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2 El Zarwi, Vij, and Walker 

Abstract 
The motivation of this paper is to model and predict the evolution of preferences over time. Literature 
suggests that preferences, as denoted by taste parameters and consideration sets in the context of utility-
maximizing behavior, may evolve over time in response to changes in demographic and situational 
variables, psychological, sociological and biological constructs, and available alternatives and their 
attributes. However, existing representations typically overlook the influence of past experiences on 
present preferences. This study develops, applies and tests a hidden Markov model with a discrete choice 
kernel to model and forecast the evolution of individual preferences and behaviors over long-range 
forecasting horizons. The hidden states denote different preferences i.e. modes considered in the choice 
set, and sensitivity to level-of-service attributes. The evolutionary path of those hidden states (preference 
states) is hypothesized to be a first-order Markov process such that an individual’s preferences during a 
particular time period are dependent on their preferences during the previous time period. The framework 
is applied to study the evolution of travel mode preferences, or modality styles, over time, in response to a 
major change in the public transportation system. We use longitudinal travel diary from Santiago, Chile. 
The dataset consists of four one-week pseudo travel diaries collected before and after the introduction of 
Transantiago, a complete redesign of the public transportation system in the city. Our model identifies 
four modality styles in the population, labeled as follows: drivers, bus users, bus-metro users, and auto-
metro users. The modality styles differ in terms of the travel modes that they consider and their sensitivity 
to level-of-service attributes (travel time, travel cost, etc.). At the population level, there are significant 
shifts in the distribution of individuals across modality styles before and after the change in the system, 
but the distribution is relatively stable in the periods after the change. In general, the proportion of drivers, 
auto-metro users, and bus-metro users has increased, and the proportion of bus users has decreased. At the 
individual level, habit formation is found to impact transition probabilities across all modality styles: 
individuals are more likely to stay in the same modality style over successive time periods than transition 
to a different modality style. Finally, in terms of policy analysis, a comparison between the proposed 
dynamic framework and comparable static frameworks reveals differences in aggregate forecasts for 
different policy scenarios, demonstrating the value of the proposed framework for both individual and 
population-level policy analysis. 

Keywords: evolution of preferences, behavioral dynamics, transformative mobility, hidden Markov 
models, trends of travel behavior, long-range forecasting 



      
 
 

  
    

     
   

          
      

        
        

      
     

     
        

      
  

        
    

    
       

     
   

       
           

 

       
       
         

         
      

          
        

   

       
        

    
       

  
     

      
         

        
         

    

3 El Zarwi, Vij, and Walker 

1. Introduction 
Discrete choice analysts have devoted much attention to the subject of preference heterogeneity. 
Preferences, as denoted by taste parameters and consideration sets in the context of utility-maximizing 
behavior, are regularly modeled as functions of demographic and situational variables. For example, value 
of travel time, or the marginal rate of substitution between travel time and cost in the context of travel 
mode choice, is frequently formulated as a function of income, and separate values of time are usually 
estimated for work and non-work travel (c.f. Parsons Brinkerhoff Quade & Douglas, Inc., 2005; 
Cambridge Systematics, 2002). Recent interest in the influence of latent psychological, sociological and 
biological constructs, such as attitudes, normative beliefs and affective desires, has led to the additional 
inclusion of these variables within existing representations of individual preferences (e.g. Bahamonde-
Birke, 2015). Some studies have even contended that preferences are an endogenous function of the 
decision-making environment, as characterized by available alternatives and their attributes (e.g. Vij and 
Walker, 2014). Implicit to each of these representations is the following assumption: as these explanatory 
variables change over time, so should corresponding preferences. 

However, most existing frameworks employ static representations of individual behavior that do not 
capture preference dependencies over time for the same individual. In addition to the variables identified 
previously, an individual’s preferences in the present are expected to be a function of their preferences in 
the past, as evidenced by findings across multiple contexts, including transportation (Carrel et al., 2015), 
finance (Kaustia and Knüpfer, 2008), health (Gum et al., 2006), tourism (Sönmez and Graefe, 1998), 
sustainable development (O’Hara and Stagl, 2002), etc. Notwithstanding this evidence, discrete choice 
frameworks that capture such temporal dependencies are rare in the literature. Part of the limitation is 
empirical: most studies use cross-sectional data, and longitudinal data of the kind that is needed is not 
always available. 

The ability to understand and predict how individual preferences evolve over time offers the potential to 
address transportation policy questions of great interest. Who is more likely to use shared mobility 
services: individuals who currently drive, or those who take public transport? Will the adoption of 
driverless cars be led by individuals with significant past exposure to other new technologies, or 
individuals with the greatest need for access to self-driving car technology? How do changes to the public 
transport system impact individuals that are differently predisposed towards available travel modes? 
Transport system use and policy will vary, often considerably, depending upon the answer to each of 
these questions. In fact, it is this last question that motivates the empirical application in this study. 

The objective of this study is to develop an econometric framework that can model preference 
dependencies over time for the same individual. Our proposed framework constitutes a hidden Markov 
model (HMM) with a discrete choice kernel. Decision-makers are assumed to be utility-maximizing, and 
the unobserved states denote different preferences, as denoted by differences in taste parameters and 
consideration sets. Transitions between preferences are expressed as a function of time-varying 
covariates, namely socio-demographic variables and alternative attributes. The evolutionary path is 
hypothesized to be a first-order Markov process such that an individual’s preferences during a particular 
time period are dependent on their preferences during the previous time period. The framework is 
empirically evaluated using data from the Santiago Panel (Yáñez et al., 2010), which comprises four one-
week waves of pseudo travel-diary data spanning a twenty-two month period that extends both before and 
after the introduction of Transantiago, a major redesign of the public transport system in Santiago, Chile. 



      
 
 

        
      

         
      

         
           

  

         
     

         
       

     
        

         
        

 

  
       

      
         

        
     

       
     

   

         
     

      
      

      

     
      

        
         

        
        

  

        
          
         
       

         
     

4 El Zarwi, Vij, and Walker 

HMMs were first proposed nearly five decades ago (Baum et al., 1970; Baum and Petrie, 1966). They 
have a rich history of application in machine learning, with particular regards to the subject of speech 
recognition (Rabiner, 1989). They have also been applied, albeit limitedly, to the study of individual 
behavior in the applied disciplines of education (e.g. Hong and Ho, 2005; George, 2000), marketing (e.g. 
Netzer et al., 2008) and transportation (e.g. Xiong et al., 2015; Choudhury et al., 2010; Goulias, 1999). 
Our contribution in this paper is to develop, apply, and test an HMM framework that captures, models 
and forecasts the evolution of individual preferences and behaviors over long-range forecasting horizons. 

The remainder of the paper is organized as follows: Section 2 motivates the study through a discussion of 
previous findings on the evolution of individual preferences over time; Section 3 reviews dynamic 
discrete choice model frameworks that have been used in the past to model temporal interdependencies in 
preferences and behavior, and how they relate to our proposed HMM framework; Section 4 outlines the 
proposed methodological framework; Section 5 discusses the initial conditions problem in dynamic 
discrete choice models, and if and how it applies to HMMs; Section 6 describes the dataset that 
constitutes our empirical application; Section 7 presents results from the model framework; Section 8 
demonstrates the benefits of the framework for policy analysis; and finally, Section 9 concludes with a 
discussion of key findings, limitations and directions for future research. 

2. Motivation: Evolution of Individual Preferences over Time 
Most economists would agree that individual preferences, as denoted by taste parameters and 
consideration sets in the context of utility-maximizing behavior, can and do change over time. However, 
most would also contend that understanding why particular preferences exist in the first place, and 
consequently, how they change over time, ought not to be the concern of mainstream economics. While 
the view has been challenged over the years (notable examples include Becker, 1996 and Elster, 2016), 
most contemporary economic representations of individual behavior continue to treat preferences as 
exogenously determined, and attention is usually limited to understanding and predicting policy 
implications under any given set of preferences. 

Preferences may change over time in response to changes in, among others, demographic and situational 
variables, psychological, sociological and biological constructs, and available alternatives and their 
attributes. Changes in preferences have been observed across a broad spectrum of behavioral contexts, 
from the personal to the public. For example, Buss et al. (2001) examined the evolution of mate 
preferences between 1939 and 1996 at geographically different locations in the United States. Their 
findings indicate that mate preferences did indeed change. When looking for a potential partner over time, 
both males and females increased the importance of physical attraction and financial status, and males 
decreased the importance of domestic skills. At the other end of the spectrum, Page and Shapiro (1982) 
studied the evolution of preferences on matters of domestic and foreign policy, such as civil liberties, 
abortion, etc., between 1935 and 1979 in the United States. They found that significant shifts in 
preferences were rarely the case over short time periods. However, when opinions and preferences did 
actually change, that was the outcome of changes occurring in the decision-making environment, whether 
in the social and economic spectrum or in the lives of decision-makers. 

In the context of transportation, perhaps the ‘peak car’ phenomenon best represents the notion of 
changing preferences over time. The turn of the twenty-first century has witnessed stagnant or declining 
levels of car use across much of the developed world (Goodwin and Dender, 2013; Garceau et al., 2014). 
The shift in preferences away from the car as a mode of transportation has been attributed to a 
combination of economic, social and technological factors that include a recessionary global economy, 
fluctuating oil prices, ageing national populations, shifts in cultural values, advances in information and 



      
 
 

        
 

         
         

          
         
     

           
            

         
      

       
         

       
   

      
         

     
         

          
       

        
            

  

       
    

         
        

         
         
        

       
       

       
         

     
       

     

   
       

        
          

         
      

5 El Zarwi, Vij, and Walker 

communications technology, etc. (see, for example, Vij et al., 2017; McDonald, 2015; Kuhnimhof et al., 
2013; Collet, 2012). 

What about travel behavior in the era of transformative mobility? Why would one expect preferences to 
change over time in response to major changes in the transportation system, such as the introduction of 
autonomous vehicles? There may be changes in consideration sets. Individuals unwilling or unable to 
drive themselves may be willing and able to use autonomous vehicles. There may be changes in taste 
parameters. Being in an autonomous vehicle will allow decision-makers to multitask, which may cause 
them to be: (1) less sensitive to driving during peak hours and getting caught up in congestion; (2) not 
worried about finding a parking spot in congested cities nor paying parking fees; and (3) more flexible in 
terms of residential choice location as they might consider residing outside dense urban cities and 
commute via the autonomous vehicle since driving has become less onerous. These factors may lead to 
changes in value of time (VOT). The assumption that preferences are stable may be valid when 
forecasting over short-term periods. However, when forecasting over long-term horizons, we need to take 
into account that various shocks/changes in the built environment and investments in technologies and 
services are bound to happen, and that these shocks/changes will likely impact preferences. 

Preferences may additionally depend upon past experiences. Though most neoclassical frameworks 
assume that preferences are inter-temporally separable, studies on the formation and persistence of habits 
have questioned the validity of the assumption (Muellbauer, 1988; von Weizsäcker, 1971; Pollak, 1970). 
Past experiences provide a ready yardstick for comparison, serving both to magnify differences under 
certain contexts, and reduce contrasts in others. As Becker (1992) writes, “a given standard of living 
usually provides less utility to persons who had grown accustomed to a higher standard in the past. It is 
the decline in health, rather than simply poor health, that often makes elderly persons depressed. And 
what appeared to be a wonderful view from a newly occupied house may become boring and trite after 
living there for several years.” 

Past experiences can also serve as anchors, dampening the ability of external events to force 
commensurate shifts in individual preferences. Two individuals with completely exchangeable current 
circumstances may still differ in terms of their preferences, due to corresponding differences in their 
personal histories and the life paths that brought them here. For example, Bronnenberg et al. (2012), in 
their study on the long-run evolution of brand preferences among individual consumers, concluded that 
“brand capital evolves endogenously as a function of consumers’ life histories and decays slowly once 
formed”. Their findings are echoed by studies in other behavioral contexts. Travel behavior in particular, 
due to its repetitive nature, is especially prone to habit formation (Thøgersen, 2006; Gärling and 
Axhausen, 2003; Sönmez and Graefe, 1998; Aarts et al., 1997). “Habits, once formed, become 
regularized and the market mechanism virtually ceases to operate”, and “consequently, if these habits can 
be identified, choices made at any future decision point can be predicted with a fairly high degree of 
accuracy” (Banister, 1978). As an extreme example, some studies have speculated that the use of active 
modes of transportation (i.e. walking and bicycling) as children can promote more sustainable travel 
behavior practices as adults (see, for example, Mitra et al., 2010; Faulkner et al., 2009; Roberts, 1996). 

However, hypotheses such as these have rarely been tested in the literature, due largely to limitations on 
available data. Transportation planning has typically relied on cross-sectional mobility data for 
understanding and predicting different dimensions of travel and activity behavior. Cross-sectional studies 
can provide population snapshots at a point in time; by extension, repeated cross-sections can show broad 
population trends over time. However, cross-sectional studies cannot measure changes at the level of the 
individual over time. As mentioned before, the ability to understand and predict changes in individual-



      
 
 

      
 

   
         

      
          

      
       

       
       

          
       

          
     

        
     

      
  

  
           

        
         

       
         

 

        
        

     
            

       
         

      
   

  

   
        

      
       

     
    

          
  

6 El Zarwi, Vij, and Walker 

level preferences and behaviors offers the potential to address transportation policy questions of great 
interest. 

Consider, for example, the peak car phenomenon. A 5% decrease in driving mode shares at the population 
level over time could imply that 5% of the population has stopped driving, or that the entire population is 
driving 5% less, or some combination of the two (Hanson and Huff, 1988). The nature and impact of 
transport policy will depend on which of these competing hypotheses is true; unfortunately, a traditional 
cross-sectional study would be unable to distinguish between these hypotheses. Similarly, consider the 
case of new transportation technologies and services, such as autonomous and/or alternative-fuel vehicles 
and shared mobility services, that promise to transform mobility. The diffusion of new technologies and 
services is a temporal process (Rogers, 2010). The key to understanding the future of mobility is not only 
to study the immediate impact of current policies, services, and nudges; but also how these impacts 
influence trends and their evolution over decades, particularly as new technologies and services are 
introduced. For example, is the growth in carsharing and ridesharing services being led by individuals 
who have always been multimodal, or do these services also appeal to car-dependent households? Will 
self-driving cars be subject to the constraints of an ownership-based economy, or will gradual changes in 
preferences imply that access and use is facilitated primarily through shared services? Cross-sectional 
studies that use static frameworks cannot address these questions. Where such insight is required, 
longitudinal studies that use dynamic frameworks are necessary. 

3. Methodological Basis: Dynamic Models for Discrete Choice Analysis 
Dynamic discrete choice models try to account for the influence of past experiences on present choices. 
According to Kenneth Train (2009), current choices affect future choices, as past choices affect current 
choices, and this causality provides the basis for dynamic discrete choice modeling. There are two broad 
paradigms in the literature (for an excellent synthesis on the subject, the reader is referred to von Auer, 
1998). Both paradigms assume that present preferences and behavior are impacted by past experiences; 
they differ in the ascribed importance of expected future utility on present behavior. 

The first paradigm assumes that individuals, when making a decision at a given time period, behave as if 
they are forward-looking agents that maximize their present and expected future discounted utility over 
the entire time horizon. Perhaps the most famous example of such a representation of dynamic discrete 
choice behavior is the study by Rust (1987) on the optimal replacement of bus engines. Rust’s 
representation has since been applied to many contexts, including car ownership (see for example Cirillo 
and Xu, 2011; and Glerum et al., 2013), and it is in this context that we describe the framework. A car is 
considered a durable good that yields utility over time. An individual’s choice of whether to purchase a 
car at a certain time period or postpone the purchase depends on how that individual expects to use the car 
both now and in the future. 

