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1. INTRODUCTION 
Walking activity has been considered as an important travel mode due to its immense benefits. 
However, the percentage of total trips undertaken by pedestrians compared to other modes is 
very low. In the United States, the National Household Travel Survey (NHTS, 2018) reported 
that trips made by walking accounted for only 0.6% of total person-miles travel (PMT). Past 
studies reveal that out of many reasons for the relatively low distance traveled by walking, one 
main reason is that the pedestrians are among the most vulnerable and unsafe road users from the 
viewpoint of traffic crashes (De Hartog et al., 2010; Retting et al., 2003). According to the 
national statistics, (Governor Highway Safety Association, 2019), a total of 6590 pedestrian 
fatalities and around 70,000 injuries were estimated in pedestrian-vehicle crashes in 2019. These 
consequences create an urgent need to prevent pedestrian-involved crashes by the 
implementation of better policies and strategies to provide safe traffic environment for active 
transportation commuters. 

Given such context, many researchers have investigated various factors such as roadway-built 
characteristics (Mansfield et al., 2018, Miranda-Moreno et al., 2011), pedestrian behavior (Jing 
Xu et al., 2018; Dommes et al., 2014; Mwakalonge et al., 2015), driver behavior (Baker et al., 
1974; Geruschat and Hassan, 2005; Schroeder and Rouphail, 2011), traffic characteristics (Shi et 
al., 2007; Barton et al., 2011), drug/alcohol use (Li et al., 2019; Plurad et al., 2006), social and 
demographic attributes (LaScala et al., 2000; Tabibi et al., 2012; Ryb et al., 2007) to highlight 
the crucial insights related to pedestrian-related crashes. Among the distinct strategies, the 
development of safety performance functions (or, crash frequency models) is one of the most 
popular strategies to address traffic safety which not only aids in screening out the significant 
influential factors, but also predicting the crash counts for various purposes (Ukkusuri et al., 
2011; Wu et al., 2018; Harwood et al., 2008). Poisson regression models were initially widely 
adopted due to popularity of Poisson distribution for discrete outcomes (Miranda-Moreno, 2006). 
However, Poisson regression models are not able to provide reliable and unbiased results in the 
case of over-dispersion (i.e., variance greater than the associated mean). In response, researchers 
employed alternate model formulations such as Poisson gamma or negative binomial (Hauer, 
2001), Poisson lognormal (Park and Lord, 2007), zero inflated models (Aguero-Valverde, 2013), 
and others, which can better address over-dispersion issues and hence provide more valid 
inferences. 

Among the above-mentioned models, univariate model framework has seen widespread 
applications in traffic safety studies due to its ease of implementation with only one dependent 
variable being involved (Anarkooli et al., 2019). However, univariate model is not capable to 
address the unobserved heterogeneities shared by various crash types or severities occurring in 
the same locations or situations (Mannering and Bhat, 2014). To overcome this issue, 
multivariate models have been proposed owing to their enhanced capabilities to tackle the 
common heterogeneity among different crash types via the explicit consideration of correlated 
random effects (Lee et al., 2015; Park and Lord, 2007). As a special case of multivariate setting, 
bivariate model is dedicated to the crashes of two categories and also enjoys frequently 
applications. For example, Russo et al. (2014) used bivariate framework to examine the factors 
pertaining to crash injury severities involved in angled collisions. The results demonstrate that 
bivariate models provide more insightful findings related with the factors influencing the 
propensity of crashes. Zheng and Sayed (2019) developed bivariate models to integrate the 
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traffic conflict indicators for crash estimation. The finding showed that bivariate model improved 
the crash estimation precision and accuracy. 

