and tardiness. 

2.  The route requirements are different. The route construction for freight trains should be based 

on adding minimal traffic congestion to the corridor/network. The routes construction method 

developed for passenger trains focused only on maximizing the minimum earliness and not on 

the travel time minimization. Thus, a different routing procedure that minimizes the travel time 

and takes into account network congestion effects needs to be applied for freight trains. 
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3.  The priority relationship between freight trains and passenger trains should be balanced. When 

freight trains are scheduled, the freight trains’ travel time and the passenger trains’ tardiness 

should be balanced when the priority relationship is assigned. 

In this section, we present our freight train scheduling algorithm. Freight trains are 

sequentially scheduled into the system. In this algorithm, the freight trains’ travel time and 

passenger trains’ tardiness are balanced each time a new freight train is scheduled. The algorithm 

contains three steps, which consists of three subproblems: freight train scheduling order, freight 

train routing and freight train priority setting. 

4.2.1 Freight Train Scheduling Order 

In the algorithm, freight trains are scheduled sequentially. Once a freight train is scheduled, 

its route and priority are fixed. First, the freight trains are grouped according to their origin-

destination pair. Each group of trains is defined as a freight train demand set. Note that the trains 

in a demand set share the same origin and destination, thus the similarity of the routes between 

them is high. Scheduling all the freight trains within a demand set at the same time adds significant 

amount of traffic on portions of the network, which may cause congestion. The rule is based on 

evenly spacing the release of the freight trains from the same demand set. 

Given K freight train demand sets ൎസേෳ സൈ ෷സූ൏ and each demand set സ෰ has ഓസ෰ഓ freight 

trains. First, the K demand sets are sorted in descending order according to their size. Thus, trains 

in demand sets that are larger (larger ഓസ෰ഓ) are more likely to be released earlier than freight trains 

in smaller demand sets. Then in each demand set സ෰, a fixed portion of trains with size of ෑ෭ ෭ 

ഓസ෰ഓි are selected to be scheduled. After a train is scheduled, it is removed from its demand set. 

The process iterates through the K demand sets until all the sets are empty. For example, if the 

sorted demand sets are സേ ൞ ൐ൟേෳ ൟൈෳ ൟ൉ෳ ൟൊ൑ෳ സൈ ൞ ൐ൟോෳ ൟൌ൑ෳ സ൉ ൞ ൐ൟ്൑ and ෭ ൞ ඄෶ඉ , then the 

scheduling order is [ൟേෳ ൟൈෳ ൟോෳ ൟ്ෳ ൟ൉ෳ ൟൌෳ ൟൊ]. 

We use an iterative approach to schedule freight trains. In this approach, first the route of 

the freight train is assigned based on the current traffic congestion, then the priority relation of the 

train with all the previously scheduled trains are identified. Finally its route and priority decisions 

are fed into a linear program to solve for the optimal arrival/departure times. The scheduling order 
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of freight trains does not guarantee the global optimality since it is constructed heuristically. 

However, it is an efficient method and we show that this scheduling order can give a high quality 

solution in the experiments. 

4.2.2 Freight Train Routing Subproblem 

In order for a freight train to be scheduled, its route is first identified. The principle for 

identifying the freight trains route is based on the balance of its travel time and overall traffic 

congestion. Note that the traffic congestion of a network depends on the time that the train enters 

the rail network. 

The freight trains can depart from their origins and enter the network at any time throughout 

the day. However, the optimal route could be different at different times of the day. For example, 

during the rush hour of the day, the optimal route is highly influenced by the traffic congestion. In 

our solution approach for freight train scheduling, the routing and priority decisions are made first 

and then the departure times are identified. Thus, the routing decision for the newly scheduled 

freight train ൟ෭ should rely on an approximation of the traffic congestion. Note that in the train 

movement, its actual travel time will be greater than the free flow travel time if there is congestion. 

The earliest arrival time is the departure time at the origin station plus the free flow running time. 

The delay time, which is the difference between actual arrival time and earliest arrival time, can 

be used as an indicator for traffic congestion. The delay time at a node is the sum of the delay 

times of the previously scheduled trains, which can be obtained from the departure/arrival times 

recorded in the previous iterations. 

ඟ ඟThe previously scheduled trains are denoted as ൅ඟ ൞ ൅෫ ෽ ൅෵, in which ൅෫ represents 

the previously scheduled freight trains. For a previously scheduled train, let the sequence of nodes 
෦along its route be ൎ෶ෳ ොൟ ෢ ൅ඟ and its arrival time at node ൗ is recorded as ൢ෶ෳ෮ෳ ൗ ෢ ൎ෶. For each 

node ൗ ෢ ൎ෶, the corresponding train’s congestion factor ൑෶ෳ෮ can be represented by the difference 

between the actual arrival time and the earliest arrival time. The earliest arrival time assumes free 

flow travel (without traffic congestion) from the start node of movement. We denote the free flow 
෫travel time of train ൟ from node ൜െ to node ൗ through route ൎ෶ as ൢ෶ෳෳാෳ෮, in which ൜െ is the start 

node of movement for train ൟ ෢ ൅ඟ . For the freight train, we consider ൜െ to be its origin station. 
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For the passenger train, we consider ൜െ to be the previous node which contains a station stop before 

node ൗ. The congestion factor is calculated as follows: 

෦ ෫ ෦൑෶ෳ෮ ൞ ඡඕඬ ൔൢ෶ෳ෮ ൘ ൒ൢ෶ෳෳാෳ෮ ൗ ൢ෶ෳෳാ൓ෳ ඄ൕ ෳ ොൟ ෢ ൅
കෳ ൗ ෢ ൎ෶ (23) 

Additionally, the tardiness of the passenger trains is also included as a term with a weight of ഃ, 

meaning that the candidate route selection receives a penalty if it adds to the passenger trains 

tardiness. The tardiness factor of passenger train ൟ at node ൗ is denoted as ൖ෶ෳ෮, and it is defined 

as the difference between its actual arrival time at node ൡ that contains the next station stop from 

node ൗ and the scheduled arrival time at ൡ if it is tardy, else it equals to zero. 

ൖ෶ෳ෮ ൞ ඡඕඬൌൢ෶෦ෳ෸ ൘ ൈ෶ෳ෸ෳ ඄് ෳ ොൟ ෢ ൅෵ෳ ൗ ෢ ൎ෶ (24) 

The total congestion on node ൗ is the sum of the congestion factors of all trains in ൅ക on node ൗ. 

The total tardiness on node ൗ is the sum of the tardiness factors of all trains in ൅෵ on node ൗ. We 

define the total weight of node ൗ as ഺ෮ as follows. 

ഺ෮ ൞ ∑ ൑෶ෳ෮ ൗ ഃ ෭ ∑ ൖ෶ෳ෮ ෳ ොൗ ෢ ൂ ൌආඉ് 
෶෢ො഍ ෶෢ො෭ 

Preliminary experiments show that ഃ ൞ අ඄ gives a balance between the total congestion and the 

total tardiness. The weighted objective value of node ൗ, ഺ෮, is a nonnegative number for evaluating 

the traffic congestion. A large value means that the potential traffic on node ൗ tends to be heavy. 