The second paradigm assumes a more myopic view of behavior, where individuals are assumed to 
maximize their present utility, and future expected utility is completely discounted. In other words, the 
individual cares only about the current time period, and choices in later time periods are deemed 
irrelevant. For theoretical treatments of such myopic representations of individual behavior, the reader is 
referred to, among others, Gorman (1967), Pollak (1970) and von Weizsäcker (1971). The HMM 
conforms to this second paradigm, where an individual’s preferences in the present are assumed to be 
dependent on their preferences in the past, but at any given point in time, the individual is assumed only 
to maximize present utility. 



      
 
 

         
         

     
         

       
      

         
 

           
       

 
          

          
        

        
       
       

         
      

       
   

  
  

 

  
       

          
             

      
       

  

        
       

        
        

       
    

        
        

    

7 El Zarwi, Vij, and Walker 

Depending on the empirical context, one or the other paradigm may be preferred. When studying medium 
and long-term travel and activity behaviors, such as car ownership and residential location, it may be 
more reasonable to assume that individuals are forward-looking. Decisions such as whether to buy a car 
and where to live have implications that extend well beyond the present. However, when studying short-
term travel and activity behaviors, such as travel mode choice, it may be more reasonable to assume that 
individuals are myopic. The impact of these decisions is typically short-lived and readily reversible. Since 
our model framework will be applied to the study of short-term behaviors, we will be adopting a myopic 
view of decision-making, articulated through the HMM framework. 

As mentioned before, HMMs have been used previously to study the dynamics of travel and activity 
behavior. Goulias (1999) used HMMs to study the dynamics of household time allocation where the 
dependent variable is continuous. Choudhury et al. (2010) used HMMs to represent the evolution of latent 
plans over time, and their consequent impact on actions at any particular point in time. Their framework 
does make an explicit link with discrete choice analysis. They apply their framework to model the 
“evolution of unobserved driving decisions as drivers enter a freeway.” Their model is described very 
generally; extensions such as incorporating the expected maximum utility are not implemented and 
applications to long-range modeling and forecasting are not investigated. Perhaps the empirical 
application that is closest to the work presented here is the study by Xiong et al. (2015), who used HMMs 
to study the dynamic nature of travel mode choice behavior over time. Their framework does not allow 
for heterogeneity with regards to consideration sets, the transition model is not sensitive to changes in 
available alternatives and their attributes, and the value of the framework for policy analysis, beyond 
improvements in fit, is unclear. Our objective is to build upon these previous studies to develop a 
methodological framework capable of modeling the dynamics of preferences over time in a manner that is 
theoretically grounded, behaviorally meaningful and practically useful. 

4. Methodological Framework 
Our methodological framework builds on dynamic models, which are becoming more popular in the field 
of travel behavior. For example, Van Acker et al. (2014) highlight the need for incorporating dynamics 
into models of behavior by stating that “it will almost inevitably be the case that the range of travel 
choices open to people will be wider over time periods in which lifestyles can also change, than in the 
short run when the constraints will be more prominent. As such, the whole way of thinking about travel 
and lifestyle must be seen as a process of change over time, not as a fixed state”. 

We propose using a hidden Markov model (HMM) with a discrete choice kernel, where the following two 
key assumptions are made: (1) we assume a myopic view of behavior, such that observed choices at a 
certain time period t are only dependent on corresponding preferences during that time period, and future 
expected utility is completely discounted; and (2) the hidden states denote different preferences, and the 
evolution of preferences over time is assumed to be a first-order Markov process such that an individual’s 
preferences during a certain time period is dependent on their preferences during the previous time period. 
Figure 1 illustrates the HMM assumptions. It is important to note that ‘preference state at time 1’ 
determines the effects of inertia and past experiences on the probabilistic assignment of each individual to 
a particular set of preferences during the first time period. 
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Figure 1: Hidden Markov Model Structure (figure adapted from Choudhury et al., 2010) 

Hidden Markov models comprise three components: initialization model, transition model, and observed 
output model (Jordan, 2003). The initialization model predicts the probability that a decision-maker 
belongs to a certain hidden state during the first time period. The transition model predicts the probability 
of observing a certain evolution of hidden states between successive time periods. Lastly, the observed 
output model predicts the probability of observing a vector of choices for a decision-maker at a given 
time period, conditional on belonging to a certain hidden state during that time period. 

We operationalize the HMM in the context of travel mode choice behavior by relying on the construct of 
modality styles. The construct has been introduced in the literature to refer to overarching lifestyles, built 
around the use of a particular set of travel modes, that influence all dimensions of an individual’s travel 
and activity behavior (Vij et al., 2013). In the context of travel mode choice behavior, we use modality 
styles to refer to distinct segments in the population with different travel mode preferences, i.e. modes 
considered in the choice set, and sensitivity to level-of-service attributes. For example, modality style 
models have shown that in 2000, 42% of the San Francisco Bay Area’s population exclusively considered 
driving, whereas this share reduced to 23% in 2012 (Vij et al., 2017). Investment in technologies and 
services are expected to influence both the travel modes considered and the sensitivity to level-of-service 
attributes. Consider, for example, the case of autonomous vehicles. A fully autonomous vehicle that is 
capable of navigating itself without human input might prompt changes in the value of time, through its 
ability to allow passengers to engage in whatever tasks they wish to while inside the car. Similar changes 
in preferences can be imagined in response to other changes in the transportation system. Modeling what 
types of modality styles have flourished or declined over time is key to understanding and predicting 
mode share shifts in response to policies, services, technologies and nudges. 

Accordingly, in the context of travel mode choice behavior, the unobserved states in the dynamic 
framework shall be represented by modality styles. Through the remainder of the paper, we will use the 
terms modality styles and (travel mode) preferences interchangeably. The transition model quantifies the 
evolution of modality styles over time to capture structural shifts in preferences. Our dynamic framework 
requires a transition model that can capture shifts in modality styles brought about by major changes to 
the transportation system (sharing, automation, transit on demand) or by shifts in attitudes (e.g. 
towards/away from auto-orientation), or changes in socio-demographic variables. We are interested in 
forecasting, and thus require a structural model for the transition probabilities that captures the influence 
of transportation and societal changes. For this we will employ a homogenous HMM, which assumes that 
the transition model between modality styles (preferences) from one time period to the other is 
consistent/static i.e. the parameters entering the transition model between subsequent waves are time-
invariant. Any differences in transition probabilities over waves are assumed to arise due to changes in 
the explanatory variables entering the transition model. Figure 2 displays the dynamic nature of our 
framework. Over following subsections, we explain each of the constituent sub-models in greater detail. 
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Time Period t Time Period t+1 

Figure 2: Proposed Dynamic Discrete Choice Framework 

4.1 Class-specific Mode Choice Model 
The class-specific mode choice model predicts the probability that individual n during time period t made 
a set of choices 𝑦𝑛𝑡, conditional on the individual belonging to modality style, or class, 𝑠 during that time 
period. Note that 𝑦𝑛𝑡 is a vector whose element 𝑦𝑛𝑡𝑘𝑗 equals one if the individual chose travel mode 𝑗 
during choice situation 𝑘 over time period t, and zero otherwise. The model allows more than one choice 
situation per individual and time period, and correlation between these choice situations is captured 
through the assumption that an individual’s modality style remains stable over a single time period. 

Let 𝑈𝑛𝑡𝑘𝑗|𝑠 denote the utility of travel mode j during choice situation k over time period t for individual n, 
conditional on the individual belonging to modality style s, and is expressed as follows: 

′ = 𝑈𝑛𝑡𝑘𝑗|𝑠 = 𝑉𝑛𝑡𝑘𝑗|𝑠 + 𝜀𝑛𝑡𝑘𝑗|𝑠 𝑥𝑛𝑡𝑘𝑗𝛽𝑠 + 𝜀𝑛𝑡𝑘𝑗|𝑠 

′ where 𝑉𝑛𝑡𝑘𝑗|𝑠 is the systematic utility, 𝑥𝑛𝑡𝑘𝑗 is a row vector of attributes of alternative j during choice 
situation k over time period t for individual n, 𝛽𝑠 is a column vector of parameters specific to modality 
style s and 𝜀𝑛𝑡𝑘𝑗|𝑠 is the stochastic component of the utility specification. Now, assuming that all 
individuals are utility-maximizers and 𝜀𝑛𝑡𝑘𝑗|𝑠 follows an i.i.d. Extreme Value Type I distribution across 
individuals, time periods, choice situations, alternatives and modality styles with location zero and scale 
one, the probability that individual 𝑛 chooses travel mode 𝑗 during choice situation 𝑘 over time period t, 
conditional on the individual belonging to modality style 𝑠, is as follows: 



      
 
 

       
 

 

         
       

        
           
      

 

           
          

      

 
 

 

        

 

  
          
        

     
          

      
   

    
        

  

            
 

      

               
         

         
        

 
 

10 El Zarwi, Vij, and Walker 

′ 
𝑒𝑥𝑛𝑡𝑘𝑗𝛽𝑠 

𝑃(𝑦𝑛𝑡𝑘𝑗 = 1|𝑞𝑛𝑡𝑠 = 1) = 𝑃(𝑈𝑛𝑡𝑘𝑗|𝑠 ≥ 𝑈𝑛𝑡𝑘𝑗′|𝑠 ∀ 𝑗′ ∈ 𝐶𝑛𝑡𝑘|𝑠) = ′ 
∑ 𝑒𝑥𝑛𝑡𝑘𝑗′𝛽𝑠 

𝑗′∈ 𝐶𝑛𝑡𝑘|𝑠 

where 𝑃(𝑦𝑛𝑡𝑘𝑗 = 1|𝑞𝑛𝑡𝑠 = 1) denotes predicting the probability that individual n over wave t and choice 
situation k chooses alternative j (implying 𝑦𝑛𝑡𝑘𝑗 equals one and zero otherwise) conditional on belonging 
to modality style s during wave t (𝑞𝑛𝑡𝑠 equals one and zero otherwise), and 𝐶𝑛𝑡𝑘|𝑠 denotes the choice set 
available for individual n at wave t and choice situation k conditional on modality style s. Preference 
heterogeneity is captured by allowing both the taste parameters 𝛽𝑠 and the consideration sets 𝐶𝑛𝑡𝑘|𝑠 to 
vary across modality styles. 

Assuming that choice probabilities for individual n across all choice situations belonging to time period t 
are conditionally independent, given that the individual belongs to modality style s during time period t, 
the conditional probability of observing a vector of choices 𝑦𝑛𝑡 for a certain time period t becomes: 

𝐾𝑛𝑡 

= 1)𝑦𝑛𝑡𝑘𝑗 𝑃(𝑦𝑛𝑡|𝑞𝑛𝑡𝑠 = 1) = ∏ ∏ 𝑃(𝑦𝑛𝑡𝑘𝑗 = 1|𝑞𝑛𝑡𝑠 
𝑘=1 𝑗∈ 𝐶𝑛𝑡𝑘|𝑠 

where  𝐾𝑛𝑡 is the number of distinct choice situations observed for individual n over time period t. 

4.2 Initialization Model 
The initialization model predicts the probability that individual n belongs to modality style s during the 
first time period. The probabilities are expressed as a function of individual characteristics during that 
time period, denoted by the column vector 𝑧𝑛1. Characteristics may include observable socio-economic 
and demographic variables, such as income and gender, or later psychological, sociological or biological 
constructs, such as attitudes, normative beliefs or affective desires. In our case, information on latent 
constructs was not available across all observation periods, and characteristics include observable socio-
economic and demographic variables only. Depending on the analyst’s assumption, the model may be 
formulated as a multinomial logit, multinomial probit, mixed logit or some other model form. We assume 
that the initialization model is multinomial logit. 

Let 𝑈𝑛1𝑠 denote the utility of modality style s during the first wave for individual n which is expressed as 
follows: 

′ = 𝑈𝑛1𝑠 = 𝑉𝑛1𝑠 + 𝜀𝑛1𝑠 𝑧𝑛1𝜏𝑠 + 𝜀𝑛1𝑠 

′ where 𝑉𝑛1𝑠 is the systematic utility that is observed by the analyst, 𝑧𝑛1is a row vector of socio-economic 
and demographic variables for individual n during the first wave and 𝜏𝑠 is the associated column vector of 
parameter estimates for modality style s, and 𝜀𝑛1𝑠 is the stochastic component of the utility specification. 
Now, assuming that all individuals are utility maximizers and that 𝜀𝑛1𝑠 follows an i.i.d. Extreme Value 
Type I distribution across individuals, first wave, and modality styles with location zero and scale one, the 
initialization model could be formulated as such: 



      
 
 

       

           
        

  

   
        

           
        

        
     
         
 

         
      

          

        
              

          
    

        
          

 

          

     
      

   

    
          

         
         

       
          

     
          

           
  

11 El Zarwi, Vij, and Walker 

′ 𝑒𝑧𝑛1𝜏𝑠 

𝑃(𝑞𝑛1𝑠 = 1|𝑍𝑛1) = 𝑃(𝑈𝑛1𝑠 ≥ 𝑈𝑛1𝑠′ ∀ 𝑠′ = 1,2, … . , 𝑆) = 𝑆 ′ ∑ 𝑒𝑧𝑛1𝜏𝑠′ 
𝑠′=1 

where 𝑃(𝑞𝑛1𝑠 = 1|𝑍𝑛1) represents the probability that individual n has modality style s during the first 
wave conditional on his/her socio-demographic variables during the first wave, and 𝑆 denotes the total 
number of modality styles in the sample. 

4.3 Transition Model 
Analogously, the transition model predicts the probability that individual n transitions to modality style s 
during time period t, conditional on the individual belonging to modality style r during the previous time 
period (t-1). Ordinarily, the probabilities may be expressed as a function only of individual characteristics 
during that time period (see, for example, Xiong et al., 2015), as was the case with the initialization 
model. Depending on the analyst’s assumption, the transition model may be formulated as a multinomial 
logit, multinomial probit, mixed logit or some other model form. We assume that the transition model is 
multinomial logit. 

Let 𝑈𝑛𝑡𝑠|(𝑡−1)𝑟 denote the utility derived from transitioning into modality style s at wave t conditional on 
individual n belonging to modality style r during the previous wave (t-1), which is expressed as follows: 

′ = 𝑈𝑛𝑡𝑠|(𝑡−1)𝑟 = 𝑉𝑛𝑡𝑠|(𝑡−1)𝑟 + 𝜀𝑛𝑡𝑠|(𝑡−1)𝑟 𝑧𝑛𝑡𝛾𝑠𝑟 + 𝜀𝑛𝑡𝑠|(𝑡−1)𝑟 

′ where 𝑉𝑛𝑡𝑠|(𝑡−1)𝑟 is the systematic utility, 𝑧𝑛𝑡 is a row vector of observable socio-economic and 
demographic characteristics of individual n over wave t and 𝛾𝑠𝑟 is a column vector of parameters specific 
to modality style s at wave t given that the individual belonged to modality style r during wave (t-1), and 
𝜀𝑛𝑡𝑠|(𝑡−1)𝑟 is the stochastic component of the utility specification. 