Another dimension of model classification resides in the transportation modes. For instance, as 
previously stated, the SPF can be divided into motor vehicle-oriented, non-motorist-centered, 
and so on. Overall, the vehicle-related SPF dominates the SPF development given the largest 
proportion of such mode in the current transportation system. However, with constant promotion 
of active transportation provided by various levels of government agencies in the past decades, 
ever-increasing interests were directed toward the SPF development for pedestrians or bicyclists 
(Wier et al., 2009; Rasciute and Downward, 2010). For example, Thomas (2013) investigated 
road crashes involving pedestrians and bicyclists based on a very short period of volume count 
data available for these two modes. The results showed that the risk for an individual 
pedestrian/bicyclist to be involved in a crash decreases with an increase in the number of 
pedestrians/bicyclists. Subsequently, McArthur et al. (2014) conducted a study to develop SPF to 
estimate the pedestrian crashes over a five-year data including socioeconomic and demographic 
characteristics. Gates et al. (2016) developed SPFs for pedestrian and bicyclist crashes at road 
segments and intersections. The results demonstrated that the pedestrian and bicycle crashes tend 
to increase with vehicle traffic volumes being increased. A common among these papers is the 
lack of or very limited exposure information directly related to the active transportation modes 
such as pedestrian counts. The potential reasons for such data scarcity are due to lack of definite 
paths or routes followed by pedestrian and bicyclists, limited use of emerging technologies (e.g., 
crowdsourcing), expensive data collection devices, and so on. To address these issues, different 
strategies have been used in the past. Some studies employed daily vehicle miles traveled as the 
proxy for active transportation modes based on the assumption that most nonmotorist-pertinent 
collisions are related with vehicles (Cheng et l., 2018). Others relied on the formulation of the 
active transportation volume models using predictors such as land use, transportation system 
attributes, and neighborhood socioeconomic characteristics. One recent example is the pedestrian 
count model develop by UC Berkeley researchers (Griswold et al., 2019), which can be used in 
the pedestrian SPF as a major estimation of pedestrian exposure, rather than other proxy 
information. 

Thus far, the previously mentioned models follow into the paradigm of the parametric ones. 
Some studies in traffic safety observed the superiority of nonparametric and/or semiparametric 
models to address the unobserved heterogeneity (Heydari et al., 2016; Shirazi et al., 2016). 
Regarding research dedicated to active transportation, the recent study by Heydari et al. (2017) 
proposed the Dirichlet process mixture (Ohlssen at al., 2007) to develop a flexible latent class 
model for joint analysis of pedestrian and cyclist injuries at the micro-level of intersections. The 
authors observed that the flexible approach was advantageous as it demonstrated superior 
predictive performance and better capability to capture the correlated crash data which 
eventually provided more accurate interpretation of influential factors for improvement of safety 
environment. 

Building upon the previous research studies, this project aims to utilize various model 
frameworks to develop Safety Performance Functions (SPFs) of different modes for both 
motorized and non-motorized ones. In addition, given the different characteristics associated 
with the various units, the crash frequency models for macro-level consisting of 58 counties in 
CA and 202 traffic analysis zones (TAZ) from City of the Irvine as the example, and micro-level 
including intersection and ramps. Finally, to demonstrate the strengths and weaknesses of 
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different modeling frameworks, distinct methodologies and evaluation techniques are employed 
across the various transportation modes and spatial units. 

Given the data availability, the SPFs of the micro-level are developed based on pedestrian- and 
vehicle-involved collisions at intersections and ramps. First, bivariate models were used to 
account for the common unobserved heterogeneity shared by the pedestrian- and vehicle-related 
crashes at the same intersections and ramps. Second, in consideration of the crucial impact of 
pedestrian volume to SPF of pedestrian, this project investigated pedestrian volume at 6,000 
intersections, but still lacks sufficient data for other remaining 15,000 intersections and the 
whole ramps. To overcome this issue, an adjustment factor was introduced in this research, 
which is able to replace the impact of pedestrian volume in the statistical models. Third, both 
variable importance ranking technique and correlation analyses were employed to determine the 
features to be fed into the models, which are different for each of the statistical models. Such 
practice leads to the proper covariates not only striking a balance between multi-collinearity and 
omitted variable bias issues, but also enhancing model flexibility with different inputs to specific 
transportation mode. Fourth, in comparison with the typical Bayesian hierarchical models based 
on the Markov chain Monte Carlo (MCMC) algorithm, the integrated nested Laplace 
approximation (INLA) approach was selected due to faster calculation and more robust results 
(Taylor and Diggle, 2014). Finally, for a comprehensive comparison of the predictive accuracy 
of the models, distinct goodness-of-fit measurements which include DIC (deviance information 
criterion), Dbar (posterior mean deviance), Pd (effective number of parameters) and LPML (log 
pseudo marginal likelihoods) were employed. 