The route selection for the freight train prefers the least congested route, which keeps the travel 

time short and also adds the least delay/tardiness to the previously scheduled trains. Thus, the best 

route is defined to be the one with the least travel time under the anticipated traffic. However, the 

best route may not be the optimal route since the optimality depends on the train scheduling order. 

To increase the search space, we select the k-best routes with least anticipated traffic by solving 

the following problem. 

കFor the new scheduled freight train ൟ෭ ෢ ൅෫൅൅෫ , the search space for its route is within the 

sub-network that only contains the reduced node set ෶ൂ෹ . We build another network with the same 
േ േstructure of the sub-network, but the weight of each node is assigned as ഺ෮ ൗ ശ෶෭ෳ෮, in which ശ෶෭ෳ෮ 
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is the free flow travel time of train ൟ෭ on node ൗ , and ഺ෮ is the weighted objective which 

approximates the anticipated traffic at node ൗ. Finding the best k routes for this network is actually 

finding k shortest paths. This problem can be solved efficiently by deploying the generalized 

Dijkstra Algorithm (1959) or Eppstein's Algorithm (1998). 

4.2.3 Freight Train Priority Assignment Subproblem 

The route defines the sequence of nodes that a train travels through. On each node along 

the route, the priority relationship of the newly scheduled train ൟ෭ with the previously scheduled 

trains should be selected carefully. In this section, we present an algorithm to assign the priorities 

to the nodes along a given route for a newly scheduled freight train. In Section 4.2.2, the k-best 

routes are selected to be evaluated and a priority assignment is determined for each of these routes. 

The selected route from these k-best routes for ൟ෭ is the one that minimizes a weighted objective 

function of the total freight train travel time and the total passenger train tardiness. 

We define the insertion position on node ൗ for train ൟ෭ as the position in the priority 

sequence of the previously scheduled trains on node ൗ. Figure 12 shows an example of candidate 

insertion positions on a node. Assume for node ൗ in the sample network, the priority relationship 

between the previously scheduled trains are ൟേ ൢ ൟൈ ൢ ൟ൉, which means that the given priority 

decisions are ൦෶ിෳ෶ീෳ෮ ൞ ൦෶ിෳ෶ുෳ෮ ൞ ൦෶ീෳ෶ുෳ෮ ൞ අ. Then there are four candidate positions for the new 

train. For example, position 1 is the newly scheduled train ൟ෭ travels through node ൗ before ൟേ, and 

position 2 means train ൟ෭ travels through node ൗ after ൟേ and before ൟൈ. The objective of the freight 

train priority assignment is to find the insertion positions on the nodes along the route, with a 

minimum increase in total freight train travel time and total passenger train tardiness. 
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Figure 12. Example of the Candidate Insertion Position Along a Triple Track Segment 

We denote the newly scheduled train as ൟ෭ and the sequence of nodes along its route as 

ൎ෶
෷
෭ , where route ൠ is one of the k-best routes from Section 4.2.2. We identify an insertion position 

෷for train ൟ෭ for each node in each route ൠ. For simplification we drop the superscript from ൎ෶෭ 

because the insertion procedures are the same for each of the k-best routes. To select the best 

insertion positions, we define Subproblem-2. 

Objective function: 

෦ ෦ ෦ඡඝජ ෬ ∑ ൌൢ෶ෳා෮ ൘ ൢ෶ෳේ෮് ൗ ൌඅ ൘ ෬് ∑ ∑ ඡඕඬൌൢ෶ෳ෸ ൘ ൈ෶ෳ෸ ෳ඄് 
෶෢ො෣ ෶෢ො෭ ෸෢ෞ෮ 

Subject to: 

Constraints (2)-(18) are from the original problem. All the routing decisions in constraints 

(2)-(12) are according to the current route given from one of the k-best routes found by the 

procedure in Section 4.2.2. This still leaves a significant number of integral priority variables. Our 

approach for reducing it is first to iteratively schedule one train at a time based on the order 

algorithm in Section 4.2.1. Then we hold the integrality for the priority variables associated with 

train ൟ෭for one node at a time, and solve the relaxed problem. Thus, we solve Subproblem-2 ഓൎ෶෭ഓ 

times. Let ൗ be the current node in ൎ෶෭ that is being evaluated, we require integrality for ൦෶″ෳ෶෭ෳ෮ 

and ൦෶෭ෳ෶″ෳ෮ for ൟ′ ෢ ൅ඟ , and relax ൦෶″ෳ෶෭ෳ෯ and ൦෶෭ෳ෶″ෳ෯ for all ൘ ෢ ൎ෶෭൅ൎൗ൏. We also hold all the other 
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priority variables fixed at their values from the previous iterations. Then to find integral values for 

the relaxed priority variables ൦෶″ෳ෶෭ෳ෯ and ൦෶෭ෳ෶″ෳ෯ for all ൘ ෢ ൎ෶෭൅ൎൗ൏, we apply a Backward-Forward 

Insertion (BFI) algorithm to derive their priorities. 

On each node ൘ in ൎ෶෭ , we use േ෯ to represent all the previously scheduled trains that travel 
෶෭ ෶෭ through node ൘, and an insertion position of ൟ෭ on node ൘ is denoted as ൏෯ ෳ අ ≤ ൏෯ ≤ |േ෯| ൗ අ. 

Generally there are |േ෯| ൗ අ candidate insertion positions on node ൘ if there are |േ෯| previously 

scheduled trains passing through node ൘. Note that not all the sequences are legal, since some of 

the overtaking actions between trains are not allowed. First we define the illegal insertion positions. 

On each node ൘ in ൎ෶෭ , the insertion position ൏෯
෶෭ separates േ෯ into two sets: േപ෯ෳ෶෭ is the set of trains 

on node ൘ that have higher priority than ൟ෭ , and േഫ෯ෳ෶෭ is the set of trains on node ൘ that have lower 

ഫpriority than ൟ෭ . For example in Figure 12 on node ൗ if ൏෮
෶෭ 
൞ ආ, then േപ෮ෳ෶෭ ൞ ൎൟേ൏ and േ෮ෳ෶෭ ൞ 

ൎൟൈෳ ൟ൉൏. 

Proposition 1: Any condition below yields an illegal insertion position. 

ഫ പa) േ෮൑േෳ෶෭ ෺ േ෮ෳ෶෭ ൟ ෠ෳ ොൗ ෢ ൎ෶෭ 

b) േപ෮൑േෳ෶෭ ෺ േഫ෮ෳ෶෭ ൟ ෠ෳ ොൗ ෢ ൎ෶෭ 

෩ ෯ േ ൱c) ൢී ൗ ෕ ശ෶෭ෳ෰ ൗ ෶ ൢ ൢ , ොൗෳ ൘ ෢ ൎ෶෭ෳ ൗ ൡ ൘ ൘ අෳ ොൟ′ ෢ േപ෮ෳ෶෭ ෼ േഫ෯ෳ෶෭෶෭ෳ෶″ෳ෮ ෰൒ ෮൐േ ෶″ෳ෯  

൴ ൴ ൴ ൢී෶෭ෳ෶″ෳ෮ is the earliest departure time of ൟ෭ from node ൗ after train ൟ′ , ൢී෶෭ෳ෶″ෳ෮ ൞ ൢ෶″ෳ෮ ൗ ෶ ൗ 

ശ෶
ൈ
෭ෳ෮ෳ෮൐േ and ൢ෶

൴
″ෳ෮ is from the arrival and departure times recorded in the previous iterations. 