Assuming that all individuals are utility maximizers and that 𝜀𝑛𝑡𝑠|(𝑡−1)𝑟 follows an i.i.d. Extreme Value 
Type I distribution across individuals, waves and modality styles with location zero and scale one, the 
transition probability could be formulated as such: 

′ 𝑒𝑧𝑛𝑡𝛾𝑠𝑟 

𝑃(𝑞𝑛𝑡𝑠 = 1|𝑞𝑛(𝑡−1)𝑟 = 1) = 𝑃(𝑈𝑛𝑡𝑠|(𝑡−1)𝑟 ≥ 𝑈𝑛𝑡𝑠′|(𝑡−1)𝑟 ∀ 𝑠′ = 1,2, … . , 𝑆) = 
∑ ′ 𝑆 𝑒𝑧𝑛𝑡𝛾𝑠′𝑟 𝑠′=1 

where 𝑃(𝑞𝑛𝑡𝑠 = 1|𝑞𝑛(𝑡−1)𝑟 = 1) denotes one entry of the transition probability matrix, which involves 
predicting the probability that individual n belongs to modality style s during wave t, for t > 1, conditional 
on modality style r during the previous wave (t-1). 

Now, the transition model is merely a function of socio-demographic variables. However, wouldn’t 
changes in the level-of-service of the transport network, such as reductions in travel times or travel costs, 
influence the transition from one modality style to the other? Changes in the level-of-service of different 
travel modes will affect different modality styles differently. For example, increased freeway congestion 
will make car-oriented modality styles less attractive, and a reduction in transit services will have a 
similar effect on transit-oriented modality styles. These changes will likely impact whether and how 
individuals change their modality styles, and should be accordingly captured by the transition model. We 
account for these changes by formulating transition probabilities as an additional function of the 
consumer surplus each individual would derive by belonging to different modality styles (building off the 
static framework forwarded by Vij and Walker, 2014). 



      
 
 

    
           
          

      
   

 

 
 

 

   
 

          
       

 

           
        

       
         

          
        

    
       

 
             

     
  

    

                
  

   

    
          
        

    
      
          

     

12 El Zarwi, Vij, and Walker 

Given that individuals are assumed to be utility-maximizing, the consumer surplus offered by modality 
style s to individual n during time period t is given theoretically by the total expected maximum utility 
derived by the individual over all observations for that time period, also referred to as the inclusive value. 
When the class-specific choice model is assumed to be multinomial logit, expected maximum utility 
reduces to the familiar logsum measure, and the average consumer surplus is given by: 

𝐾𝑛𝑡 
1 ′ 

𝐶𝑆𝑛𝑡𝑠 = ∑ 𝑙𝑜𝑔 [ ∑ 𝑒𝑥𝑛𝑡𝑘𝑗𝛽𝑠] 𝐾𝑛𝑡 𝑘=1 𝑗∈𝐶𝑛𝑡𝑘|𝑠 

The transition probability we are proposing is defined as follows: 

′ 𝑒𝑧𝑛𝑡𝛾𝑠𝑟+ 𝐶𝑆𝑛𝑡𝛼𝑠𝑟 

𝑃(𝑞𝑛𝑡𝑠 = 1|𝑞𝑛(𝑡−1)𝑟 = 1) = 𝑆 ′ 𝛾𝑠′𝑟 + 𝐶𝑆𝑛𝑡𝛼𝑠′𝑟 ∑ 𝑒𝑧𝑛𝑡 𝑠′=1 

where 𝛼𝑠𝑟 is a parameter associated with the consumer surplus specific to modality style s at wave t given 
that the individual belongs to modality style r over wave (t-1). For the model to be consistent with utility-
maximizing behavior, 𝛼𝑠𝑟 ≥ 0. 

The inclusion of consumer surplus in the transition model provides a basis for understanding and 
predicting how individual preferences might change over time in response to corresponding changes in 
the transportation system. Consider, for the sake of illustration, that the local public transport agency 
introduces a temporary free pass for all services. The introduction of such a pass would change the 
consumer surplus offered by different modality styles differently. For modality styles that do not include 
public transport in their consideration set, the consumer surplus will be unchanged. For modality styles 
that do include public transport, consumer surplus will be higher, making individuals more likely to 
belong to these modality styles in the subsequent time period. In particular, the greatest change will likely 
be for a modality style that both considers public transport and is highly sensitive to travel costs (since the 
free pass will impact travel costs). Therefore, the introduction of the free pass might not only lead 
individuals to expand their consideration sets, it may cause them to become more sensitive to travel costs. 
Similar changes could potentially be modeled for other scenarios. This is a key benefit to our framework. 

4.4 Likelihood Function of the Full Model 

Now, the marginal probability 𝑃(𝑦𝑛) of observing a sequence of choices 𝑦𝑛 for decision-maker n over T 
time periods is expressed as follows: 

𝑆 𝑆 𝑆 𝑇 𝑇 

𝑃(𝑦𝑛) = ∑ ∑ … ∑ ∏ 𝑃(𝑦𝑛𝑡|𝑞𝑛𝑡𝑠𝑡 = 1) 𝑃(𝑞𝑛1𝑠1 = 1|𝑍𝑛1) ∏ 𝑃(𝑞𝑛𝑡𝑠𝑡 = 1|𝑞𝑛(𝑡−1)𝑠𝑡−1 = 1) 
𝑠1=1 𝑠2=1 𝑠𝑇=1 𝑡=1 𝑡=2 

HMMs are traditionally estimated via the Expectation-Maximization (EM) algorithm (forward-backward 
algorithm) that provides a computationally robust method of optimization by taking advantage of the 
conditional independence properties of the model framework. The EM algorithm is particularly useful for 
HMMs because in the M-step, each of the class-specific choice models, the initialization model and 
transition model can be maximized independently. However, for HMMs that incorporate feedback to the 
transition model through the construct of consumer surplus, this will no longer be the case. The class-
specific choice model and the transition model can no longer be maximized independently in this case, 



      
 
 

 
        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13 El Zarwi, Vij, and Walker 

since the class-specific taste parameters are common to both sub-models. Consequently, the EM 
algorithm is not useful in this case, and we resorted to using traditional batch gradient optimization 
techniques. 



      
 
 

    
         

      
    

    

            
         

         
         

 

      
           

          
       

         
          

      
           

         
  

        
     

        
 

    

           
      

 

  

         
           

 

    

           
    

    

           
      

14 El Zarwi, Vij, and Walker 

5. Initial Conditions Problem in Dynamic Discrete Choice Models 
Dynamic models may exhibit what is referred to as the initial conditions problem, first discussed by 
Heckman (1981). The initial conditions problem refers to how the dynamic process is initialized. 
Heckman (1981) illustrates the problem with the following functional form: 

= 𝑈𝑛𝑡 𝑓(𝑥𝑛𝑡, 𝑦𝑛1, 𝑦𝑛2 … 𝑦𝑛(𝑡−1)) + 𝜀𝑛𝑡 

where 𝑈𝑛𝑡 denotes the utility during time period t for individual n, 𝑓 denotes the function that expresses 
the observable components of utility, 𝑥𝑛𝑡 entails explanatory variables for time period t for individual n, 
𝑦𝑛(𝑡−1) represents the choice that individual n made during time period (t-1), and 𝜀𝑛𝑡 is the stochastic 
error component of the utility specification. We can clearly see that this general dynamic model captures 
the effect of previous choices on current ones.  

One main assumption in this model formulation entails serially correlated error structure. According to 
Heckman (1981), initial conditions can only be treated as exogenous variables if at least one of the 
following two conditions is met: (1) serially independent error structures in the model framework (𝜀𝑛𝑡) 
whereby the error components are assumed to be independently and identically distributed over time; or 
(2) if the data includes observations since the dynamic process started. If one of these two conditions is 
met, then we can treat initial conditions as exogenous variables or “fixed”. However, if neither of those 
assumptions is met, then initial conditions cannot be treated as exogenous variables, and assuming that 
they are will lead to inconsistent parameter estimates. The latter condition is almost never going to be 
met, since the analyst frequently only observes a dynamic process after it first began. Therefore, in our 
case, in order to treat the initial conditions as exogenous, the first condition must hold true. 

Heckman (1981) discusses this issue in the context of a fixed effect probit model. Let us reframe our 
proposed hidden Markov model using the notation employed by Heckman’s general dynamic model.  The 
initial conditions problem, in the case of HMMs, is associated with the initialization model with left-
censored datasets. The class-specific choice model could be expressed as follows: 

= 𝑈𝑛𝑡 𝑓(𝑥𝑛𝑡, 𝑞𝑛𝑡) + 𝜀𝑛𝑡 

where 𝑥𝑛𝑡 entails explanatory variables for time period t for individual n, 𝑞𝑛𝑡 denotes the modality style 
for decision-maker n during time period t. However, according to the aforementioned transition model, 
one could express the following: 

𝑞𝑛𝑡 = 𝑔(𝑧𝑛𝑡, 𝑞𝑛(𝑡−1)) + 𝜏𝑛𝑡 

where 𝑔 denotes the function that models the transition of modality styles over time, 𝑧𝑛𝑡 entails socio-
demographic variables for time period t for individual n, and 𝜏𝑛𝑡 is the stochastic error component. 
Accordingly, we can express the class-specific choice model utility equation as such: 

= 𝑈𝑛𝑡 𝑓′(𝑥𝑛𝑡, 𝑧𝑛𝑡, 𝑞𝑛(𝑡−1)) + 𝜀𝑛𝑡 

We can recursively iterate by replacing the expression of modality styles at different time periods all the 
way until the first time period, ending up with the following equation: 

= 𝑈𝑛𝑡 𝑓′′(𝑥𝑛𝑡, 𝑧𝑛1 … 𝑧𝑛𝑡) + 𝜀𝑛𝑡 

We are assuming that the choice probabilities that comprise the class-specific choice model for a certain 
individual are conditionally independent over choice situations and time periods, given the modality style 



      
 
 

            
     
        

   

         
       

         
    

      
        

         
  

       
       

           
    

      
           

        
          

  

      
   

   

          
         

  

    
      

        
           

         
     

         
      

        
 

          
   

       
          

15 El Zarwi, Vij, and Walker 

they belong to and the set of explanatory variables that affect the choice process. Thus, the error 
components in this choice model are independently and identically distributed across time, i.e. no serial 
correlation. Therefore, by assuming serially independent error structures, which is standard in HMMs, 
initial conditions could be treated as exogenous variables or “fixed” for the aforementioned reasons. 

Conditional on an individual’s modality style, how valid is it to assume that the utilities of different 
choice alternatives over time are serially uncorrelated? Factors that lead to serially correlated error terms 
entail habit or inertia whereby choices (travel patterns in the case of travel behavior) could repeat 
themselves over time (Cantillo et al., 2007; Gärling and Axhausen 2003). The construct of modality styles 
tries to capture profound individual variations in preferences and attitudes and “higher-level orientations, 
or lifestyles that influence all dimensions of an individual’s travel and activity behavior” (Vij, 2013). We 
assume that by conditioning on those higher-level lifestyle orientations, or modality styles, we are fully 
accounting for habit or inertia effects. 

Another factor behind serial correlation in the case of panel data comprises multiple choice decisions 
made by the same individual. This is what we refer to as specification bias, which encompasses excluding 
important determinants of choice decisions that are unobserved by the analyst but are common across 
multiple choice decisions for the same individual. These determinants could include unobserved attitudes, 
missing socio-demographic variables, etc., which become confounded with the error terms over time and 
could induce the main source of correlation between choice decisions made by the same individual over 
time. Our hypothesis is that this shared correlation is captured through the construct of modality styles. 
That is why, once we control for those higher-level orientations, it becomes reasonable to assume that 
choices are serially independent. 

For a hidden Markov model, the evolutionary path, i.e. the transition model, is depicted by a first-order 
Markov process, which follows the property: 

𝑇 

𝜋𝑛 = 𝜋1 ∏ Ω𝑡−1,𝑡 
𝑡=2 

where 𝜋𝑛 denotes the vector of marginal probabilities for the available modality styles at time period n, 
𝜋1 has the same definition as 𝜋𝑛 but is associated with the first time period, and Ω𝑡−1,𝑡 denotes the 
transition probability matrix between time period (t-1) and t. 

If the data is left-censored whereby the time periods which were observed correspond to: {J, J+1, …, T}, 
such that J>1, then the initialization model will be biased. Using the above Markov chain equation, the 
initialization probabilities evaluated at t=J equal the product of the initialization probabilities at t=1 and 
all the transition probabilities up until t=J. In other words, 𝜋𝐽 = 𝜋1 × ∏𝑡=2 

𝐽 Ω𝑡−1,𝑡 , and the magnitude of 
the bias is given by the difference between 𝜋𝐽 and 𝜋1 . However, the transition model and the class-
specific choice models will remain unbiased. Our main objective in this research paper is to develop a 
framework for modeling and forecasting the evolutionary path of preferences over time. In order to do so, 
it is important that parameter estimates associated with the transition model and class-specific choice 
model remain unbiased. Therefore, the initial conditions problem that exists in other types of dynamic 
models is not of concern here. 

We conducted a Monte Carlo simulation experiment to corroborate our arguments. For our Monte Carlo 
simulation, we simulated 5000 observations. Each of the observations entailed 10 time periods. There 
were two available states (𝑠1, 𝑠2) that each observation could belong to at each time period. There were 
also two available outcomes at each time period. The distribution of the initialization model, during the 
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first time period, is 0.4 and 0.6 across the two states i.e. 𝜋1 = [0.4, 0.6]. The transition probability matrix 

= [0.8 0.2 between two successive time periods is Ω𝑡−1,𝑡 0.7]. The class-specific choice probabilities were 0.3 
assumed as follows: conditional on being in the first state, the probability of choosing the first outcome is 
0.5, and the probability of choosing the second outcome is 0.5. However, conditional on being in the 
second state, the probability of choosing the first outcome is 0.7, and the probability of choosing the 
second outcome is 0.3. We first estimated the hidden Markov model parameters for N=5000 observations 
over the entire time periods associated with the dynamic process i.e. T=10. We then re-estimated the 
HMM parameters by truncating the dataset by removing the first 5 time periods for each of the 5000 
observations. Table 1 summarizes the results from the model estimation using the Expectation – 
Maximization algorithm. The initialization model for N=5000 and T=5 could be computed as such: 𝜋6 = 
𝜋1 × ∏6 = [0.59, 0.41]. We can clearly observe that the transition matrix and class-specific 𝑡=2 Ω𝑡−1,𝑡 
choice models remained unbiased. 

Table 1: Monte Carlo Simulation Results 

Variable True Value N = 5000 & T = 10 N= 5000 & T = 5 
Initialization Probability (class 1) 0.40 0.39 0.58 
Initialization Probability (class 2) 0.60 0.61 0.42 
Transition Probability 
(class 1 | class 1) 

0.80 0.78 0.79 

Transition Probability 
(class 2 | class 1) 

0.20 0.22 0.21 

Transition Probability 
(class 1 | class 2) 

0.30 0.29 0.29 

Transition Probability 
(class 2 | class 2) 

0.70 0.71 0.71 

Probability(outcome 1 | class 1) 0.50 0.49 0.49 
Probability(outcome 2 | class 1) 0.50 0.51 0.51 
Probability(outcome 1 | class 2) 0.70 0.71 0.72 
Probability(outcome 2 | class 2) 0.30 0.29 0.28 

6. Dataset 
In February of 2007, Santiago, Chile introduced Transantiago, a complete redesign of the public transit 
system in the city. Before the introduction of Transantiago, public transport in Santiago comprised a 
privately operated and uncoordinated system of buses and shared taxis, and the publicly run underground 
Metro lines. The old bus system was characterized by a large and inefficient fleet of 8,000 buses 
operating 380 lines, competition among buses on streets to gain passengers, higher than required 
frequencies along the busiest corridors and inadequate service along the less travelled ones, low quality 
vehicles, high accident rates, rude drivers, high levels of air and noise pollution, fractured ownership, and 
many empty buses circulating during off peak hours (Yáñez et al., 2010). The Metro system, though 
considerably safer, faster and more reliable than the bus system, only accounted for 8% of the city’s trips 
under the old system, due largely to sparser network coverage and the high cost of transfers between 
buses and the Metro. 