For SPFs of the county level, the authors proposed two multivariate spatial-temporal models to 
analyze the modal crash data: one with fixed time trend applied to all modes; the other with 
mode-varying time trend coefficients. These models were then compared with three types of 
multivariate models used in the past including multivariate without temporal and spatial random 
effects, multivariate spatial, and multivariate temporal. The major objective of this macro-level 
SPFs is to examine the benefits of the relatively newly proposed models which have substantially 
increased computational cost since both dimensions of time and space are considered, as well as 
their interactions. Moreover, the relative goodness-of-fit or prediction performance among the 
alternate models were also evaluated with different evaluation criteria of varying complexity, 
namely: deviance information criterion (DIC), mean absolute deviations (MAD), mean-squared 
predictive error (MSPE), the G2 statistic, residual sum of squares (RSS), and total rank difference 
(TRD). Overall, four different modes (motor-vehicle only, pedestrian-involved, bicyclist-
involved and motorcyclist-related) were investigated at the macro level of counties of California. 

Lastly, for SPFs of the macro level of Irvine TAZs, the authors adopted semi-parametric 
formulation that accounts for the unobserved heterogeneity by combining the strengths of 
incorporating bivariate specification of dependency among the two active transportation crash 
modes (pedestrian and bicyclists), spatial random effects for the impact of neighboring areas, and 
Dirichlet process mixture for random intercepts. Four alternate models were developed for 
comparison based on the goodness-of-fit and predictive accuracy. The models were evaluated by 
employing different criteria, namely: LPML (log pseudo marginal likelihood), MSPE (mean-
squared predictive error), the Rp2 statistic, the G2 statistic, and RSS (residual sum of squares). 
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2. METHODOLOGY 
As stated above, a large number of modeling methods and evaluation techniques are utilized for 
SPFs of the disparate spatial units and transportation modes. For ease of description, the 
presentation of SPF methodologies are provided in the order of micro level, macro level of 
California counties, and macro level of Irvine TAZs. 

2.1 SPF of the Micro Level 

For this type of SPF development, this project employed both negative binomial model and 
Bayesian joint hierarchical model. The following subsections cover the corresponding 
methodological details in order. 

2.1.1 Bayesian Joint Hierarchical Model Specification 

This project employed Poisson lognormal model which assumes the crash count to follow 
Poisson distribution with the logarithm of poison rate following normal distribution. The model 
formulation is shown as follows (Cheng et al., 2018). 
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(2) 

Where y is a matrix consisting of crash counts of both modes at different intersections, is a 
matrix consisting of the corresponding Poisson rates of different modes and intersections, 
represents a global intercept vector for the two modes, is a coefficient vector, is the 
covariate matrix, and represents the white noise matrix. 

To better describe the joint models with different predictor input, let and denote the 
pedestrian- and vehicle-involved Poisson rate vector, respectively. The model framework for 
each of the transportation modes can be expressed using the following equations. 

(3) 

(4) 

Where the subscripts v and p represent the vehicle and pedestrian modes, is the global 
intercept, is the vector of coefficients for the independent variables common to both modes, 

is the matrix of covariates common to both modes, is the vector of coefficients for the 
independent variables which are different between the two modes, is the corresponding 
covariate matrix, and is the vector of error terms. The two models are developed 
simultaneously with the two error vectors, and , following the bivariate normal distribution: 

(5) 

Where: = , = , = (6) 
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In above equations, MN( ) represents multivariate (or, bivariate in the present study) normal 
distribution, is the random effect matrix which capture the extra-Poisson heterogeneity among 
intersections, is the vector of the mean values for the bivariate normal distribution, and is 
the variance-covariance matrix where the diagonal elements (ie., and ) in the matrix 
represent the variances of the random effects, while the off-diagonal element represent the 
covariance. The inverse of the variance-covariance matrix represents the precision matrix, which 
can be formulated using the Wishart distribution: 

(7) 

Where I is the J identity matrix (Congdon, 2006), and J is the degree of freedom, J=2 herein 
representing two transportation modes. The non-informative specifications (Heydari et al., 2017) 
for various coefficients were specified with a normally distributed vague priors N (0,100). Such 
diffused normal distribution with zero mean and a large variance is commonly employed as a 
vague prior of posterior estimates due to the absence of sufficient knowledge of priori 
distribution (Cheng et al., 2018). 