Proof: Condition (a) and Condition (b) can be proved along similar approaches. We present the 

proof for Condition (a) by contradiction. 

Assume േഫ෮൑േෳ෶෭ ෺ േപ෮ෳ෶෭ ൟ ෠ෳ ොൗ ෢ ൎ෶෭ , ෞൟ′ ෢ േഫ෮൑േෳ෶෭ ෺ േപ෮ෳ෶෭ , ൦෶″ෳ෶෭ෳ෮ ൞ ൦෶෭ෳ෶″ෳ෮൑േ ൞ අ . By 

Constraints (10), 

ൢ෶
෦
෭ෳ෮ ≥ ൢ෩ ൗ ෶෶″ෳ෮

{ ෦ ෩ ൌආඊ് 
ൢ ≥ ൢ෶෭ෳ෮൑േ ൗ ෶෶″ෳ෮൑േ 

By Constraints (12), either ഽ෶″ෳ෮൑േෳ෮ ൞ අ or ഽ෶″ෳ෮ෳ෮൑േ ൞ අ. 
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(1) If ഽ෶″ෳ෮൑േෳ෮ ൞ අ, from Constraints (6), (7) and (9), we have 

෦ ෦ േ ෦ ෦ൢ෶ෳ෮ ൘ ൢ෶ෳ෮൑േ ≥ ശ෶ෳ෮ ⟹ ൢ෶″ෳ෮ ൢ ൢ෶″ෳ෮൑േ  
෩ ෩ േ ෩ ෩ ෩ ෦ ൢ ൘ ൢ ≥ ശ ⟹ ൢ ൢ ൢ } ⟹ ൢ ൢ ൢ ൌආඋ്෶″ෳ෮ ෶″ෳ෮൑േ ෶″ෳ෮ ෶″ෳ෮ ෶″ෳ෮൑േ ෶″ෳ෮ ෶″ෳ෮൑േ  

෩ ෦ ൈ േ ෩ ෦ ൢ ൘ ൢ ⟹ ൢ ൢ ൢ෶″ෳ෮൑േ ෶″ෳ෮ ≥ ശ෶ෳ෮൑േෳ෮ ൘ ശ෶ෳ෮ ෶″ෳ෮൑േ ෶″ෳ෮ 

By Constraints (9), 

෩ ෦ ൈ േ ෩ ෦ൢ෶෭ෳ෮൑േ ൘ ൢ෶෭ෳ෮ ≥ ശ෶෭ෳ෮൑േෳ෮ ൘ ശ෶෭ෳ෮ ⟹ ൢ෶෭ෳ෮൑േ ൢ ൢ෶෭ෳ෮ ൌආඌ് 

Combining Inequalities (26) and (27) contradict with the combining of Inequalities (26) and 

(28) as follows 

෩ ෦ ෩ൢ෶″ෳ෮ ൢ ൢ෶″ෳ෮൑േ ൢ ൢ෶෭ෳ෮൑േ 

෩ ෦ ෩ൢ෶෭ෳ෮൑േ ൢ ൢ෶෭ෳ෮ ൢ ൢ෶″ෳ෮ 

(2) If ഽ෶″ෳ෮ෳ෮൑േ ൞ අ, by Constraints (9), 
෩ ෦ ൈ േ ෩ ෦ൢ෶෭ෳ෮൑േ ൘ ൢ෶෭ෳ෮ ≥ ശ෶෭ෳ෮൑േෳ෮ ൘ ശ෶෭ෳ෮ ൢ෶෭ෳ෮൑േ ൢ ൢ෶෭ෳ෮ 
{ ⟹ { ൌආඍ്෩ ෦ ൈ േ ෩ ෦ൢ ൘ ൢ ≥ ശ ൘ ശ ൢ ൢ ൢ෶″ෳ෮ ෶″ෳ෮൑േ ෶″ෳ෮ෳ෮൑േ ෶″ෳ෮ ෶″ෳ෮ ෶″ෳ෮൑േ 

Condition (29) also contradicts with Condition (26). 

Thus Condition (a) yields an illegal insertion position. Condition (b) can be proved along a similar 

approach. 

For Condition (c), ොൟ′ ෢ േപ෮ෳ෶෭ ෼ േഫ෯ෳ෶෭ , ൦෶″ෳ෶෭ෳ෮ ൞ ൦෶෭ෳ෶″ෳ෯ ൞ අ. By Constraints (10), we have 

෦ ෩ൢ ൗ ෶ ൌඇ඄്෶″ෳ෯ ≥ ൢ෶෭ෳ෯ 

For the statement of Condition (c), we have 

෯  
൴ േ ൱ ൢී෶෭ෳ෶″ෳ෮ ൗ ∑ ശ෶෭ෳ෰ ൗ ෶ ൢ ൢ෶″ෳ෯ ൌඇඅ് 

෰൒ ෮൐േ 

෩And also since ൢී෶෭ෳ෶″ෳ෮ is the earliest departure time of ൟ෭ from node ൗ after train ൟ′ , 
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ൢ෶
൴
෭ෳ෮ ൢ ൢී෶

෩
෭ෳ෶″ෳ෮ ൌඇආ് 

From (31) and (32), we have 

෯  

൴ േ ൱ ൢ෶෭ෳ෮ ൗ ∑ ശ෶෭ෳ෰ ൗ ෶ ൢ ൢ෶″ෳ෯ ൌඇඇ് 
෰൒ ෮൐േ 

By applying Constraints (7) on the sequence of nodes from ൗ ൗ අ to ൘, we have 

෯  

൴ ൴ േ ൢ෶෭ෳ෯ ≥ ൢ෶෭ෳ෮ ൗ ∑ ശ෶෭ෳ෱ ൌඇඈ് 
෱൒ ෮൐േ 

By substituting (32) to (31), we have 

൴ ෦ൢ෶෭ෳ෯ ൗ ෶ ൢ ൢ෶″ෳ෯ 

which is a contradiction to Condition (30). Thus Condition (c) yields an illegal insertion position. 

෨ 

Proposition 1 states that on any consecutive nodes along the path, the priority relationship 

between any pair of trains cannot be swapped. And on any non-consecutive node pairs, the 

overtaking between ൟ෭ and ൟ′ can only happen if the free flow travel time of train ൟ෭ is short 

enough to leave node ൘ earlier than the arrival of train ൟ′ within a safety headway. Note that in the 

proof of Proposition 1, ൟ′ does not need to travel in the same direction as ൟ෭ . Thus Proposition 1 

gives a dependent relationship of the insertion positions along the route, and we will use these 

dependencies to derive the priorities for train ൟ෭ . We define the legal insertion position as the 

position which does not create an illegal insertion position sequence. 

Freight Insertion Rule (FIR): Among all the legal insertion positions, the front most position is 

selected to insert the newly scheduled train. 

Under FIR, we select the nearest legal insertion position in order to reduce the waiting time 

of ൟ෭ . To minimize the travel time of ൟ෭, the waiting time at the current node should be minimized. 