      
 
 

         
    

    
      

           
      

         
    

      
       

  

        
       

 
      

        
 

       
         

       
      

       
        

            
       

        
     

 

           
       

      
         

      
    

             
     

      
         

     
          

      
  

        
      

           

17 El Zarwi, Vij, and Walker 

With the aim of addressing these problems and stemming the decline in the public transportation system, 
the city assembled a team of Chilean specialists and consultants in 2005 to come up with a design for 
Transantiago (Fernández et al., 2008). Under the new system, the metropolitan region in and around 
Santiago was divided into ten zones and operations were taken over by a group of ten new companies. 
Bus routes were consolidated into a hierarchical system of trunk and feeder routes. The feeder routes 
connected each of these zones to the Metro lines, which served as the backbone of the new system. The 
trunk routes complemented the Metro lines by connecting different zones of the city. Benefits envisaged 
under Transantiago included the elimination of route redundancies, increased safety through the 
introduction of new low-floor buses, approximately half of them articulated, an integrated fare collection 
system through the means of a contactless smart card, lower travel times, a smaller fleet size, and reduced 
levels of air and noise pollution. 

Though the system succeeded in achieving many of these goals, as a result of poor implementation it 
inadvertently created several new problems. First, the system was introduced in a ‘big-bang’ fashion with 
no pilot studies or public information campaigns leading up to the change. As a consequence, the first few 
weeks following the change resulted in great chaos and confusion among users of the city’s public 
transportation system. Second, the system was designed under the assumption that by the time of its 
introduction, certain critical bus-only lanes would have been constructed and all buses in the public transit 
fleet would have been fitted with on-board GPS tracking systems. Neither of these goals was achieved in 
time, and as a consequence buses ran well below design speeds, introducing significant unreliability into 
the system. Third, most new bus routes were confined to run along major arterials, increasing the access 
and egress distances to bus stops, particularly in the suburban corners of the city. And finally, given the 
hierarchical nature of the new bus system, most bus routes were limited to run within the boundary of a 
single zone, increasing the number of transfers for trips that required traversing multiple zones. These 
four factors combined drove a number of passengers to alternative modes of travel, most notably the 
Metro, which, unlike the bus system, ran at least as reliably as before, resulting in extreme overcrowding 
on Metro trains, with average occupancy levels during peak hours on certain routes of 5-6 passengers per 
square meter. As one can imagine, Transantiago generated considerable ill will among city residents, 
some of which has persisted to this day. 

The dataset for the study comes from the Santiago Panel, comprising four one-week waves of pseudo 
travel-diary data collected over a span of twenty-two months that extends both before and after the 
introduction of Transantiago. The first wave was conducted in December 2006, three months before 
Transantiago was introduced, and the next three waves were implemented in May 2007, December 2007 
and October 2008, respectively. Survey respondents were drawn from full-time employees working at one 
of six campuses of Pontificia Universidad Católica de Chile spread across Santiago. Each wave of data 
collection had an observation period of one week, and survey respondents were asked to report the travel 
mode(s) that they used for their morning commute to work each day during that week. Therefore, each 
wave contains up to five observations per individual (corresponding to the five-day working week). 
Though this limits the number of destinations to just these six campuses, the panel was fortunate in that 
the distribution of origins was well spread across the city. In all, the Panel interviewed 303 individuals 
during the first wave, 286 individuals during the second wave, 279 individuals during the third wave, and 
258 individuals during the final wave. Considering that the four waves were spread across nearly two 
years, the Panel has a comparatively low attrition rate. Each of the respondents was asked questions 
regarding their socioeconomic characteristics; attributes of their morning trip to work; additional activities 
before, during and after work and their influence, if any, on the respondent’s choice of travel mode; 
subjective perceptions about the performance of the new system (collected only during the second and 
third waves); and their level of agreement with attitudinal statements about different aspects of the 



      
 
 

        
 

     
         

              
          
     

      
 

 

      

           
          

         
         

     
      

   

    
      

        
           

    
        

18 El Zarwi, Vij, and Walker 

transportation system, such as safety, reliability and accessibility (collected only during the fourth wave). 
For more details about the dataset, the reader is referred to Yáñez et al. (2010). 

The dataset offers a unique opportunity to investigate the effects of systemic changes in the transportation 
network on the evolution and persistence of individual preferences. For the purpose of our analysis, we 
will be restricting our attention to 220 respondents, each of whom has at least one recorded observations 
in each of the four waves that constitute the Panel. We aggregate the modal alternatives into seven travel 
modes: auto, metro, bus, walk, bike, auto/metro (for individuals that drive to the metro station, and take 
the metro from there), and bus/metro (for individuals that take the bus to the metro station, and the metro 
from there). 

Figure 3: Mode Shares across All Waves 

Figure 3 plots mode shares across the four waves for all 220 individuals. It is evident that there was a big 
reduction in choosing the bus system as a mode of transport for work trips after wave one (post 
introduction of Transantiago). Bus mode shares declined from 40.6% during wave one to 18.2% during 
wave three, before marginally rebounding to 21.6% during wave four. Mode shares for auto/metro and 
bus/metro increased dramatically after the introduction of Transantiago. The major shifts in the mode 
choices occurred between waves one and two, as one would expect. Shifts tend to stabilize over time as 
people get more adjusted with their new work trips mode choice habits. 

The reader should note that a plot like Figure 3 could also have been plotted using repeated cross-
sectional data. Longitudinal data allows us to analyze where these changes in mode shares are coming 
from. Figure 4 plots the number of trips where individuals switched travel modes between any two 
subsequent waves of the Panel. The scale of the vertical axes for each of the three plots is the same, to 
make the comparison easier. As one would expect, the majority of the shift occurs from wave 1 to wave 2, 
immediately in the wake of the introduction of Transantiago, and most of it away from “bus” and towards 



      
 
 

       
          

   
         

         
    

 

 

 

    

19 El Zarwi, Vij, and Walker 

“bus/metro”. However, as the system stabilizes over time, so does the behavior of its users, with 
significantly less movement across travel modes between waves 2 and 3 and waves 3 and 4. Given the 
nature of the differences between the old and the new system, this is not surprising. The more interesting 
question is: does the shift in observable travel mode choice behavior indicate a corresponding shift in 
latent travel mode preferences? And does this latter shift, if any, persist beyond the first wave? We 
address these related questions using the HMM framework in the next section. 

Figure 4: Shifts across Travel Modes between Subsequent Waves of the Panel 



      
 
 

      
          

      
        

          
    

    
     

    
      

      
   
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 El Zarwi, Vij, and Walker 

Finally, when estimating HMMs, time periods should ideally be evenly spaced. In our case, the time 
periods are denoted by each wave of data collection. As mentioned before, the interval between waves is 
not evenly spaced: five months between waves 1 and 2, seven months between waves 2 and 3, and ten 
months between waves 3 and 4. Given that the main objective of this paper is to develop a framework for 
modeling and forecasting the evolution of preferences over time, we need to assume that the transition 
model parameters are stable. With unevenly spaced time periods, we need to account for these differences 
in the transition model specification, explicitly or implicitly. One could estimate a heterogeneous HMM, 
where the transition model parameters are specified as an explicit function of the time interval between 
waves. Alternatively, one could estimate a homogenous hidden Markov model with time independent 
transition model parameters, such that the parameters are implicitly averaged over the different time 
intervals. For the sake of simplicity, we adopted the implicit approach. Therefore, when using the model 
to forecast changes in preferences and behaviors beyond wave four, the time intervals between future 
waves will be taken as the average time interval between successive waves for the first four waves. 
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7. Estimation Results and Discussion 
The following section presents results from the hidden Markov model. Our proposed dynamic discrete 
choice framework models the evolution of preferences over time in response to changes in socio-
demographic variables and the level-of-service of the transportation network. Determining the final model 
specification was based on varying the utility specification for all sub-models: initialization model, 
transition model and class-specific choice model. The method for identifying the number of distinct 
preference states i.e. modality styles that exist in the sample population, is iterative. The models were 
built incrementally: we first estimated a model with two modality styles, using that as a starting point for 
the model with three modality styles, and so on. The final number of modality styles in our sample was 
determined based on a comparison across measures of statistical fit, such as the rho-bar-squared (�̅�2), 
Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), and behavioral 
interpretation. 

We first estimated the models by varying the number of modality styles excluding the effect of the level-
of-service of the transportation network on the modality style transition model, as captured through the 
construct of consumer surplus (i.e. the average expected maximum utility, or inclusive value). We made 
use of the power of the EM algorithm in estimating model parameters while saving on computation time. 
The EM algorithm provides a statistically robust approach for model estimation by taking advantage of 
the conditional independence structure of the model framework. We estimated models with two, three and 
four modality styles. Table 2 enumerates the statistical measures of fit for each of these models. While the 
AIC and the BIC decrease as the number of classes increases, the rho-bar-squared value is highest for the 
three class model. However, a joint comparison across both statistical measures of fit and behavioral 
interpretation led us to select the four class model as the preferred specification. The four class model was 
subsequently reestimated, adding the measure of consumer surplus from the class-specific mode choice 
models to the transition model. 

Table 2: Measures of Model Fit 

Number of 
Modality Styles Log-Likelihood ̅𝟐 𝝆 AIC BIC 

Two -2365 0.514 4798 5015 
Three -1599 0.636 3328 3743 
Four -1287 0.601 2740 3270 

Tables 3, 4 and 5 present detailed parameter estimates (and t-statistics) of the class-specific travel model 
choice model, initialization model and transition model, respectively, for the final specification. The four 
classes, or modality styles, differ from each other in terms of the travel modes that they consider, their 
sensitivity to the level-of-service of the transportation system, and their socio-demographic composition 
over time. The tabulated model results are behaviorally consistent, i.e. parameter estimates across all sub-
models, and in particular the class-specific travel mode choice model, have the expected sign and are 
statistically significant. Over subsequent paragraphs, we summarize key characteristics of each of the 
classes. To underscore behavioral differences between classes, a sample enumeration is carried out across 
the four waves, and the results are incorporated in our description of the classes. 
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Table 3: Class-specific Travel Mode Choice Model Results 

Variable Class 1 
Drivers 

Class 2 
Bus Users 
(Transit) 

Class 3 
Bus-Metro Users 

(Transit) 

Class 4 
Auto-Metro Users 

(Transit) 
Alternative Specific Constant 
Auto 0.000 

(-) 
- - 0.000 

(-) 

Metro -3.925 
(-10.134) 

- 0.000 
(-) 

2.293 
(208.455) 

Bus -4.259 
(-13.437) 

0.000 
(-) 

-7.644 
(-19.739) 

-

Walk 1.935 
(6.158) 

- - -

Bike -0.710 
(-3.214) 

- - -

Auto-Metro -3.440 
(-11.576) 

- - 4.441 
(753.179) 

Bus-Metro -3.618 
(-9.750) 

- 2.208 
(6.965) 

-

Travel Time (mins) -0.028 
(-2.968) 

-0.042* 
(-0.275) 

-0.091* 
(-0.290) 

-0.069 
(-3.043) 

Walk Time (mins) -0.041 
(-3.761) 

-0.002* 
(-0.019) 

-0.127* 
(-0.574) 

-0.103* 
(-0.073) 

Travel Cost (CLP) -0.006* 
(-1.072) 

-0.061* 
(-0.280) 

-0.102* 
(-0.344) 

-0.080* 
(-0.074) 

Waiting Time (mins) -0.024* 
(-1.065) 

-0.038* 
(-0.042) 

-0.293* 
(-0.790) 

-0.053* 
(-0.940) 

Number of Transfers - -2.633 
(-13.894) 

-1.136 
(-118.488) -

- Not applicable; * Insignificant at the 5% level 

Table 4: Initialization Model Results 

Variable Class 1 
Drivers 

Class 2 
Bus Users 
(Transit) 

Class 3 
Bus-Metro Users 

(Transit) 

Class 4 
Auto-Metro Users 

(Transit) 
Initialization Model (Wave 1) 

Alternative Specific Constant 0.000 
(-) 

2.993 
(5.951) 

-0.073* 
(-0.160) 

0.139* 
(0.229) 

Household Income 
(100,000s CLP) 

0.000 
(-) 

-0.510 
(-4.621) 

-0.060* 
(-1.313) 

-0.190 
(-2.008) 

Male 0.000 
(-) 

0.223* 
(0.521) 

0.635* 
(1.176) 

0.519* 
(0.821) 

Number of Vehicles 0.000 
(-) 

-0.992 
(-3.159) 

-0.739 
(-1.979) 

-0.295* 
(-0.736) 

- Not applicable; * Insignificant at the 5% level 
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Table 5: Transition Model Results 

Variable Class 1 
Drivers 

Class 2 
Bus Users 
(Transit) 

Class 3 
Bus-Metro Users 

(Transit) 

Class 4 
Auto-Metro Users 

(Transit) 
Transition Model (Given Class 1 in Wave t- 1) 

Alternative Specific Constant 0.000 
(-) 

0.900 
(28.746) 

1.351 
(12.388) 

-2.175 
(-44.022) 

Household Income 
(100,000s CLP) 

0.000 
(-) 

-0.170* 
(-0.002) 

-0.610* 
(-0.010) 

-0.080* 
(-0.001) 

Male 0.000 
(-) 

0.671 
(21.067) 

-1.178 
(-21.928) 

0.359 
(21.710) 

Number of Vehicles 0.000 
(-) 

-0.385 
(-5.752) 

-0.416* 
(-0.262) 

-0.365* 
(-0.221) 

Consumer Surplus (utils) 0.594* 
(0.303) 

1.000 
(-) 

0.264 
(43.803) -

Transition Model (Given Class 2 in Wave t- 1) 

Alternative Specific Constant 0.000 
(-) 

4.833 
(7.617) 

2.060 
(1637.711) 

1.223 
(382.495) 

Household Income 
(100,000s CLP) 

0.000 
(-) 

-0.680 
(-10.155) 

-0.310* 
(-0.003) 

-0.500* 
(-0.005) 

Male 0.000 
(-) 

1.831 
(3.014) 

1.056* 
(1.477) 

0.999* 
(1.506) 

Number of Vehicles 0.000 
(-) 

0.595* 
(1.135) 

-0.130* 
(-0.100) 

-0.378* 
(-0.248) 

Consumer Surplus (utils) 0.330 
(110.466) 

0.500 
(256.703) 

0.155* 
(0.114) 

0.317* 
(0.253) 

Transition Model (Given Class 3 in Wave t- 1) 

Alternative Specific Constant 0.000 
(-) 

2.480* 
(1.371) 

0.936 
(414.323) 

1.391 
(626.478) 

Household Income 
(100,000s CLP) 

0.000 
(-) 

-1.150 
(-2.811) 

-0.090* 
(-0.001) 

-0.930* 
(-0.012) 

Male 0.000 
(-) 

0.635* 
(0.560) 

1.801 
(3.300) 

-0.641* 
(-1.087) 

Number of Vehicles 0.000 
(-) 

-1.506* 
(-1.495) 

-1.143* 
(-0.608) 

0.184* 
(0.143) 

Consumer Surplus (utils) 1.709* 
(1.688) 

0.140* 
(0.098) 

0.097* 
(0.108) 

0.364* 
(0.560) 

Transition Model (Given Class 4 in Wave t- 1) 

Alternative Specific Constant 0.000 
(-) 

1.064* 
(0.504) 

0.636 
(123.621) 

0.968 
(1003.253) 

Household Income 
(100,000s CLP) 

0.000 
(-) 

-0.370* 
(-0.712) 

-0.060* 
(-0.001) 

0.050* 
(0.001) 

Male 0.000 
(-) 

1.84* 
(1.07) 

1.03* 
(1.10) 

0.04* 
(0.06) 

Number of Vehicles 0.000 
(-) 

-1.805* 
(-1.905) 

-0.163* 
(-0.058) 

0.142* 
(0.061) 

Consumer Surplus (utils) 0.088* 
(0.513) 

0.094* 
(0.501) 

0.083* 
(0.487) -

- Not applicable; * Insignificant at the 5% level 
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Class 1 (drivers): This class constitutes 36% of the sample population during wave 1, and the share of 
the class slowly but steadily increases to 40% by wave 4. Individuals belonging to this class consider all 
available modes of transport, but 70% of all trips are made by auto. Value of time varies between 0.36$/hr 
for waiting time and 0.62$/hr for walking time, and the class is completely insensitive to public transport 
transfers. High-income men with cars are most likely to belong to this class. 