2.1.2 Random Forest (RF) and Variable Importance Ranking 

Decision tree (Wu et al., 2020) is one of the predictive models which come up with an item's 
target value (leaves) via the observations about the item (branches). Based on the nature of the 
target value, the decision tree model can be used for both regression and classification purposes. 
Compared with the other typical regression techniques, the decision tree gained its popularity as 
it closely mirror human decision-making process. As implied by the name, random forest 
(Fatholahzade et al., 2018) consists of a collection of individual decision trees that operate as an 
ensemble. The method combines bagging and the random selection of features to construct 
different decision trees with controlled variation. Using ensembles of predictors has proved to 
give more accurate results than using a single predictor. This technique has an advantage over 
the traditional decision trees in obtaining unbiased error estimates without separating cross-
validation test dataset. When a particular tree in the RF is grown from a bootstrap sample, 
usually one third of the training cases are left out (also called out-of-bag, OOB, data) from the 
tree-growing. The OOB data are then used later for determination of the optimum number of 
predictors for each tree and the optimum number of trees in the RF which result in the minimum 
OOB error rate. 

As a robust data mining technique with the implicit wisdom: “a large number of uncorrelated 
individuals operating as a committee will make better decision than do these individuals”, RF 
has seen wide applications in various fields including traffic safety (Abdel-Aty et al., 2008; Harb 
et al., 2008; Ahmed and Abdel-Aty, 2012). For the classical purposes of regression and 
classification, RF has been frequently utilized for determining the importance of various 
response variables, based on the mean decrease of either prediction accuracy or node purity with 
a specific variable being excluded from the model (Jiang, 2016). The multiple steps are involved 
when the former metric is implemented. First, the prediction accuracy on the OOB sample is 
estimated. Second, the values of the variable in the OOB sample are randomly shuffled, with all 
other variables remaining the same. Third, the decreased prediction accuracy on the shuffled data 
is calculated. Finally, the average drop of accuracy across all trees is reported for the variable. 
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The more decreased prediction accuracy in the OOB data, the more predictive power the variable 
tends to have. The second method follows the similar process as does the first one, except that 
the prediction accuracy is replaced with the node purity (or, Gini), which has the largest value 
when only one single class or value is involved in the node. Compared with the predictive 
accuracy-oriented metric, the node-purity one has the advantage of faster computation and is 
therefore chosen in the study (Nicodemus, 2011). 

2.1.3 Various Model Evaluation Criteria 
As a hierarchical modeling generalization of the Akaike Information Criterion (AIC) which uses 
maximum likelihood estimates (Hurvich et al., 1998), Deviance Information Criterion (DIC) has 
been used extensively to assess the complexity and goodness of fit of the Bayesian models based 
on the posterior means. The calculation of DIC can be done via the following expression 
(Spiegelhalter et al., 2003): 

DIC = + (8) 

Where, is the posterior mean deviance which measures the closeness of the fitted data to the 
original observations, PD denotes the effective number of parameters in a model representing the 
model complexity. The effective number is used since the number of independent parameters in 
a Bayesian hierarchical model is not clearly defined (Meyer, 2014). In general, models with 
more parameters tend to over-fit the data resulting in smaller deviance. Therefore, the PD term 
can be considered as a compensation for this effect by favoring models with a smaller number of 
parameters. Even though models with smaller DIC values are preferred, it is important to note 
the general rule for model comparison suggested by Lunn et al. (2012): the models with DIC 
score less than 5 of the 'best' model are also strongly supported (provided they do not make very 
different inferences), values within 5 and 10, slightly inferior, and models with a DIC greater 
than 10 points are obviously worse. Overall, while is regarded as an approximation to in-
sample error, the DIC can be treated as the adjusted training error with the asymptotic bias 
corrected for the model complexity (James et al., 2013). 

Different than DIC and , which are based on within-sample predictive errors, other alternatives 
are based on the test data using cross-validation techniques. Nonthless, the typical approaches of 
cross-validation are prone to selection bias related with data-splitting into subsets. To circumvent 
such bias, a robust conditional predictive ordibate (CPO) based on CV-1 (leave-one-out) was 
employed in this study (Pettit, 1990). Under this condition, an iterative process was performed 
where, for each step, one data point was left out for the validation of prediction accuracy of the 
calibrated model based on all other data (Ross and Held, 2011). Within the INLA framework, the 
estimate of CPO for each observation i can be calculated as (Gelfand, 1996; Liu and Sharma, 
2017): 

(9) 

Where Yi is the ith observation (i = 1, 2, 3, . . ., n) for all intersections 
estimated model parameters. 
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Based on the CPO, the Log pseudo marginal likelihoods (LPML) can be calculated and have 
been employed in recent safety literature (Heydari et al., 2017; Cheng et al., 2018). The 
computation for LPML can be performed using the following equation: 

(LPML = )   (10) 

Where i, n and CPO are denoted as those in Equation 9. 