Thus the front most position should be preferred since it gives the minimal waiting time for ൟ෭ 

before the next node. 
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Based on Proposition 1 and FIR, we propose our Backward-Forward Insertion Algorithm 

(BFI) to construct an insertion position sequence in an iterative approach. Recall, we currently 

have the priority decisions for node ൗ for train ൟ෭ from the solution of Subproblem-2. BFI is used 

to infer the position of train ൟ෭ on all the other nodes in ൎ෶෭൅ൎඝ൏. We use the conclusion from 

Proposition 1 to eliminate the illegal insertion positions, and the conclusion from FIR to select 

the best legal insertion position. The algorithm performs a forward and a backward insertion 
ඟposition inference to determine the insertion position. Let ൎ෶෭ be the nodes in which the priorities 

ඟare known. Initially, ൎ෶෭ ൞ ൎൗ൏ in which ൗ is the fixed integrality node from Subproblem-2. Then 
ඟthe insertion position on some other node ൘ is inferred and it is included in ൎ෶෭ . The iterative 

ඟapproach is repeated until ൎ෶෭൅ൎ෶෭ is empty. Note that the initial ൎൗ൏ can be any node in ൎ෶෭ . We 

use each of the nodes in ൎ෶෭ for an initial solution, and the BFI algorithm is applied for each of the 

initial solutions to generate ഓൎ෶෭ഓ final solutions. The best one that minimizes the objective of 

Subproblem-2 is selected as the priority assignment for ൟ෭ . 

We now present the details of the BFI algorithm. Starting from an initial insertion position, 

we use heuristic rules to infer the insertion positions on the rest of the |ൎ෶෭| ൘ අ nodes for train ൟ෭ . 

The idea of the BFI algorithm is that the existing insertion positions actually bounds the time 

window for the legal candidate insertion positions on the other nodes. Given the legal candidate 

insertion positions of a new node, the one that minimizes the objective function of Subproblem-

2 is selected. The backward-forward inference step contains two independent and similar parts, 

which are backward inference and forward inference. Each part is an iterative approach that uses 

the existing insertion positions to infer the insertion position on a new node. 

The inference for a new node ൗ′ is based on a feasible time window on node ൗ′ . The feasible 

time window consists of four time measurements, defined as follows. 

ෲ෮ෳ෌෷෷(a) ൥ : The earliest arrival time of train ൟ෭ to node ൗ′ .෶෭ෳ෮″ 

ෲ෦෽෌෷෷(b) ൥෶෭ෳ෮″ : The latest arrival time of train ൟ෭ to node ൗ′ . 

ෲ෮ෳා෪෵(c) ൥ : The earliest departure time of train ൟ෭ from node ൗ′ .
෶෭ෳ෮″ 

ෲ෦෽ා෪෵(d) ൥ : The latest departure time of train ൟ෭ from node ൗ′ .
෶෭ෳ෮″ 
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A feasible time window is calculated from the known insertion position(s) of the nodes. 

The algorithm is an iterative approach. In each iteration, the backward (forward) inference 
෶෭ ඟ ඟalgorithm infers a new priority insertion position ൏෯ ෳ ൘ ෢ ൎ෶෭൅ൎ෶෭ and adds it to ൎ෶෭ , until all the 

nodes in ൎ෶෭ are covered. We present the details of the backward inference and forward inference 

steps as follows. 

Backward inference step: 

Step_0: Starting from an insertion position ൏෮
෶
෭

෭ 
on some node ൗ෭ , which is solved from 

Subproblem-2. Initialize ൎ෶
ඟ
෭ ൞ ൎൗ෭൏ and go to Step_1. 

Step_1: Select node ൗ′ , which is the previous node of ൗ෭ in ൎ෶෭ to infer its insertion position. If 

there is no more previous node ൗ′ on route, go to Step_4. For each existing insertion 

positions on nodes ൎ൘ ෢ ൎ෶
ඟ
෭൏, calculate the feasible time window on node ൗ′ with respect 

ෲ෮ෳ෌෷෷ ෲ෦෽෌෷෷ ෲ෮ෳා෪෵ ෲ෦෽ා෪෵ ෶෭ to ൘, denote as ൥෶෭ෳ෮″ ൌ൘്, ൥෶෭ෳ෮″ ൌ൘്, ൥
෶෭ෳ෮″ ൌ൘് and ൥

෶෭ෳ෮″ ൌ൘്. Note that if ൏෯ ൞ 

ෲ෮ෳ෌෷෷අ, ൟ෭ is the first train passing node ൘, then ൥෶෭ෳ෮″ ൌ൘്= 0; if ൏෯
෶෭ 
൞ ഓേ෯ഓ , ൟ෭ is the last train 

passing node ൘, then ൥ෲ෦෽෌෷෷ൌ൘് ൞ ൈැ, which is the end of the day. Among the trains in ෶෭ෳ෮″ 

෶෭ ෶෭ േ෯, we denote the train before ൏෯ as ൟ ̂ and the train after ൏෯ as ൟ̌, if they exist. We define 

the earliness of passenger train ൟ ෢ ൅෵ on node ൗ as ൓෶ෳ෮ ൞ ඡඕඬൌ ൈ෶ෳ෸ ൘ ൢ෶෦ෳ෸ෳ ඄്ෳ where ൗ ෢ 

ൎ෶ and ൡ is the node that contains train ൟ's next station stop after ൗ. Note here earliness 

is defined differently from Subproblem-1, we cap the earliness at zero so it cannot go 

negative. 

෥ ඄ ൏෯ 
෶෭ 
൞ අෳ ൘ ෢ ൎ෶෭ 

ඟ 

෨ 
൥෶෭ෳ෮ ″ 
ෲ෮ෳ෌෷෷ൌ൘് ൞ 

෨ 
෦ඡඕඬ (ൢ෶̂ෳ෯ 

෩ ൗ ෶ ൘ ∑ 
෯ 

ശ෶෭ෳ෱ 
േ ෳ ඄) ൏෯ 

෶෭ 
ൢ අෳ ൘ ෢ ൎ෶෭ 

ඟ 

෧ ෱൒෮ ″ ൐േ 
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ෲ෦෽෌෷෷൥ ൌ൘്෶෭ෳ෮″  

෯  
෥ ෶෭෩ േ ඟඡඕඬ(ൢ෶̌ෳ෯ ൗ ෶ ൘ ∑ ശ෶෭ෳ෱ ෳ ඄) ൏෯ ൡ |േ෯| ൗ අ ൏൜൒ ൟ ෢ ൅෫കෳ ൘ ෢ ൎ෶෭ 

෱൒෮″൐േ෨ 
෯൞ 

෩ േ ඟ෦ඡඕඬ(ൢ෶̌ෳ෯ ൗ ൓෶̌ෳ෯ ൗ ෶ ൘ ∑ ശ෶෭ෳ෱ ෳ඄) ൏෯
෶෭
ൡ |േ෯| ൗ අ ൏൜൒ ൟ ෢ ൅෵ෳ ൘ ෢ ൎ෶෭ 

෱൒෮″൐േ 
෨ 

෶෭ ൈැ ඟ 
෧ ൏෯ ൞ |േ෯| ൗ අෳ ൘ ෢ ൎ෶෭ 

ෲ෮ෳා෪෵ ෲ෮ෳ෌෷෷ ൈ൥ ൌ൘് ൞ ඡඝජൌ൥ ൌ൘് ൗ ശ ෳ ൈැ്
෶෭ෳ෮″ ෶෭ෳ෮″ ෶෭ෳ෮″ෳ෮″൐േ 

ෲ෦෽ා෪෵ ෲ෦෽෌෷෷ ൈ൥ ൌ൘് ൞ ඡඝජൌ൥ ൌ൘് ൗ ശ ෳ ൈැ്
෶෭ෳ෮″ ෶෭ෳ෮″ ෶෭ෳ෮″ෳ෮″൐േ 

The above calculations are directly derived from Constraints (6)-(11), which assume the 
ෲ෦෽෌෷෷free flow travel along the nodes in ൎ෶෭ . Note that in the calculation for ൥ ൌ൘്, if ൟ ̌ is෶෭ෳ෮″ 

a passenger train and will be early to its next station, then we relax the latest arrival time 

by the earliness time. By doing this, this passenger train which is early is then given a lower 

priority since it has slack in its schedule. Then the new scheduled freight train ൟ෭ could be 

scheduled before it. This step changes the departure time of the early passenger train, and 

is effective in reducing the freight train travel time while maintaining the minimum 

passenger tardiness. 