Class 2 (bus users): This class constitutes 39% of the sample population during wave 1, and the share of 
the class steadily decreases to 20% by wave 4. Individuals belonging to this class deterministically choose 
bus for all their trips. Value of time is low, at approximately 0.07$/hour across different travel time 
components. Note that even though the class-specific choice model is deterministic, parameters denoting 
sensitivities to travel times and costs can still be estimated indirectly through the transition model through 
the construct of consumer surplus. Such a parametrization of the deterministic class is important to ensure 
that the transition model is sensitive to changes in the transportation system (bus system for this class). 
High-income individuals with cars are most likely to belong to this class initially, but they are also most 
likely to leave this class after the introduction of Transantiago. 

Class 3 (bus-metro users): This class constitutes 14% of the sample population during wave 1, and the 
share of the class steadily increases to 24% by wave 4. Individuals belonging to this class consider the 
metro, bus and bus-metro alternatives. Value of time varies between 0.09$/hr for in-vehicle time and 
0.26$/hr for waiting time. Each public transport transfer is equivalent to 12 minutes of in-vehicle time. 
Low-income women without access to cars are most likely to belong to this class. 

Class 4 (auto-metro users): This class constitutes 11% of the sample population during wave 1, and the 
share of the class increases marginally to 16% by wave 4. Individuals belonging to this class consider the 
auto, metro and auto-metro alternatives. Value of time varies between 0.06$/hr for waiting time and 
0.12$/hr for walking time, and the class is completely insensitive to public transport transfers. While low-
income individuals without access to cars are most likely to belong to this class initially, over time, more 
high-income individuals with access to cars migrate to this class. 
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Figure 5: Estimated Share of Individuals in Each Modality Style across Waves 
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Now that we have estimated our hidden Markov model, we want to explore the power of this model in 
terms of explaining the evolution of preferences, or modality styles, in response to the introduction of 
Transantiago. The population distribution of individuals across the four classes for each of the waves, as 
determined by sample enumeration, is displayed in Figure 5. It is evident that a shock to the transportation 
network along the lines of Transantiago did force people to reconsider their modes for travel. The market 
share of drivers, bus-metro, and auto-metro users has increased after the introduction of Transantiago, 
while the market share for bus users has drastically decreased. These results are aligned with findings 
from Section 6 regarding mode share percentages of the different modes across the four waves. We can 
see that major reductions and increases in shares of modality styles occurred right after Transantiago 
revolutionized the public transit system. These population changes stabilize over time. It is also evident 
from the figure that population preferences have in fact changed over time, and in particular after the 
introduction of Transantiago. 

Figure 6: Estimated Average Transition Probabilities across Modality Styles over Time 
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However, the stability in preferences at the population level belies the instability at the individual level. 
Figure 6 illustrates the average transition probabilities between different modality styles across successive 
time periods. Note that while Figure 5 could have been reproduced using a static framework, such as an 
LCCM, with repeated cross-sectional data (see, for example, Vij et al., 2017), Figure 6 could only be 
produced using a dynamic framework with longitudinal data, such as the HMM proposed here. 
Interestingly, transition probabilities were not found to differ substantially across time periods, and for 
this reason, we present average values over all time periods. There are two key trends to note here. First, 
construct of habit formation is implicitly captured in the relative magnitude of the transition probabilities. 
In general, decision-makers are more inclined to remain in the same modality style over time than switch 
to a different modality style. For three of the four modality styles, the probability of staying in that 
modality style over successive time periods is found to be greater than half. And second, there is 
considerable instability in travel mode preferences, despite the relative stability at the population level 
and the strong influence of habit at the individual level. For example, roughly 30% of bus users and bus-
metro users become drivers each time period. Part of this transition could be explained by the introduction 
of Transantiago, which did make use of the public transport system in a more onerous manner. However, 
the trend persists beyond wave 2, several months after the introduction of Transantiago, indicating a more 
general and ongoing shift in preferences towards the car over time, triggered possibly in part by the 
introduction of Transantiago. 

8. Policy Analysis 
Practitioners and policy analysts are often interested in understanding and predicting broad population 
trends in travel and activity behavior. Does failure to account for preference dependencies over time 
impact population estimates? Or is it reasonable to ignore such dependencies when undertaking 
population-level analysis? We address these questions by comparing aggregate forecasts from the HMM 
with static frameworks that do not account for preference dependencies over time. The forecasting 
horizon is limited to three waves post the fourth wave (i.e. waves five, six and seven). We simulate the 
following two policy scenarios: 

1- Increasing household income by 10% at waves five, six and seven respectively. 
2- Reducing travel time by 15% for the bus and bus to metro alternatives. This could be brought 

about by a new transportation policy, dedicated bus lanes for example. This particular shock to 
the transportation network is assumed to take place between waves four and five. 

We compare forecasts from the HMM with latent class choice models (LCCMs). To ensure that the 
LCCMs and the HMM are as similar as possible, and any potential differences in forecasts cannot be 
attributed to differences in either observed data or model specification, we use the following procedure. 
Since an LCCM would typically be estimated using a single cross-section, we estimate two separate 
LCCMs using data from the first and last wave respectively. Each of the LCCMs comprises four modality 
styles (preference states), same as our HMM. We constrain the class-specific choice model for each 
LCCM to be the same as that of the HMM. We only estimate the class membership model parameters, 
where we formulate class membership as a function of socio-demographic variables, namely income, 
gender and level of car ownership, and the consumer surplus offered by each class. These are the same 
variables that are included in the specification of the transition model for the HMM. 

Figure 7 plots the change in modality styles across waves five, six and seven for the first policy scenario, 
as predicted by the HMM and the two LCCMs, and Figure 8 plots the corresponding travel mode shares 
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for the same. As is evident from the figures, even at the population level, there are considerable 
differences between forecasts from the three models. In general, the LCCM estimated using wave 4 data 
more closely tracks forecasts from the HMM. Relative to the HMM, the LCCM estimated using wave 4 
data under predicts the share of drivers and auto-metro users, and over predicts the share of bus-metro 
users, whereas the LCCM estimated using wave 1 data under predicts the share of bus-metro users, and 
over predicts the share of drivers and bus users. These differences translate into similar inconsistencies in 
travel mode shares. For example, travel mode shares for the pure public transport modes, i.e. bus, metro 
and bus to metro, during wave 5 are predicted to be 49% by the HMM, 45% by the LCCM estimated 
using wave 1 data, and 54% by the LCCM estimated using wave 4 data. 

Figures 9 and 10 plot corresponding forecasts for the second policy scenario, as predicted by the HMM 
and the two LCCMs. Note that the travel mode shares are the same across all three waves, since the 
change in the transportation system precedes wave 5. Therefore, we show them as a single plot. In terms 
of modality styles, there are considerable differences between forecasts from the three models, though 
forecasts from the LCCM estimated using wave 4 data are in closer agreement with those from the HMM. 
Interestingly, changes in in-vehicle travel times between waves 4 and 5 do not have a significant impact 
on the likelihood of belonging to a particular modality style over subsequent waves, as predicted by each 
of the three models, and the population distribution remains largely unchanged across waves 5, 6 and 7. 

Figure 7: Share of Individuals in Each Modality Style for Policy Scenario 1, as Predicted by the HMM, the LCCM 
Estimated Using Wave 1 Data, and the LCCM Estimated Using Wave 4 Data 
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Figure 8: Mode Shares for Policy Scenario 1, as Predicted by the HMM, the LCCM Estimated Using Wave 1 Data, and 
the LCCM Estimated Using Wave 4 Data 

Figure 9: Share of Individuals in Each Modality Style for Policy Scenario 2, as Predicted by the HMM, the LCCM 
Estimated Using Wave 1 Data, and the LCCM Estimated Using Wave 4 Data 
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Figure 10: Mode Shares for Policy Scenario 2, as Predicted by the HMM, the LCCM Estimated Using Wave 1 Data, and 
the LCCM Estimated Using Wave 4 Data 

It is important to note that across both scenarios, the predicted share of drivers and bus users has been 
strictly higher via the LCCM estimated using wave 1 data, compared to the other two models, while the 
share of bus-metro users has been significantly lower. The reason behind that is the fact that observations 
pertinent to wave one (before the introduction of Transantiago) constituted a sample of the population that 
preferred taking the bus or driving to work. Moreover, the market share for the metro alternative was 
significantly lower during wave one. In addition to that, forecasts from the HMM and LCCM estimated 
using wave 4 data seem to be more consistent with each other in terms of the evolutionary trends of 
preferences. However, the share of individuals in the four preference states tends to be different. 

In terms of aggregate mode shares, differences across the three models are equally sizeable. For example, 
travel mode shares for bus are predicted to be 21% by the HMM, 26% by the LCCM estimated using 
wave 1 data, and 23% by the LCCM estimated using wave 4 data. And similarly, travel mode shares for 
bus to metro are predicted to be 18% by the HMM, 12% by the LCCM estimated using wave 1 data, and 
21% by the LCCM estimated using wave 4 data. As we argued before, relative to the HMM, the LCCM 
estimated using wave 1 data over predicts mode shares for bus and under predicts mode shares for bus to 
metro, and the LCCM estimated using wave 4 data over predicts mode shares for bus to metro. These 
differences are not unexpected. Bus use was at its greatest during the first wave of observation. And 
subsequent structural changes in the public transportation system, initiated by Transantiago, increased the 
popularity of bus to metro over the following waves. On one hand, the LCCM estimated using wave 1 
data is unable to predict the full extent of changes in behavior in response to these changes in the 
transportation system. On the other, the LCCM estimated using wave 4 data overstates these changes in 
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behavior, as it does not account for habit formation from preferences and behaviors that precede 
Transantiago. 

9. Conclusions 
The objective of this study was to develop a methodological framework that can model and forecast the 
evolution of individual preferences and behaviors over time. Traditionally, discrete choice models have 
formulated preferences as a function of demographic and situational variables, psychological, sociological 
and biological constructs, and available alternatives and their attributes. However, the impact of past 
experiences on present preferences has usually been overlooked. 

We developed a hidden Markov model (HMM) of travel mode choice behavior. The hidden states denote 
travel mode preferences, or modality styles, that differ from one another in terms of the travel modes 
considered when deciding how to travel, and the relative sensitivity to different level-of-service attributes 
of the transportation system. The evolutionary path is assumed to be a first-order Markov process, such 
that an individual’s modality style during a particular time period depends only on their modality style in 
the previous time period. Transitions between modality styles over time are assumed additionally to 
depend on changes in demographic variables and the transportation infrastructure (available travel modes 
and their attributes). Conditional on the modality styles that an individual has during a particular time 
period, the individual is assumed to choose that travel mode which offers the greatest utility. 

The model framework was empirically evaluated using data from the Santiago Panel. The dataset 
comprises four waves of one-week pseudo travel diaries each. The first wave was conducted before the 
introduction of Transantiago, a complete redesign of the public transit system in Santiago, Chile, and the 
next three waves were conducted after. The dataset offered a unique opportunity to study the impact of a 
shock to the transportation network on the stability of travel mode preferences over time. The model 
identified four modality styles in the sample population: drivers, bus users, bus-metro users and auto-
metro users. At the population level, the proportion of drivers, auto-metro users, and bus-metro users has 
increased after the introduction of Transantiago, and the proportion of bus users has drastically decreased. 
The biggest shift happens between the first and second wave, the same period when Transantiago is 
introduced. The population distribution is more or less stable across the latter three waves. However, at 
the individual level, we observe two interesting phenomena. First, habit formation is found to impact 
transition probabilities across all modality styles. Individuals are more likely to stay in the same modality 
style over successive time periods than transition to a different modality style. And second, despite both 
the stability in preferences at the population level and the influence of habit formation at the individual 
level, nearly 40% of the sample population is found to change modality styles between any two 
successive waves, reflecting great instability in individual preferences, much after the introduction of 
Transantiago. These findings hold implications for aggregate forecasts. We simulated two policy 
scenarios using the HMM, and two latent class choice model (LCCM) framework with comparable 
specifications, estimated using two separate cross-sections of the Santiago Panel. Relative to the HMM, 
the first LCCM, estimated using data from before the introduction of Transantiago, under predicts 
changes in travel mode shares, due to its inability to observe the potential impact of a transformative 
change such as Transantiago. Relative to the HMM, the second LCCM, estimated using data from after 
the introduction of Transantiago, over predicts changes in travel mode shares, due to its inability to 
account for habit formation of preferences and behaviors from before the introduction of Transantiago. 

There are two key directions in which future research can build on findings from this study. First, the 
methodological framework developed here captures preference dependencies across time for the same 
individual, explicitly accounting for the effect of habit formation on travel behavior. The framework 
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offers the potential to improve the accuracy of the long-range forecasts made from large-scale urban 
travel demand models. Future research should explore ways in which existing travel demand modeling 
paradigms can adopt dynamic representations of behavior that capture temporal trends in preferences and 
behaviors. And second, the framework developed here provides a quantitative basis for modeling and 
forecasting structural shifts in preferences that are bound to occur in this era of transformative mobility. 
We observed great flux in individual commute travel mode preferences over time, triggered at least in 
part by a major redesign of the public transportation system. It would be interesting to see how these 
findings compare with corresponding changes in preferences across other dimensions of travel behavior, 
such as car ownership and residential location, and in response to other changes in transport policy, 
infrastructure and services, such as the introduction of congestion charge schemes, the diffusion of 
alternative-fuel vehicles and the emergence of shared mobility services. 
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	Most economists would agree that individual preferences, as denoted by taste parameters and consideration sets in the context of utility-maximizing behavior, can and do change over time. However, most would also contend that understanding why particular preferences exist in the first place, and consequently, how they change over time, ought not to be the concern of mainstream economics. While the view has been challenged over the years (notable examples include Becker, 1996 and Elster, 2016), most contempor
	Preferences may change over time in response to changes in, among others, demographic and situational variables, psychological, sociological and biological constructs, and available alternatives and their attributes. Changes in preferences have been observed across a broad spectrum of behavioral contexts, from the personal to the public. For example, Buss et al. (2001) examined the evolution of mate preferences between 1939 and 1996 at geographically different locations in the United States. Their findings 
	In the context of transportation, perhaps the ‘peak car’ phenomenon best represents the notion of 
	changing preferences over time. The turn of the twenty-first century has witnessed stagnant or declining levels of car use across much of the developed world (Goodwin and Dender, 2013; Garceau et al., 2014). The shift in preferences away from the car as a mode of transportation has been attributed to a combination of economic, social and technological factors that include a recessionary global economy, fluctuating oil prices, ageing national populations, shifts in cultural values, advances in information an
	changing preferences over time. The turn of the twenty-first century has witnessed stagnant or declining levels of car use across much of the developed world (Goodwin and Dender, 2013; Garceau et al., 2014). The shift in preferences away from the car as a mode of transportation has been attributed to a combination of economic, social and technological factors that include a recessionary global economy, fluctuating oil prices, ageing national populations, shifts in cultural values, advances in information an
	communications technology, etc. (see, for example, Vij et al., 2017; McDonald, 2015; Kuhnimhof et al., 2013; Collet, 2012). 