Next, we identify the intersection of all time window measurements on node ൗ′ with respect 
ඟto ൘ෳ ൘ ෢ ൎ෶෭ , to get the feasible time window on node ൗ′ . And then go to Step 2. 

ෲ෮ෳ෌෷෷ ෲ෮ෳ෌෷෷ ෲ෦෽෌෷෷ ෲ෦෽෌෷෷൥ ൞ ඡඕඬ ൥ ൌ൘് ൥ ൞ ඡඝජ ൥ ൌ൘്෶෭ෳ෮″ ඗ ෶෭ෳ෮″ ෶෭ෳ෮″ ඗ ෶෭ෳ෮″ 
෯෢෥ ෯෢෥෮෭ ෮෭ 

ෲ෮ෳා෪෵ ෲ෮ෳා෪෵ ෲ෦෽ා෪෵ ෲ෦෽ා෪෵
൥ ൞ ඡඕඬ ൥ ൌ൘് ൥ ൞ ඡඝජ ൥ ൌ൘്
෶෭ෳ෮″ ඗ ෶෭ෳ෮″ ෶෭ෳ෮″ ඗ ෶෭ෳ෮″ 

෯෢෥ ෯෢෥෮෭ ෮෭ 

෶෭ Step_2: We next identify the insertion position ൏ from the above time windows. Rank trains in 
෮″ 

േ෮″ from highest priority to lowest priority. If ഓേ෮″ഓ ൢ අ, then remove train ൟ′ with the 

highest priority from േ෮″ , update േ෮″ ൞ േ෮″൅ൎൟ′൏ and go to Step_3. Else if ഓേ෮″ഓ ൞ ඄, 
ඟ ඟassign ൏

෮

෶
″

෭ 
to the end of the train list at ൗ′ , update  ൎ෶෭ ൞ ൎ෶෭ ෽ ൎൗ′൏, and go to Step_1. 
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෦ ෩Step_3: For ൟ′ , retrieve arrival time ൢ෶″ෳ෮″ to node ൗ′ and departure time ൢ෶″ෳ෮″ from node ൗ′ 

ෲ෦෽ා෪෵ ෦If ൥ ൗ ൜ ൡ ൢ :
෶෭ෳ෮″ ෶″ෳ෮″  

෶෭ ෶″  ඟ ඟSchedule ൟ෭ before ൟ′ , ൏
෮″ ൞ ൏

෮″ . Update ൎ෶෭ ൞ ൎ෶෭ ෽ ൎൗ′൏, and go to Step_1. 

෩ ෲ෦෽෌෷෷ ෲ෮ෳා෪෵ ෦Else if ൢ ൗ ෶ ൢ ൥ and ൥ ൗ ෶ ൡ ൢ :෶″ෳ෮″ ෶෭ෳ෮″ ෶෭ෳ෮″ ෶″ෳ෮″  

෶෭ ෶″  ඟ ඟS඗ග඙඘ඩච඙ ൟ෭ before ൟ′ , ൏
෮″ ൞ ൏

෮″ , update   ൎ෶෭ ൞ ൎ෶෭ ෽ ൎൗ′൏, and go to Step_1. 

ෲ෮ෳ෌෷෷ ෩Else if ൥ ൢ ൢ ൗ ൜:෶෭ෳ෮″ ෶″ෳ෮″  

Evaluate next position in േ෮″ and return to Step_2.  

ෲ෮ෳා෪෵ ෦ ෩ ෲ෦෽෌෷෷  Else if ൥ ൗ ෶ ൢ ൢ and ൢ ൗ ෶ ൡ ൥ :
෶෭ෳ෮″ ෶″ෳ෮″ ෶″ෳ෮″ ෶෭ෳ෮″  

Evaluate next position in േ෮″ and return to Step_2  

ෲ෮ෳා෪෵ ෦ ෲ෦෽෌෷෷ ෩ Else if ൥ ൗ ൜ ൡ ൢ and ൥ ൢ ൢ ൗ ൜ :
෶෭ෳ෮″ ෶″ෳ෮″ ෶෭ෳ෮″ ෶″ෳ෮″  

ෞ ෪෦෫෇෢෭ ෪ෞ෵හ෯෯൑ൌ෹෡ ෹ ൑ൌ෼ ൐ථ് ෼ ൐ථ്
෮″ෳ෦″ ෮෭ෳ෦″ ෮෭ෳ෦″ ෮″ෳ෦″  If ෪ෞ෵෇෢෭ ෪෦෫෇෢෭ ൢ ෪ෞ෵හ෯෯൑෼෪෦෫හ෯෯ :  
෼ ൑෼ ෼ 

෮෭ෳ෦″ ෮෭ෳ෦″ ෮෭ෳ෦″ ෮෭ෳ෦″ 

෶෭ ෶″ ඟ ඟSchedule ൟ෭ before ൟ′ , ൏
෮″ ൞ ൏

෮″ , update ൎ෶෭ ൞ ൎ෶෭ ෽ ൎൗ′൏ , and go to 

Step_1. 

Else: Evaluate next position in േ෮″ and return to Step_2. 

෶෭ ෶෭ ෶෭ Step_4: Return the insertion positions ൎ൏േ ෳ ൏ൈ ෷൏෮෭ ൏ 

In Figure 13, the inference rules in Step_3 are illustrated. The decision of scheduling ൟ෭ 

before ൟ′ is denoted as ൟ෭> ൟ′ , and the decision of scheduling ൟ෭ after ൟ′ is denoted as ൟ෭< ൟ′ in 

the figure. 
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Figure 13. Inference Rules in Step_3 

Forward inference step: 

The forward inference algorithm follows the same logic as the backward inference 

algorithm. In Step_1, node ൗ′ is selected as the next node of ൗ෭ in ൎ෶෭ in each iteration. In Step_1, 
ෲ෮ෳා෪෵ ෲ෦෽ා෪෵the calculation for ൥ ൌ൘് and ൥ ൌ൘് remains the same as the backward inference step,
෶෭ෳ෮ ″ ෶෭ෳ෮ ″ 

the calculation for ൥෶෭ෳ෮ ″ 
ෲ෮ෳ෌෷෷ൌ൘് and ൥෶෭ෳ෮ ″ 

ෲ෦෽෌෷෷ൌ൘് changes to 

෥ ඄ ൏෯ 
෶෭ 
൞ අෳ ൘ ෢ ൎ෶෭ 

ඟ 

෨ 
൥෶෭ෳ෮ ″ 
ෲ෮ෳ෌෷෷ൌ൘് ൞ 

෨ 
෦ ඡඝජൌൢ෶̂ෳ෯ 

෩ ൗ ෶ ൗ ∑ ശ෶෭ෳ෱ 
േ 

෮ ″ 

ෳ ൈැ് ൏෯ 
෶෭ 
ൢ අෳ ൘ ෢ ൎ෶෭ 

ඟ 

෧ ෱൒෯൐േ 

55  



෨
෨

෨
෨

 
 

 

    ̌

     ̌
 

     

        

     

           

      

    

  

        

        

           

         

      

         

          

          

             

          

       

     

     

     

ෲ෦෽෌෷෷൥ ൌ൘്෶෭ෳ෮″ 

෮″ 

෥ ෶෭෩ േ ඟඡඝජ(ൢ෶̌ෳ෯ ൗ ෶ ൗ ∑ ശ෶෭ෳ෱ ෳ ൈැ) ൏෯ ൡ |േ෯| ൗ අ ൏൜൒ ൟ ෢ ൅෫കෳ ൘ ෢ ൎ෶෭ 
෱൒෯൐േ෨ 

෮″ ൞ 
෩ േ ඟ෦ඡඝජ(ൢ෶̌ෳ෯ ൗ ൓෶̌ෳ෯ ൗ ෶ ൗ ∑ ശ෶෭ෳ෱ ෳ ൈැ) ൏෯

෶෭
ൡ |േ෯| ൗ අ ൏൜൒ ൟ ෢ ൅෵ෳ ൘ ෢ ൎ෶෭ 

෱൒෯൐േ 
෨ 

෶෭ ൈැ 
෧ ൏෯ ൞ |േ෯| ൗ අ 

In our proposed algorithm, an insertion position sequence is constructed for each initial 

insertion position, thus at most ഓൎ෶෭ഓ sequences are constructed. Then each of the sequences 

(priorities decisions) and routing decisions are substituted into Subproblem-2 and a linear 

programming problem is solved for the departure and arrival time of all the trains. The sequence 

with the minimal objective value is finalized as the insertion position sequence for ൟ෭ on route ൎ෶෭, 

and the updated departure/arrival times of all the other trains are also obtained from the solution. 

4.2.3.1 Freight Train Priority Assignment Experiments 

The Backward-Forward Insertion (BFI) algorithm solves ഓൎ෶෭ഓ integer problems. Recall 

each integer program maintains the integrality requirement for all the ൦෶″ෳ෶෭ෳ෮ and ൦෶෭ෳ෶″ෳ෮ variables 

for node ൗ and ൟ′ ෢ ൅ඟ . All the remaining priority variables ൦෶″ෳ෶෭ෳ෯ and ൦෶෭ෳ෶″ෳ෯ where ൘ ෢ ൎ෶෭൅ൎൗ൏ 

in Subproblem-2 are relaxed. Note that the priority variables between any two previously 

scheduled trains ൟേෳ ൟൈ ෢ ൅ඟ are fixed to their values from the previous iterations. Then after 

obtaining the ൦෶″ෳ෶෭ෳ෮ and ൦෶෭ෳ෶″ෳ෮ variables from solving Subproblem-2, we apply the BIF 

algorithm to obtain the priority variables ൦෶″ෳ෶෭ෳ෯ and ൦෶෭ෳ෶″ෳ෯ for all ൘ ෢ ൎ෶෭൅ൎൗ൏. An alternative 

approach to using the BFI algorithm is to require integrality for all the variables ൦෶″ෳ෶෭ෳ෯ and 

൦෶෭ෳ෶″ෳ෯ for all ൘ ෢ ൎ෶෭ and ൟ′ ෢ ൅ඟ . Note that the although the latter approach will only solve one 

integer program, it will take significantly more computation time since there are more integer 

variables in this formulation. We refer to this approach as Full Priority Assignment (FPA). We 

next perform the comparison between the BFI algorithm and FPA algorithm. This experiment is 

performed on the test network that was introduced in Section 4.2.1.1. We add 84 freight trains and 

22 demand sets to the previous data sets. The two objectives in Subproblem-2 are weighted with 
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a coefficient of ෬ ൞ ඄෶ඉ. This coefficient is also used for the rest of the experiments. For the k-

best routes, we set ൙ ൞ අ. The experiments are conducted on a PC with a 3.6 GHz Intel Core CPU 

and 16GB memory. In summary, we first perform the procedure described in Section 4.1 to 

determine the passenger train priorities, routes and departure/arrival times. Then we apply the 

algorithm to determine the freight train scheduling order. Then we iteratively determine the routing, 

priority and departure/arrival time for each freight train. We use the algorithm described in Section 

4.2.2 to determine the routes, and we use the BFI algorithm or the FPA algorithm to determine the 

freight train priorities. Note that although at each iteration, the previously scheduled train routes 

and priorities are fixed, their departure/arrival times maybe adjusted when scheduling the new 

freight train ൟ෭ . After the BFI algorithm, a linear program is solved to get the new departure/arrival 

times for all the trains. 

In the results shown in Table 4, each row is the result of scheduling one additional freight 

train, and each row depends on the priority sequences of the previously scheduled trains. Table 4 

shows the comparison of the objective function and CPU time between the two algorithms. 
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FPA BFI FPA BFI FPA BFI 

Index Objective CPU 

(s) 

Objective CPU 

(s) 

Index 

cont. 

Objective CPU 

(s) 

Objective CPU 

(s) 

Index 

(cont.) 

Objective CPU 

(s) 

Objective CPU 

(s) 