	What about travel behavior in the era of transformative mobility? Why would one expect preferences to change over time in response to major changes in the transportation system, such as the introduction of autonomous vehicles? There may be changes in consideration sets. Individuals unwilling or unable to drive themselves may be willing and able to use autonomous vehicles. There may be changes in taste parameters. Being in an autonomous vehicle will allow decision-makers to multitask, which may cause them to
	Preferences may additionally depend upon past experiences. Though most neoclassical frameworks assume that preferences are inter-temporally separable, studies on the formation and persistence of habits have questioned the validity of the assumption (Muellbauer, 1988; von Weizsäcker, 1971; Pollak, 1970). Past experiences provide a ready yardstick for comparison, serving both to magnify differences under 
	certain contexts, and reduce contrasts in others. As Becker (1992) writes, “a given standard of living 
	usually provides less utility to persons who had grown accustomed to a higher standard in the past. It is the decline in health, rather than simply poor health, that often makes elderly persons depressed. And what appeared to be a wonderful view from a newly occupied house may become boring and trite after 
	living there for several years.” 
	Past experiences can also serve as anchors, dampening the ability of external events to force commensurate shifts in individual preferences. Two individuals with completely exchangeable current circumstances may still differ in terms of their preferences, due to corresponding differences in their personal histories and the life paths that brought them here. For example, Bronnenberg et al. (2012), in their study on the long-run evolution of brand preferences among individual consumers, concluded that 
	“brand capital evolves endogenously as a function of consumers’ life histories and decays slowly once formed”. Their findings are echoed by studies in other behavioral contexts. Travel behavior in particular, 
	due to its repetitive nature, is especially prone to habit formation (Thøgersen, 2006; Gärling and 
	Axhausen, 2003; Sönmez and Graefe, 1998; Aarts et al., 1997). “Habits, once formed, become regularized and the market mechanism virtually ceases to operate”, and “consequently, if these habits can 
	be identified, choices made at any future decision point can be predicted with a fairly high degree of accuracy” (Banister, 1978). As an extreme example, some studies have speculated that the use of active modes of transportation (i.e. walking and bicycling) as children can promote more sustainable travel behavior practices as adults (see, for example, Mitra et al., 2010; Faulkner et al., 2009; Roberts, 1996). 
	However, hypotheses such as these have rarely been tested in the literature, due largely to limitations on available data. Transportation planning has typically relied on cross-sectional mobility data for understanding and predicting different dimensions of travel and activity behavior. Cross-sectional studies can provide population snapshots at a point in time; by extension, repeated cross-sections can show broad population trends over time. However, cross-sectional studies cannot measure changes at the le
	However, hypotheses such as these have rarely been tested in the literature, due largely to limitations on available data. Transportation planning has typically relied on cross-sectional mobility data for understanding and predicting different dimensions of travel and activity behavior. Cross-sectional studies can provide population snapshots at a point in time; by extension, repeated cross-sections can show broad population trends over time. However, cross-sectional studies cannot measure changes at the le
	-

	level preferences and behaviors offers the potential to address transportation policy questions of great interest. 

	Consider, for example, the peak car phenomenon. A 5% decrease in driving mode shares at the population level over time could imply that 5% of the population has stopped driving, or that the entire population is driving 5% less, or some combination of the two (Hanson and Huff, 1988). The nature and impact of transport policy will depend on which of these competing hypotheses is true; unfortunately, a traditional cross-sectional study would be unable to distinguish between these hypotheses. Similarly, conside

	3. Methodological Basis: Dynamic Models for Discrete Choice Analysis 
	3. Methodological Basis: Dynamic Models for Discrete Choice Analysis 
	Dynamic discrete choice models try to account for the influence of past experiences on present choices. According to Kenneth Train (2009), current choices affect future choices, as past choices affect current choices, and this causality provides the basis for dynamic discrete choice modeling. There are two broad paradigms in the literature (for an excellent synthesis on the subject, the reader is referred to von Auer, 1998). Both paradigms assume that present preferences and behavior are impacted by past ex
	The first paradigm assumes that individuals, when making a decision at a given time period, behave as if they are forward-looking agents that maximize their present and expected future discounted utility over the entire time horizon. Perhaps the most famous example of such a representation of dynamic discrete choice behavior is the study by Rust (1987) on the optimal replacement of bus engines. Rust’s representation has since been applied to many contexts, including car ownership (see for example Cirillo an
	considered a durable good that yields utility over time. An individual’s choice of whether to purchase a 
	car at a certain time period or postpone the purchase depends on how that individual expects to use the car both now and in the future. 
	The second paradigm assumes a more myopic view of behavior, where individuals are assumed to maximize their present utility, and future expected utility is completely discounted. In other words, the individual cares only about the current time period, and choices in later time periods are deemed irrelevant. For theoretical treatments of such myopic representations of individual behavior, the reader is referred to, among others, Gorman (1967), Pollak (1970) and von Weizsäcker (1971). The HMM conforms to this
	Depending on the empirical context, one or the other paradigm may be preferred. When studying medium and long-term travel and activity behaviors, such as car ownership and residential location, it may be more reasonable to assume that individuals are forward-looking. Decisions such as whether to buy a car and where to live have implications that extend well beyond the present. However, when studying short-term travel and activity behaviors, such as travel mode choice, it may be more reasonable to assume tha
	As mentioned before, HMMs have been used previously to study the dynamics of travel and activity behavior. Goulias (1999) used HMMs to study the dynamics of household time allocation where the dependent variable is continuous. Choudhury et al. (2010) used HMMs to represent the evolution of latent plans over time, and their consequent impact on actions at any particular point in time. Their framework does make an explicit link with discrete choice analysis. They apply their framework to model the 
	“evolution of unobserved driving decisions as drivers enter a freeway.” Their model is described very 
	generally; extensions such as incorporating the expected maximum utility are not implemented and applications to long-range modeling and forecasting are not investigated. Perhaps the empirical application that is closest to the work presented here is the study by Xiong et al. (2015), who used HMMs to study the dynamic nature of travel mode choice behavior over time. Their framework does not allow for heterogeneity with regards to consideration sets, the transition model is not sensitive to changes in availa

	4. Methodological Framework 
	4. Methodological Framework 
	Our methodological framework builds on dynamic models, which are becoming more popular in the field of travel behavior. For example, Van Acker et al. (2014) highlight the need for incorporating dynamics into models of behavior by stating that “it will almost inevitably be the case that the range of travel choices open to people will be wider over time periods in which lifestyles can also change, than in the short run when the constraints will be more prominent. As such, the whole way of thinking about trave
	We propose using a hidden Markov model (HMM) with a discrete choice kernel, where the following two key assumptions are made: (1) we assume a myopic view of behavior, such that observed choices at a certain time period t are only dependent on corresponding preferences during that time period, and future expected utility is completely discounted; and (2) the hidden states denote different preferences, and the evolution of preferences over time is assumed to be a first-order Markov process such that an indivi
	Figure
	Figure 1: Hidden Markov Model Structure (figure adapted from Choudhury et al., 2010) 
	Figure 1: Hidden Markov Model Structure (figure adapted from Choudhury et al., 2010) 
	Hidden Markov models comprise three components: initialization model, transition model, and observed output model (Jordan, 2003). The initialization model predicts the probability that a decision-maker belongs to a certain hidden state during the first time period. The transition model predicts the probability of observing a certain evolution of hidden states between successive time periods. Lastly, the observed output model predicts the probability of observing a vector of choices for a decision-maker at a
	We operationalize the HMM in the context of travel mode choice behavior by relying on the construct of modality styles. The construct has been introduced in the literature to refer to overarching lifestyles, built 
	around the use of a particular set of travel modes, that influence all dimensions of an individual’s travel 
	and activity behavior (Vij et al., 2013). In the context of travel mode choice behavior, we use modality styles to refer to distinct segments in the population with different travel mode preferences, i.e. modes considered in the choice set, and sensitivity to level-of-service attributes. For example, modality style models have shown that in 2000, 42% of the San Francisco Bay Area’s population exclusively considered driving, whereas this share reduced to 23% in 2012 (Vij et al., 2017). Investment in technolo
	Accordingly, in the context of travel mode choice behavior, the unobserved states in the dynamic framework shall be represented by modality styles. Through the remainder of the paper, we will use the terms modality styles and (travel mode) preferences interchangeably. The transition model quantifies the evolution of modality styles over time to capture structural shifts in preferences. Our dynamic framework requires a transition model that can capture shifts in modality styles brought about by major changes
	Figure
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	Figure 2: Proposed Dynamic Discrete Choice Framework 

	4.1 Class-specific Mode Choice Model 
	4.1 Class-specific Mode Choice Model 
	The class-specific mode choice model predicts the probability that individual n during time period t made a set of choices 𝑦, conditional on the individual belonging to modality style, or class, 𝑠 during that time period. Note that 𝑦is a vector whose element 𝑦equals one if the individual chose travel mode 𝑗 during choice situation 𝑘 over time period t, and zero otherwise. The model allows more than one choice situation per individual and time period, and correlation between these choice situations is 
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	Let 𝑈denote the utility of travel mode j during choice situation k over time period t for individual n, conditional on the individual belonging to modality style s, and is expressed as follows: 
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	where 𝑉is the systematic utility, 𝑥is a row vector of attributes of alternative j during choice situation k over time period t for individual n, 𝛽is a column vector of parameters specific to modality style s and 𝜀is the stochastic component of the utility specification. Now, assuming that all individuals are utility-maximizers and 𝜀follows an i.i.d. Extreme Value Type I distribution across individuals, time periods, choice situations, alternatives and modality styles with location zero and scale one, t
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	where 𝑃(𝑦= 1|𝑞= 1) denotes predicting the probability that individual n over wave t and choice situation k chooses alternative j (implying 𝑦equals one and zero otherwise) conditional on belonging to modality style s during wave t (𝑞equals one and zero otherwise), and 𝐶denotes the choice set available for individual n at wave t and choice situation k conditional on modality style s. Preference heterogeneity is captured by allowing both the taste parameters 𝛽and the consideration sets 𝐶to vary across 
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	Assuming that choice probabilities for individual n across all choice situations belonging to time period t are conditionally independent, given that the individual belongs to modality style s during time period t, the conditional probability of observing a vector of choices 𝑦for a certain time period t becomes: 
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	where  𝐾is the number of distinct choice situations observed for individual n over time period t. 
	𝑛𝑡 


	4.2 Initialization Model 
	4.2 Initialization Model 
	The initialization model predicts the probability that individual n belongs to modality style s during the first time period. The probabilities are expressed as a function of individual characteristics during that time period, denoted by the column vector 𝑧. Characteristics may include observable socio-economic and demographic variables, such as income and gender, or later psychological, sociological or biological constructs, such as attitudes, normative beliefs or affective desires. In our case, informati
	𝑛1
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	economic and demographic variables only. Depending on the analyst’s assumption, the model may be 
	formulated as a multinomial logit, multinomial probit, mixed logit or some other model form. We assume that the initialization model is multinomial logit. 
	Let 𝑈denote the utility of modality style s during the first wave for individual n which is expressed as follows: 
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	where 𝑉is the systematic utility that is observed by the analyst, 𝑧is a row vector of socio-economic and demographic variables for individual n during the first wave and 𝜏is the associated column vector of parameter estimates for modality style s, and 𝜀is the stochastic component of the utility specification. Now, assuming that all individuals are utility maximizers and that 𝜀follows an i.i.d. Extreme Value Type I distribution across individuals, first wave, and modality styles with location zero and s
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	where 𝑃(𝑞= 1|𝑍) represents the probability that individual n has modality style s during the first wave conditional on his/her socio-demographic variables during the first wave, and 𝑆 denotes the total number of modality styles in the sample. 
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	4.3 Transition Model 
	4.3 Transition Model 
	Analogously, the transition model predicts the probability that individual n transitions to modality style s during time period t, conditional on the individual belonging to modality style r during the previous time period (t-1). Ordinarily, the probabilities may be expressed as a function only of individual characteristics during that time period (see, for example, Xiong et al., 2015), as was the case with the initialization 
	model. Depending on the analyst’s assumption, the transition model may be formulated as a multinomial 
	logit, multinomial probit, mixed logit or some other model form. We assume that the transition model is multinomial logit. 
	Let 𝑈()denote the utility derived from transitioning into modality style s at wave t conditional on individual n belonging to modality style r during the previous wave (t-1), which is expressed as follows: 
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	where 𝑉()is the systematic utility, 𝑧is a row vector of observable socio-economic and demographic characteristics of individual n over wave t and 𝛾is a column vector of parameters specific to modality style s at wave t given that the individual belonged to modality style r during wave (t-1), and 𝜀()is the stochastic component of the utility specification. 
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	Assuming that all individuals are utility maximizers and that 𝜀()follows an i.i.d. Extreme Value Type I distribution across individuals, waves and modality styles with location zero and scale one, the transition probability could be formulated as such: 
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	where 𝑃(𝑞= 1|𝑞()= 1) denotes one entry of the transition probability matrix, which involves predicting the probability that individual n belongs to modality style s during wave t, for t > 1, conditional on modality style r during the previous wave (t-1). 
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	Now, the transition model is merely a function of socio-demographic variables. However, wouldn’t changes in the level-of-service of the transport network, such as reductions in travel times or travel costs, influence the transition from one modality style to the other? Changes in the level-of-service of different travel modes will affect different modality styles differently. For example, increased freeway congestion will make car-oriented modality styles less attractive, and a reduction in transit services
	Given that individuals are assumed to be utility-maximizing, the consumer surplus offered by modality style s to individual n during time period t is given theoretically by the total expected maximum utility derived by the individual over all observations for that time period, also referred to as the inclusive value. When the class-specific choice model is assumed to be multinomial logit, expected maximum utility reduces to the familiar logsum measure, and the average consumer surplus is given by: 
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	where 𝛼is a parameter associated with the consumer surplus specific to modality style s at wave t given that the individual belongs to modality style r over wave (t-1). For the model to be consistent with utility-maximizing behavior, 𝛼≥ 0. 
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	The inclusion of consumer surplus in the transition model provides a basis for understanding and predicting how individual preferences might change over time in response to corresponding changes in the transportation system. Consider, for the sake of illustration, that the local public transport agency introduces a temporary free pass for all services. The introduction of such a pass would change the consumer surplus offered by different modality styles differently. For modality styles that do not include p

	4.4 Likelihood Function of the Full Model 
	4.4 Likelihood Function of the Full Model 
	Now, the marginal probability 𝑃(𝑦) of observing a sequence of choices 𝑦for decision-maker n over T time periods is expressed as follows: 
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	HMMs are traditionally estimated via the Expectation-Maximization (EM) algorithm (forward-backward algorithm) that provides a computationally robust method of optimization by taking advantage of the conditional independence properties of the model framework. The EM algorithm is particularly useful for HMMs because in the M-step, each of the class-specific choice models, the initialization model and transition model can be maximized independently. However, for HMMs that incorporate feedback to the transition
	HMMs are traditionally estimated via the Expectation-Maximization (EM) algorithm (forward-backward algorithm) that provides a computationally robust method of optimization by taking advantage of the conditional independence properties of the model framework. The EM algorithm is particularly useful for HMMs because in the M-step, each of the class-specific choice models, the initialization model and transition model can be maximized independently. However, for HMMs that incorporate feedback to the transition
	since the class-specific taste parameters are common to both sub-models. Consequently, the EM algorithm is not useful in this case, and we resorted to using traditional batch gradient optimization techniques. 