1 40.5 0.7 40.5 0.3 30 1039.4 18.1 1045.7 2.7 59 1937.4 31.2 1940.3 15.9 

2 79.7 0.8 79.7 0.4 31 1071.9 7.5 1083.3 3.4 60 1975.1 32.3 1971.4 13.0 

3 116.9 0.9 116.9 0.4 32 1107.4 8.4 1114.9 3.6 61 2005.0 33.1 2002.5 13.5 

4 150.7 1.1 150.7 0.4 33 1139.9 8.6 1146.1 3.3 62 2038.7 35.9 2033.6 17.7 

5 185.5 1.0 185.5 0.5 34 1172.0 8.7 1178.3 4.4 63 2071.1 35.2 2066.5 12.7 

6 217.5 1.1 218.3 0.5 35 1202.5 10.3 1209.9 6.7 64 2108.7 40.2 2098.0 16.5 

7 253.5 1.3 253.5 0.6 36 1235.8 10.1 1240.4 5.8 65 2131.2 41.2 2119.7 10.8 

8 291.4 1.4 291.4 0.7 37 1266.1 14.1 1273.3 2.7 66 2151.6 39.3 2142.2 9.2 

9 326.7 4.6 332.3 0.7 38 1296.8 6.2 1303.3 10.3 67 2192.6 38.5 2175.0 19.5 

10 365.2 2.3 365.3 0.8 39 1328.0 12.4 1335.6 7.4 68 2225.0 45.3 2206.9 17.6 

11 397.7 3.9 398.1 0.9 40 1365.8 9.7 1372.7 6.8 69 2260.5 46.3 2245.6 17.5 

12 430.3 7.8 430.8 0.9 41 1398.4 13.8 1404.6 4.7 70 2292.0 47.0 2277.7 14.2 

13 465.5 13.1 466.0 1.2 42 1428.9 13.8 1438.0 5.4 71 2329.7 48.6 2309.1 14.0 

14 495.9 7.4 497.6 1.0 43 1450.9 9.3 1469.5 6.3 72 2361.3 49.3 2347.0 13.5 

15 531.5 3.0 533.2 1.5 44 1472.6 10.8 1501.7 6.7 73 2395.2 50.8 2380.3 13.2 

16 567.2 3.6 569.1 1.5 45 1501.5 7.7 1532.9 4.6 74 2433.1 51.3 2414.2 18.2 

17 600.6 4.1 602.3 1.7 46 1523.3 10.2 1560.1 4.1 75 2467.7 54.3 2447.6 18.1 

18 635.0 3.0 637.1 1.7 47 1543.1 10.5 1581.6 5.2 76 2499.7 52.4 2479.6 18.1 

19 668.1 9.2 677.1 1.9 48 1562.9 15.7 1607.4 6.4 77 2532.7 51.3 2510.4 17.3 

20 706.7 5.5 707.9 2.6 49 1602.4 8.6 1625.1 4.8 78 2567.4 50.3 2541.4 18.0 

21 739.9 5.4 741.1 3.1 50 1635.5 10.4 1645.5 5.6 79 2602.0 53.5 2575.2 17.4 

22 773.0 6.8 774.2 3.6 51 1669.5 6.4 1667.6 7.2 80 2633.5 54.9 2607.8 17.0 

23 806.2 15.1 808.1 3.3 52 1703.6 10.7 1708.4 7.2 81 2668.6 55.5 2641.6 21.3 

24 840.2 12.5 841.4 3.5 53 1736.9 19.3 1740.5 13.6 82 2705.5 56.8 2674.2 13.8 

25 874.6 11.1 875.6 3.3 54 1770.9 20.1 1772.7 16.6 83 2736.0 58.5 2705.4 15.1 

26 907.3 13.0 908.8 4.5 55 1803.4 20.0 1806.2 11.8 84 2766.5 58.8 2736.4 23.1 

27 940.1 10.5 941.4 2.2 56 1837.9 17.0 1840.7 15.8 

28 976.6 18.1 975.6 2.7 57 1874.5 22.6 1874.5 17.8 

29 1008.1 7.5 1008.8 3.4 58 1907.5 14.4 1907.7 30.1 

Table 4. Objective Comparison Between BFIPC and Opt-Integer with Same Passenger Schedule 

Note that both algorithms use an iterative approach, since the selected insertion position 
෶෭ sequence ൎ൏෮ ෳ ൗ ෢ ൎ෶෭൏ is fed to the next iteration of the next train to schedule, so that both 

algorithms give sub-optimal results. The results from the test network shows that the solution 

quality for the BFI and FPA algorithms are similar. Since the priorities for the previous iterations 

are fixed in solving the schedule of the additional train, the BFI can sometimes even outperform 

the FPA algorithm. From the comparison of CPU time, BFI is much faster than the FPA algorithm, 

especially when the number of freight train increases without much loss in solution quality. 
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5. Experimental Results  

In this section, we compare the performance of the proposed algorithms with other solution 

methods. In Section 5.1, we compare our solution approach against the optimal solutions. This 

comparison can only be made for small rail networks since it is computationally difficult to find 

optimal solution for large networks. In Section 5.2, we compare our solution with other heuristic 

methods for a large rail network. 

5.1. Small Network 

First we build a small rail network with a small number of trains. The original model is 

directly solved on this sample network and passenger train timetables using a commercial 

optimization software, CPLEX. Then we deploy our algorithm to solve the same model and 

compare the objective and CPU time. Here, we use the weighted objective function with β=0.5. 

The sample network contains 16 miles of rail track with double and triple track segments. 

There are six junctions along the track and three train stations in the rail network, and the abstract 

graph contains 49 nodes and 63 arcs. There are a total of 5 passenger trains. The railway trackage 

is show in Figure 14 and the timetable for the two schedules are shown in Table 5. In the Uniform-

schedule, the passenger train timetable is uniformly distributed throughout the day. In the 

Compact-schedule, the passenger train timetable is scheduled within two rush hour periods in 8:00-

10:00 and 17:00-19:00. 

  

         

Figure 14. Test Network with Three Stations 
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Passenger Uniform-Schedule Compact-Schedule 

Train Index Station 1 Station 2 Station 3 Station 1 Station 2 Station 3 

1 00:00 00:16 00:41 09:09 09:25 09:50 

2 05:00 05:17 05:35 09:25 09:42 10:00 

3 10:24 10:10 10:00 17:24 17:10 17:00 

4 15:29 15:15 15:00 17:49 17:35 17:25 

5 20:24 20:10 20:00 17:54 17:40 17:30 

Table 5. Test Passenger Train Schedule 

In the mathematical model, there are 2,538 integer variables. First we directly solve the 

model using CPLEX, and denote the result as the CPLEX-Solution. Then we deploy our heuristic 

algorithm to solve the same model, and denote the result as Heuristic-Solution. The results are 

presented in Table 6. Note that we stop CPLEX when either the optimal solution is found, or the 

maximum CPU time of 10,000s is reached. If the optimal solution is not found, we record the best 

solution found by CPLEX. The Opt Gap column gives the optimality gap for the CPLEX solution. 

From the results, our Heuristic-Algorithm computes the solution within 60s CPU time for all 

schedules. Note that when freight train number is greater than seven, the optimality gap is very 

large, most likely due to a poor lower bound found by Cplex. Our heuristic solution is very close 

to the optimal solution (or best CPLEX solution) in all schedules. Thus we conclude our solution 

approach can find near optimal solutions for this small rail network when it is known. 

# of 

Freight 

Trains 

Uniform-Schedule Compact-Schedule 

CPLEX-Solution Heuristic-Solution CPLEX -Solution Heuristic-Solution 

Objective Opt Gap 

(%) 

CPU time 

(s) 

Objective CPU time 

(s) 

Objective Opt Gap 

(%) 

CPU time 

(s) 

Objective CPU time 

(s) 

4 49.117 0.0 40.1 49.222 39.2 49.104 0.0 57.1 50.518 42.5 

5 60.156 0.0 413.8 65.479 40.5 59.343 0.0 695.1 61.459 40.9 

6 73.657 0.0 7,508 74.530 42.5 73.657 0.0 7,692 73.828 43.9 

7 83.950 2,847 10,000 84.769 46.0 84.76 3510 10,000 84.769 46.2 

8 99.135 3,531 10,000 99.136 48.3 98.317 4240 10,000 102.312 48.4 

Table 6. Comparison Between Optimal-solution and Heuristic-Solution 
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5.2. Large network 

In Section 4, we illustrate the details of our proposed algorithm and tune the parameters of 

the algorithm based on its performance for a medium size rail network. In Section 5.1, we compare 

the overall CPU time between our solution approach and the optimal solution on a solvable small 

network, and we discuss the solution quality. Now we move to a large scale complex network to 

test the performance of our algorithm. 