	5. Initial Conditions Problem in Dynamic Discrete Choice Models 
	5. Initial Conditions Problem in Dynamic Discrete Choice Models 
	Dynamic models may exhibit what is referred to as the initial conditions problem, first discussed by Heckman (1981). The initial conditions problem refers to how the dynamic process is initialized. Heckman (1981) illustrates the problem with the following functional form: 
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	where 𝑈denotes the utility during time period t for individual n, 𝑓 denotes the function that expresses the observable components of utility, 𝑥entails explanatory variables for time period t for individual n, 𝑦represents the choice that individual n made during time period (t-1), and 𝜀is the stochastic error component of the utility specification. We can clearly see that this general dynamic model captures the effect of previous choices on current ones.  
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	One main assumption in this model formulation entails serially correlated error structure. According to Heckman (1981), initial conditions can only be treated as exogenous variables if at least one of the following two conditions is met: (1) serially independent error structures in the model framework (𝜀) whereby the error components are assumed to be independently and identically distributed over time; or 
	𝑛𝑡

	(2) if the data includes observations since the dynamic process started. If one of these two conditions is met, then we can treat initial conditions as exogenous variables or “fixed”. However, if neither of those assumptions is met, then initial conditions cannot be treated as exogenous variables, and assuming that they are will lead to inconsistent parameter estimates. The latter condition is almost never going to be met, since the analyst frequently only observes a dynamic process after it first began. Th
	Heckman (1981) discusses this issue in the context of a fixed effect probit model. Let us reframe our proposed hidden Markov model using the notation employed by Heckman’s general dynamic model.  The initial conditions problem, in the case of HMMs, is associated with the initialization model with left-censored datasets. The class-specific choice model could be expressed as follows: 
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	where 𝑥entails explanatory variables for time period t for individual n, 𝑞denotes the modality style for decision-maker n during time period t. However, according to the aforementioned transition model, one could express the following: 
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	where 𝑔 denotes the function that models the transition of modality styles over time, 𝑧entails sociodemographic variables for time period t for individual n, and 𝜏is the stochastic error component. Accordingly, we can express the class-specific choice model utility equation as such: 
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	We can recursively iterate by replacing the expression of modality styles at different time periods all the way until the first time period, ending up with the following equation: 
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	We are assuming that the choice probabilities that comprise the class-specific choice model for a certain individual are conditionally independent over choice situations and time periods, given the modality style 
	We are assuming that the choice probabilities that comprise the class-specific choice model for a certain individual are conditionally independent over choice situations and time periods, given the modality style 
	they belong to and the set of explanatory variables that affect the choice process. Thus, the error components in this choice model are independently and identically distributed across time, i.e. no serial correlation. Therefore, by assuming serially independent error structures, which is standard in HMMs, 

	initial conditions could be treated as exogenous variables or “fixed” for the aforementioned reasons. 
	Conditional on an individual’s modality style, how valid is it to assume that the utilities of different 
	choice alternatives over time are serially uncorrelated? Factors that lead to serially correlated error terms entail habit or inertia whereby choices (travel patterns in the case of travel behavior) could repeat themselves over time (Cantillo et al., 2007; Gärling and Axhausen 2003). The construct of modality styles tries to capture profound individual variations in preferences and attitudes and “higher-level orientations, or lifestyles that influence all dimensions of an individual’s travel and activity be
	Another factor behind serial correlation in the case of panel data comprises multiple choice decisions made by the same individual. This is what we refer to as specification bias, which encompasses excluding important determinants of choice decisions that are unobserved by the analyst but are common across multiple choice decisions for the same individual. These determinants could include unobserved attitudes, missing socio-demographic variables, etc., which become confounded with the error terms over time 
	For a hidden Markov model, the evolutionary path, i.e. the transition model, is depicted by a first-order Markov process, which follows the property: 
	𝑇 𝜋𝑛 
	= 
	𝑡−1,𝑡 𝑡=2 
	𝜋
	1 
	∏ Ω

	where 𝜋denotes the vector of marginal probabilities for the available modality styles at time period n, 𝜋has the same definition as 𝜋but is associated with the first time period, and Ωdenotes the transition probability matrix between time period (t-1) and t. 
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	If the data is left-censored whereby the time periods which were observed correspond to: {J, J+1, …, T}, such that J>1, then the initialization model will be biased. Using the above Markov chain equation, the initialization probabilities evaluated at t=J equal the product of the initialization probabilities at t=1 and all the transition probabilities up until t=J. In other words, 𝜋= 𝜋× ∏Ω, and the magnitude of the bias is given by the difference between 𝜋and 𝜋. However, the transition model and the clas
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	We conducted a Monte Carlo simulation experiment to corroborate our arguments. For our Monte Carlo simulation, we simulated 5000 observations. Each of the observations entailed 10 time periods. There were two available states (𝑠, 𝑠) that each observation could belong to at each time period. There were also two available outcomes at each time period. The distribution of the initialization model, during the 
	1
	2

	first time period, is 0.4 and 0.6 across the two states i.e. 𝜋= [0.4, 0.6]. The transition probability matrix 0.8 0.2 
	1 
	= 
	[

	between two successive time periods is Ω]. The class-specific choice probabilities were 
	𝑡−1,𝑡 
	0.7

	0.3 
	assumed as follows: conditional on being in the first state, the probability of choosing the first outcome is 0.5, and the probability of choosing the second outcome is 0.5. However, conditional on being in the second state, the probability of choosing the first outcome is 0.7, and the probability of choosing the second outcome is 0.3. We first estimated the hidden Markov model parameters for N=5000 observations over the entire time periods associated with the dynamic process i.e. T=10. We then re-estimated
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	𝑡=2 𝑡−1,𝑡 
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	choice models remained unbiased. 
	Table 1: Monte Carlo Simulation Results 
	Variable 
	Variable 
	Variable 
	True Value 
	N = 5000 & T = 10 
	N= 5000 & T = 5 

	Initialization Probability (class 1) 
	Initialization Probability (class 1) 
	0.40 
	0.39 
	0.58 

	Initialization Probability (class 2) 
	Initialization Probability (class 2) 
	0.60 
	0.61 
	0.42 

	Transition Probability (class 1 | class 1) 
	Transition Probability (class 1 | class 1) 
	0.80 
	0.78 
	0.79 

	Transition Probability (class 2 | class 1) 
	Transition Probability (class 2 | class 1) 
	0.20 
	0.22 
	0.21 

	Transition Probability (class 1 | class 2) 
	Transition Probability (class 1 | class 2) 
	0.30 
	0.29 
	0.29 

	Transition Probability (class 2 | class 2) 
	Transition Probability (class 2 | class 2) 
	0.70 
	0.71 
	0.71 

	Probability(outcome 1 | class 1) 
	Probability(outcome 1 | class 1) 
	0.50 
	0.49 
	0.49 

	Probability(outcome 2 | class 1) 
	Probability(outcome 2 | class 1) 
	0.50 
	0.51 
	0.51 

	Probability(outcome 1 | class 2) 
	Probability(outcome 1 | class 2) 
	0.70 
	0.71 
	0.72 

	Probability(outcome 2 | class 2) 
	Probability(outcome 2 | class 2) 
	0.30 
	0.29 
	0.28 



	6. Dataset 
	6. Dataset 
	In February of 2007, Santiago, Chile introduced Transantiago, a complete redesign of the public transit system in the city. Before the introduction of Transantiago, public transport in Santiago comprised a privately operated and uncoordinated system of buses and shared taxis, and the publicly run underground Metro lines. The old bus system was characterized by a large and inefficient fleet of 8,000 buses operating 380 lines, competition among buses on streets to gain passengers, higher than required frequen
	considerably safer, faster and more reliable than the bus system, only accounted for 8% of the city’s trips 
	under the old system, due largely to sparser network coverage and the high cost of transfers between buses and the Metro. 
	With the aim of addressing these problems and stemming the decline in the public transportation system, the city assembled a team of Chilean specialists and consultants in 2005 to come up with a design for Transantiago (Fernández et al., 2008). Under the new system, the metropolitan region in and around Santiago was divided into ten zones and operations were taken over by a group of ten new companies. Bus routes were consolidated into a hierarchical system of trunk and feeder routes. The feeder routes conne
	Though the system succeeded in achieving many of these goals, as a result of poor implementation it inadvertently created several new problems. First, the system was introduced in a ‘big-bang’ fashion with no pilot studies or public information campaigns leading up to the change. As a consequence, the first few 
	weeks following the change resulted in great chaos and confusion among users of the city’s public 
	transportation system. Second, the system was designed under the assumption that by the time of its introduction, certain critical bus-only lanes would have been constructed and all buses in the public transit fleet would have been fitted with on-board GPS tracking systems. Neither of these goals was achieved in time, and as a consequence buses ran well below design speeds, introducing significant unreliability into the system. Third, most new bus routes were confined to run along major arterials, increasin
	The dataset for the study comes from the Santiago Panel, comprising four one-week waves of pseudo travel-diary data collected over a span of twenty-two months that extends both before and after the introduction of Transantiago. The first wave was conducted in December 2006, three months before Transantiago was introduced, and the next three waves were implemented in May 2007, December 2007 and October 2008, respectively. Survey respondents were drawn from full-time employees working at one of six campuses o
	The dataset for the study comes from the Santiago Panel, comprising four one-week waves of pseudo travel-diary data collected over a span of twenty-two months that extends both before and after the introduction of Transantiago. The first wave was conducted in December 2006, three months before Transantiago was introduced, and the next three waves were implemented in May 2007, December 2007 and October 2008, respectively. Survey respondents were drawn from full-time employees working at one of six campuses o
	transportation system, such as safety, reliability and accessibility (collected only during the fourth wave). For more details about the dataset, the reader is referred to Yáñez et al. (2010). 

	The dataset offers a unique opportunity to investigate the effects of systemic changes in the transportation network on the evolution and persistence of individual preferences. For the purpose of our analysis, we will be restricting our attention to 220 respondents, each of whom has at least one recorded observations in each of the four waves that constitute the Panel. We aggregate the modal alternatives into seven travel modes: auto, metro, bus, walk, bike, auto/metro (for individuals that drive to the met
	Figure
	Figure 3: Mode Shares across All Waves 
	Figure 3 plots mode shares across the four waves for all 220 individuals. It is evident that there was a big reduction in choosing the bus system as a mode of transport for work trips after wave one (post introduction of Transantiago). Bus mode shares declined from 40.6% during wave one to 18.2% during wave three, before marginally rebounding to 21.6% during wave four. Mode shares for auto/metro and bus/metro increased dramatically after the introduction of Transantiago. The major shifts in the mode choices
	The reader should note that a plot like Figure 3 could also have been plotted using repeated cross-sectional data. Longitudinal data allows us to analyze where these changes in mode shares are coming from. Figure 4 plots the number of trips where individuals switched travel modes between any two subsequent waves of the Panel. The scale of the vertical axes for each of the three plots is the same, to make the comparison easier. As one would expect, the majority of the shift occurs from wave 1 to wave 2, 
	immediately in the wake of the introduction of Transantiago, and most of it away from “bus” and towards 
	“bus/metro”. However, as the system stabilizes over time, so does the behavior of its users, with significantly less movement across travel modes between waves 2 and 3 and waves 3 and 4. Given the nature of the differences between the old and the new system, this is not surprising. The more interesting question is: does the shift in observable travel mode choice behavior indicate a corresponding shift in latent travel mode preferences? And does this latter shift, if any, persist beyond the first wave? We ad
	Figure
	Figure 4: Shifts across Travel Modes between Subsequent Waves of the Panel 
	Finally, when estimating HMMs, time periods should ideally be evenly spaced. In our case, the time periods are denoted by each wave of data collection. As mentioned before, the interval between waves is not evenly spaced: five months between waves 1 and 2, seven months between waves 2 and 3, and ten months between waves 3 and 4. Given that the main objective of this paper is to develop a framework for modeling and forecasting the evolution of preferences over time, we need to assume that the transition mode

	7. Estimation Results and Discussion 
	7. Estimation Results and Discussion 
	The following section presents results from the hidden Markov model. Our proposed dynamic discrete choice framework models the evolution of preferences over time in response to changes in sociodemographic variables and the level-of-service of the transportation network. Determining the final model specification was based on varying the utility specification for all sub-models: initialization model, transition model and class-specific choice model. The method for identifying the number of distinct preference
	-
	2

	We first estimated the models by varying the number of modality styles excluding the effect of the levelof-service of the transportation network on the modality style transition model, as captured through the construct of consumer surplus (i.e. the average expected maximum utility, or inclusive value). We made use of the power of the EM algorithm in estimating model parameters while saving on computation time. The EM algorithm provides a statistically robust approach for model estimation by taking advantage
	-

	Table 2: Measures of Model Fit 
	Number of Modality Styles 
	Number of Modality Styles 
	Number of Modality Styles 
	Log-Likelihood 
	̅𝟐 𝝆
	AIC 
	BIC 

	Two 
	Two 
	-2365 
	0.514 
	4798 
	5015 

	Three 
	Three 
	-1599 
	0.636 
	3328 
	3743 

	Four 
	Four 
	-1287 
	0.601 
	2740 
	3270 


	Tables 3, 4 and 5 present detailed parameter estimates (and t-statistics) of the class-specific travel model choice model, initialization model and transition model, respectively, for the final specification. The four classes, or modality styles, differ from each other in terms of the travel modes that they consider, their sensitivity to the level-of-service of the transportation system, and their socio-demographic composition over time. The tabulated model results are behaviorally consistent, i.e. paramete
	Table 3: Class-specific Travel Mode Choice Model Results 
	Variable 
	Variable 
	Variable 
	Class 1 Drivers 
	Class 2 Bus Users (Transit) 
	Class 3 Bus-Metro Users (Transit) 
	Class 4 Auto-Metro Users (Transit) 

	Alternative Specific Constant 
	Alternative Specific Constant 

	Auto 
	Auto 
	0.000 (-) 
	-
	-
	0.000 (-) 

	Metro 
	Metro 
	-3.925 (-10.134) 
	-
	0.000 (-) 
	2.293 (208.455) 