We consider a 59 miles long rail track network from Los Angeles to Riverside, CA. The 

trackage configuration consists of double-track segments and triple-track segments, and it contains 

eight passenger stations. In this network, there are 266 track segments and 88 junctions, and our 

translated abstract graph contains 331 nodes and 319 arcs. We define a base case schedule 

according to the daily schedule of two passenger rail service providers in this area, Amtrak and 

Metrolink. In the base case, there are a total of 84 freight trains and 89 passenger trains per day. 

To schedule the trains movement in the network, one approach is to follow our solution 

approach to get the decision variables, including routing decisions, priority decisions and 

departure/arrival time decisions. This approach uses our solution approach to control these train 

movements according to these decisions. We name this approach as Complete-Control. However, 

it may be difficult to strictly follow the Complete-Control solution in practice due to real-time 

changes and unexpected events in rail operations. Another approach is to deploy the 

departure/arrival time decisions from our solution model, and use a greedy based algorithm to 

construct the routes and assign the priorities as the trains travel along the rail network, similar to 

the approach of Lu and Dessouky (2004). The greedy based algorithm assigns priorities to trains 

under a FCFS rule. The routing decision is made when a train approaches the end of the node. If 

there are multiple available successor nodes, the node that gives the best performance for the 

system is selected. The performance is evaluated by a depth-first-search-like algorithm. If there is 

no available successor node, the train decelerates to prepare for stopping at the end of the node. 

We name this approach as Partial-Control. The third approach is to randomly determine the freight 

train departure times and uses the greedy algorithm for routing and priority assignment, which is 

referred as Random-Departure. The fourth approach is to assign the freight trains with uniform 

departure times (equal interval) and uses the greedy algorithm for routing and priority assignment, 
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which is referred as Uniform-Departure. In both the Random-Departure and Uniform-Departure 

approaches, the departure times of passenger trains from the origin station follow the timetable. 

A comparison of the four approaches is presented in Table 7. Freight train delay is the 

difference between the actual travel time and the free flow travel time. In the base case schedule, 

there are 84 freight trains per day, and there are 89 passenger trains with 260 passenger train and 

station combinations. Passenger train tardiness percentage is the percentage of times that a 

passenger train arrived tardy to a station and passenger train average tardiness is the average 

tardiness of these tardy arrivals. We increase the number of freight trains by 11 each time, and 

evaluate the performance of our approach when freight train demand increases. 

# of 

Freight 

Train 

Complete-Control Partial-Control 

Freight train Passenger train Freight train Passenger train 

Average 

Delay (min) 

Tardiness 

Percentage (%) 

Average 

Tardiness (min) 

Average 

Delay (min) 

Tardiness 

Percentage (%) 

Average 

Tardiness (min) 

84 1.634 0 0 3.282 5.96 1.158 
95 1.701 0 0 3.484 7.78 1.259 

106 1.752 0 0 3.761 8.52 1.261 
117 1.983 0 0 4.733 8.96 1.272 
128 2.047 0 0 5.076 9.88 1.387 
139 2.122 0 0 6.812 10.00 1.490 
150 2.363 0 0 8.944 10.78 1.495 

# of 

Freight 

Train 

Random-Departure Uniform-Departure 

Freight train Passenger train Freight train Passenger train 

Average 

Delay (min) 

Tardiness 

Percentage (%) 

Average 

Tardiness (min) 

Average 

Delay (min) 

Tardiness 

Percentage (%) 

Average 

Tardiness (min) 

84 8.223 28.06 5.440 8.029 27.59 5.517 

95 9.404 31.74 6.036 10.361 30.98 6.101 

106 10.121 34.82 7.745 11.405 35.71 7.697 

117 11.332 38.64 8.046 11.809 39.02 7.912 

128 12.126 39.79 8.969 12.837 40.11 8.871 

139 13.589 44.28 11.244 13.522 44.03 11.296 

150 14.262 48.58 11.654 14.901 49.01 11.493 

Table 7. Performance Comparison Between Complete-Control, Partial-Control, Random- 

Departure and Uniform-Departure  

In Table 7, the Complete-Control control approach outperforms the other three approaches 

in reducing the freight train average delay and the passenger train tardiness. The Random-
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Departure and Uniform-Departure have similar results, since the departure times of the freight 

trains do not consider the traffic congestion of the network. Thus the delay of the freight trains and 

tardiness of the passenger trains grows with increasing number of freight trains. Note that the 

average free flow travel time of freight trains is about 72 minutes in all cases, so when the number 

of freight trains increases, the delay of the freight trains actually contributes to a larger percentage 

to their total travel time. The results from Complete-Control and Partial-Control have smaller 

freight average delay time and average passenger train tardiness, since the departure time decision 

is optimized according to the traffic in the rail network. Among the four approaches, the Complete-

Control approach gives zero average passenger train tardiness and the smallest freight train delay. 

This indicates that to meet the expanded freight train capacity, our proposed solution procedure 

provides an efficient and high quality solution for the integrated passenger and freight train 

scheduling and routing problem. 
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6. Implementation  

This project addresses the problem of integrating passenger and freight rail scheduling. 

Rail transportation is an efficient way to move commodities and passengers across the country. 

The expected rapid growth in freight rail transportation will introduce additional congestion to the 

current rail network and influence the passenger trains’ schedule. Methodologies that can improve 

the scheduling of trains will improve the overall efficiency of the logistics system and expand the 

capacity of the railway network with minimal disruption to passenger rail service. 

The integrated routing and scheduling of freight and passenger train model, and the 

proposed decomposition heuristics developed as part of this funded research project were tested 

on actual data for the Los Angeles rail network. The computational experiments show that our 

approach compares favorably against other approaches. The implementation of our heuristics will 

require the programming language Python and an optimization solver, such as CPLEX. It also 

requires converting an actual rail network into an abstract graph as described in Section 3.1. The 

entire solution framework including all heuristics introduced is implemented in Python. 
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7. Conclusions  

In the United States, rail transportation offers a viable mode to transport freight and 

passengers across the country. Due to the rapid increase in international trade, there has been a 

significant increase in railway traffic across the nation. In order for rail transportation to continue 

to be efficient, an in-depth understanding and study of how congestion occurs in a railway network, 

how to prevent it and how to reduce the delay experienced by trains is required. While there exists 

prior work in the areas of railway routing and scheduling, there has been little work that integrates 

the scheduling of passenger and freight trains to minimize passenger train tardiness and freight 

train travel times respectively, while accounting for the complexity and scalability of real-world 

rail operations. To address this gap, we present a solution approach involving an integrated routing 

and scheduling model that can be used to optimize the travel times of the freight trains and 

tardiness of the passenger trains. To solve the problem for real-world size problems, a vertical 

decomposition is first performed for passenger train schedule optimization and then combined with 

freight train scheduling in an iterative procedure. 

From the results presented in Section 4.2.3.1, our decomposition based solution framework 

solves the problems more efficiently than directly deploying a commercial optimization solver 

such as CPLEX, while maintaining a high quality solution. In Section 5, we first show that our 

decomposition heuristic procedure provides solutions that are near optimal on a test problem for a 

small rail network. We can only compare to the optimal solution for small size problems, since it 

is computationally hard to find optimal solutions for large rail networks. Thus, for a large rail 

network, we compare our decomposition procedure with other heuristic approaches, and results 

show that our heuristic outperforms other heuristic rules. 
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