	Bus 
	Bus 
	-4.259 (-13.437) 
	0.000 (-) 
	-7.644 (-19.739) 
	-

	Walk 
	Walk 
	1.935 (6.158) 
	-
	-
	-

	Bike 
	Bike 
	-0.710 (-3.214) 
	-
	-
	-

	Auto-Metro 
	Auto-Metro 
	-3.440 (-11.576) 
	-
	-
	4.441 (753.179) 

	Bus-Metro 
	Bus-Metro 
	-3.618 (-9.750) 
	-
	2.208 (6.965) 
	-

	Travel Time (mins) 
	Travel Time (mins) 
	-0.028 (-2.968) 
	-0.042* (-0.275) 
	-0.091* (-0.290) 
	-0.069 (-3.043) 

	Walk Time (mins) 
	Walk Time (mins) 
	-0.041 (-3.761) 
	-0.002* (-0.019) 
	-0.127* (-0.574) 
	-0.103* (-0.073) 

	Travel Cost (CLP) 
	Travel Cost (CLP) 
	-0.006* (-1.072) 
	-0.061* (-0.280) 
	-0.102* (-0.344) 
	-0.080* (-0.074) 

	Waiting Time (mins) 
	Waiting Time (mins) 
	-0.024* (-1.065) 
	-0.038* (-0.042) 
	-0.293* (-0.790) 
	-0.053* (-0.940) 

	Number of Transfers 
	Number of Transfers 
	-
	-2.633 (-13.894) 
	-1.136 (-118.488) 
	-


	-Not applicable; * Insignificant at the 5% level 
	Table 4: Initialization Model Results 
	Variable 
	Variable 
	Variable 
	Class 1 Drivers 
	Class 2 Bus Users (Transit) 
	Class 3 Bus-Metro Users (Transit) 
	Class 4 Auto-Metro Users (Transit) 

	TR
	Initialization Model (Wave 1) 

	Alternative Specific Constant 
	Alternative Specific Constant 
	0.000 (-) 
	2.993 (5.951) 
	-0.073* (-0.160) 
	0.139* (0.229) 

	Household Income (100,000s CLP) 
	Household Income (100,000s CLP) 
	0.000 (-) 
	-0.510 (-4.621) 
	-0.060* (-1.313) 
	-0.190 (-2.008) 

	Male 
	Male 
	0.000 (-) 
	0.223* (0.521) 
	0.635* (1.176) 
	0.519* (0.821) 

	Number of Vehicles 
	Number of Vehicles 
	0.000 (-) 
	-0.992 (-3.159) 
	-0.739 (-1.979) 
	-0.295* (-0.736) 


	-Not applicable; * Insignificant at the 5% level 
	Table 5: Transition Model Results 
	Variable 
	Variable 
	Variable 
	Class 1 Drivers 
	Class 2 Bus Users (Transit) 
	Class 3 Bus-Metro Users (Transit) 
	Class 4 Auto-Metro Users (Transit) 

	TR
	Transition Model (Given Class 1 in Wave t-1) 

	Alternative Specific Constant 
	Alternative Specific Constant 
	0.000 (-) 
	0.900 (28.746) 
	1.351 (12.388) 
	-2.175 (-44.022) 

	Household Income (100,000s CLP) 
	Household Income (100,000s CLP) 
	0.000 (-) 
	-0.170* (-0.002) 
	-0.610* (-0.010) 
	-0.080* (-0.001) 

	Male 
	Male 
	0.000 (-) 
	0.671 (21.067) 
	-1.178 (-21.928) 
	0.359 (21.710) 

	Number of Vehicles 
	Number of Vehicles 
	0.000 (-) 
	-0.385 (-5.752) 
	-0.416* (-0.262) 
	-0.365* (-0.221) 

	Consumer Surplus (utils) 
	Consumer Surplus (utils) 
	0.594* (0.303) 
	1.000 (-) 
	0.264 (43.803) 
	-

	TR
	Transition Model (Given Class 2 in Wave t-1) 

	Alternative Specific Constant 
	Alternative Specific Constant 
	0.000 (-) 
	4.833 (7.617) 
	2.060 (1637.711) 
	1.223 (382.495) 

	Household Income (100,000s CLP) 
	Household Income (100,000s CLP) 
	0.000 (-) 
	-0.680 (-10.155) 
	-0.310* (-0.003) 
	-0.500* (-0.005) 

	Male 
	Male 
	0.000 (-) 
	1.831 (3.014) 
	1.056* (1.477) 
	0.999* (1.506) 

	Number of Vehicles 
	Number of Vehicles 
	0.000 (-) 
	0.595* (1.135) 
	-0.130* (-0.100) 
	-0.378* (-0.248) 

	Consumer Surplus (utils) 
	Consumer Surplus (utils) 
	0.330 (110.466) 
	0.500 (256.703) 
	0.155* (0.114) 
	0.317* (0.253) 

	TR
	Transition Model (Given Class 3 in Wave t-1) 

	Alternative Specific Constant 
	Alternative Specific Constant 
	0.000 (-) 
	2.480* (1.371) 
	0.936 (414.323) 
	1.391 (626.478) 

	Household Income (100,000s CLP) 
	Household Income (100,000s CLP) 
	0.000 (-) 
	-1.150 (-2.811) 
	-0.090* (-0.001) 
	-0.930* (-0.012) 

	Male 
	Male 
	0.000 (-) 
	0.635* (0.560) 
	1.801 (3.300) 
	-0.641* (-1.087) 

	Number of Vehicles 
	Number of Vehicles 
	0.000 (-) 
	-1.506* (-1.495) 
	-1.143* (-0.608) 
	0.184* (0.143) 

	Consumer Surplus (utils) 
	Consumer Surplus (utils) 
	1.709* (1.688) 
	0.140* (0.098) 
	0.097* (0.108) 
	0.364* (0.560) 

	TR
	Transition Model (Given Class 4 in Wave t-1) 

	Alternative Specific Constant 
	Alternative Specific Constant 
	0.000 (-) 
	1.064* (0.504) 
	0.636 (123.621) 
	0.968 (1003.253) 

	Household Income (100,000s CLP) 
	Household Income (100,000s CLP) 
	0.000 (-) 
	-0.370* (-0.712) 
	-0.060* (-0.001) 
	0.050* (0.001) 

	Male 
	Male 
	0.000 (-) 
	1.84* (1.07) 
	1.03* (1.10) 
	0.04* (0.06) 

	Number of Vehicles 
	Number of Vehicles 
	0.000 (-) 
	-1.805* (-1.905) 
	-0.163* (-0.058) 
	0.142* (0.061) 

	Consumer Surplus (utils) 
	Consumer Surplus (utils) 
	0.088* (0.513) 
	0.094* (0.501) 
	0.083* (0.487) 
	-


	-Not applicable; * Insignificant at the 5% level 
	-Not applicable; * Insignificant at the 5% level 
	Class 1 (drivers): This class constitutes 36% of the sample population during wave 1, and the share of the class slowly but steadily increases to 40% by wave 4. Individuals belonging to this class consider all available modes of transport, but 70% of all trips are made by auto. Value of time varies between 0.36$/hr for waiting time and 0.62$/hr for walking time, and the class is completely insensitive to public transport transfers. High-income men with cars are most likely to belong to this class. 

	Class 2 (bus users): This class constitutes 39% of the sample population during wave 1, and the share of the class steadily decreases to 20% by wave 4. Individuals belonging to this class deterministically choose bus for all their trips. Value of time is low, at approximately 0.07$/hour across different travel time components. Note that even though the class-specific choice model is deterministic, parameters denoting sensitivities to travel times and costs can still be estimated indirectly through the trans
	Class 3 (bus-metro users): This class constitutes 14% of the sample population during wave 1, and the share of the class steadily increases to 24% by wave 4. Individuals belonging to this class consider the metro, bus and bus-metro alternatives. Value of time varies between 0.09$/hr for in-vehicle time and 0.26$/hr for waiting time. Each public transport transfer is equivalent to 12 minutes of in-vehicle time. Low-income women without access to cars are most likely to belong to this class. 
	Class 4 (auto-metro users): This class constitutes 11% of the sample population during wave 1, and the share of the class increases marginally to 16% by wave 4. Individuals belonging to this class consider the auto, metro and auto-metro alternatives. Value of time varies between 0.06$/hr for waiting time and 0.12$/hr for walking time, and the class is completely insensitive to public transport transfers. While low-income individuals without access to cars are most likely to belong to this class initially, o
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	Figure 5: Estimated Share of Individuals in Each Modality Style across Waves 
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	Now that we have estimated our hidden Markov model, we want to explore the power of this model in terms of explaining the evolution of preferences, or modality styles, in response to the introduction of Transantiago. The population distribution of individuals across the four classes for each of the waves, as determined by sample enumeration, is displayed in Figure 5. It is evident that a shock to the transportation network along the lines of Transantiago did force people to reconsider their modes for travel
	Figure
	Figure 6: Estimated Average Transition Probabilities across Modality Styles over Time 
	However, the stability in preferences at the population level belies the instability at the individual level. Figure 6 illustrates the average transition probabilities between different modality styles across successive time periods. Note that while Figure 5 could have been reproduced using a static framework, such as an LCCM, with repeated cross-sectional data (see, for example, Vij et al., 2017), Figure 6 could only be produced using a dynamic framework with longitudinal data, such as the HMM proposed her

	8. Policy Analysis 
	8. Policy Analysis 
	Practitioners and policy analysts are often interested in understanding and predicting broad population trends in travel and activity behavior. Does failure to account for preference dependencies over time impact population estimates? Or is it reasonable to ignore such dependencies when undertaking population-level analysis? We address these questions by comparing aggregate forecasts from the HMM with static frameworks that do not account for preference dependencies over time. The forecasting horizon is lim
	1-Increasing household income by 10% at waves five, six and seven respectively. 
	2-Reducing travel time by 15% for the bus and bus to metro alternatives. This could be brought 
	about by a new transportation policy, dedicated bus lanes for example. This particular shock to 
	the transportation network is assumed to take place between waves four and five. 
	We compare forecasts from the HMM with latent class choice models (LCCMs). To ensure that the LCCMs and the HMM are as similar as possible, and any potential differences in forecasts cannot be attributed to differences in either observed data or model specification, we use the following procedure. Since an LCCM would typically be estimated using a single cross-section, we estimate two separate LCCMs using data from the first and last wave respectively. Each of the LCCMs comprises four modality styles (prefe
	Figure 7 plots the change in modality styles across waves five, six and seven for the first policy scenario, as predicted by the HMM and the two LCCMs, and Figure 8 plots the corresponding travel mode shares 
	Figure 7 plots the change in modality styles across waves five, six and seven for the first policy scenario, as predicted by the HMM and the two LCCMs, and Figure 8 plots the corresponding travel mode shares 
	for the same. As is evident from the figures, even at the population level, there are considerable differences between forecasts from the three models. In general, the LCCM estimated using wave 4 data more closely tracks forecasts from the HMM. Relative to the HMM, the LCCM estimated using wave 4 data under predicts the share of drivers and auto-metro users, and over predicts the share of bus-metro users, whereas the LCCM estimated using wave 1 data under predicts the share of bus-metro users, and over pred

	Figures 9 and 10 plot corresponding forecasts for the second policy scenario, as predicted by the HMM and the two LCCMs. Note that the travel mode shares are the same across all three waves, since the change in the transportation system precedes wave 5. Therefore, we show them as a single plot. In terms of modality styles, there are considerable differences between forecasts from the three models, though forecasts from the LCCM estimated using wave 4 data are in closer agreement with those from the HMM. Int
	Figure
	Figure 7: Share of Individuals in Each Modality Style for Policy Scenario 1, as Predicted by the HMM, the LCCM Estimated Using Wave 1 Data, and the LCCM Estimated Using Wave 4 Data 
	Figure
	Figure 8: Mode Shares for Policy Scenario 1, as Predicted by the HMM, the LCCM Estimated Using Wave 1 Data, and the LCCM Estimated Using Wave 4 Data 
	Figure
	Figure 9: Share of Individuals in Each Modality Style for Policy Scenario 2, as Predicted by the HMM, the LCCM Estimated Using Wave 1 Data, and the LCCM Estimated Using Wave 4 Data 
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	Figure 10: Mode Shares for Policy Scenario 2, as Predicted by the HMM, the LCCM Estimated Using Wave 1 Data, and the LCCM Estimated Using Wave 4 Data 
	It is important to note that across both scenarios, the predicted share of drivers and bus users has been strictly higher via the LCCM estimated using wave 1 data, compared to the other two models, while the share of bus-metro users has been significantly lower. The reason behind that is the fact that observations pertinent to wave one (before the introduction of Transantiago) constituted a sample of the population that preferred taking the bus or driving to work. Moreover, the market share for the metro al
	In terms of aggregate mode shares, differences across the three models are equally sizeable. For example, travel mode shares for bus are predicted to be 21% by the HMM, 26% by the LCCM estimated using wave 1 data, and 23% by the LCCM estimated using wave 4 data. And similarly, travel mode shares for bus to metro are predicted to be 18% by the HMM, 12% by the LCCM estimated using wave 1 data, and 21% by the LCCM estimated using wave 4 data. As we argued before, relative to the HMM, the LCCM estimated using w
	In terms of aggregate mode shares, differences across the three models are equally sizeable. For example, travel mode shares for bus are predicted to be 21% by the HMM, 26% by the LCCM estimated using wave 1 data, and 23% by the LCCM estimated using wave 4 data. And similarly, travel mode shares for bus to metro are predicted to be 18% by the HMM, 12% by the LCCM estimated using wave 1 data, and 21% by the LCCM estimated using wave 4 data. As we argued before, relative to the HMM, the LCCM estimated using w
	behavior, as it does not account for habit formation from preferences and behaviors that precede Transantiago. 


	9. Conclusions 
	9. Conclusions 
	The objective of this study was to develop a methodological framework that can model and forecast the evolution of individual preferences and behaviors over time. Traditionally, discrete choice models have formulated preferences as a function of demographic and situational variables, psychological, sociological and biological constructs, and available alternatives and their attributes. However, the impact of past experiences on present preferences has usually been overlooked. 
	We developed a hidden Markov model (HMM) of travel mode choice behavior. The hidden states denote travel mode preferences, or modality styles, that differ from one another in terms of the travel modes considered when deciding how to travel, and the relative sensitivity to different level-of-service attributes of the transportation system. The evolutionary path is assumed to be a first-order Markov process, such that an individual’s modality style during a particular time period depends only on their modalit
	The model framework was empirically evaluated using data from the Santiago Panel. The dataset comprises four waves of one-week pseudo travel diaries each. The first wave was conducted before the introduction of Transantiago, a complete redesign of the public transit system in Santiago, Chile, and the next three waves were conducted after. The dataset offered a unique opportunity to study the impact of a shock to the transportation network on the stability of travel mode preferences over time. The model iden
	There are two key directions in which future research can build on findings from this study. First, the methodological framework developed here captures preference dependencies across time for the same individual, explicitly accounting for the effect of habit formation on travel behavior. The framework 
	There are two key directions in which future research can build on findings from this study. First, the methodological framework developed here captures preference dependencies across time for the same individual, explicitly accounting for the effect of habit formation on travel behavior. The framework 
	offers the potential to improve the accuracy of the long-range forecasts made from large-scale urban travel demand models. Future research should explore ways in which existing travel demand modeling paradigms can adopt dynamic representations of behavior that capture temporal trends in preferences and behaviors. And second, the framework developed here provides a quantitative basis for modeling and forecasting structural shifts in preferences that are bound to occur in this era of transformative mobility. 
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