The larger value of LPML signifies a better predictive capability related with the candidate model. 
In comparison with DIC, LPML may be regarded as a measure for direct assessment of test errors 
(out-of-sample) as it is generated by employing the leave-one-out cross-validatory approach. 

2.1.4 Negative Binomial Model 

The log-linear model generally has two types, dependent on the assumption of distribution for 
the crash count, either Poison or Negative Binomial. For Poisson regression model, the 
framework for probability P(ri) of a number of crashes i over different time periods ri (hour, 
weekday, month) can be defined using the following equation (Poch and Mannering, 1996): 

) 
                           P(ri) = 

( 

! 
(10) 

)] = E( ) = E(                     )2 Var ( 

is the Poisson parameter for approach i, which is equal to approach i’s expected 
crashes over different time periods P( 

 

              
               

          

         

               
                

             

    
 

              
             

                
             

                                               

                
              

                 
                

               
              

                
       

                                                    

          
       

        
 

             
              

            
           

               
                

                
              

                
               

). One restriction of Poisson regression is the 
requirement that the mean and variance of the number of crashes are equal to each other, or, 

(11) 

Where 

E( ) = Var ( ). Investigation of crash frequency of the study reveals that the variance is 
significantly larger than the mean value, that is, E( ) < Var ( ). To address the over-dispersed 
issue in the data, the commonly used NB model (Lord and Mannering, 2010; Poch and 
Mannering, 1996) is also used in the research. The corresponding equation for the variance of the 
crash count is shown as follows. 

found to be significantly different from zero, then the NB 
regression can be used instead of the Poisson. 

2.2 SPF of the Macro Level of Counties 

For this type of SPF development, this study analyzed four different transportation mode users-
involved crashes occurring at the 58 counties of California. The process involved the development 
of multivariate spatial-temporal models and compared their modeling performance with three other 
competing multivariate models assuming a Poisson-Lognormal distribution for crash counts. All 
models in the study were developed using the Full Bayes approach. Similar to the Empirical 
Bayesian (EB) method (Cheng et al, 2017c), the Full Bayesian (FB) method has been widely used 
in safety analysis (Davis & Yang, 2001; Washington & Oh, 2006; Cheng et al., 2017a). Even 
though numerous studies have illustrated favorable results yielded by the EB method (Maher & 
Mountain, 1988; Higle & Hecht, 1989; Cheng & Washington, 2005), an FB was chosen due to 
some of its advantages over EB: its capability to seamlessly integrate prior information and all 
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available data into a posterior distribution (rather than point estimates), its capability to provide 
more valid safety estimates in smaller data samples, and its capability to allow more complicated 
model specifications. In addition to the normal Poisson-Gamma distribution, the FB models are 
also capable of accommodating the Poisson-Lognormal distribution and various hierarchical 
Poisson distributions that can address the serial and spatial correlations among the sites (Pawlovich 
et al., 2006; Miranda-Moreno, 2006; Cheng et al., 2017b). The details of various models are 
presented as follows in the order of complexity. 

2.2.1 Different Modeling Formulations 

Model 1: Multivariate Poisson-Lognormal Model (MVPLN) 

This model assumes that crash count of certain modal crash j at a given location i in time t (in 
years), , obeys Poisson distribution, while the corresponding observation specific error term 

ijt follows  a  multivariate  Normal  distribution:  
   (12) 

(13) 
(14) 

Where = , = , = , = (15) 

In above equations, is the Bayesian estimated Poisson crash rate for a mode j of year t at 
location i obtained by using offset of traffic exposure ( ) at county i for year t, X’ is the matrix 
of risk factors, is the vector of model parameters, is the independent random effect which 
captures the extra-Poisson heterogeneity among locations. is called the covariance matrix. The 
diagonal element in the matrix represents the variance of , where the off-diagonal elements 
represent the covariance of crash counts of different modes. The inverse of the covariance matrix 
represents the precision matrix and has the following distribution: 

(16) 

Where I is the J x J identity matrix (Congdon, 2006), and J is the degree of freedom, J=4 herein 
representing 4 crash outcomes corresponding to four different modes. 

It is important to note that in this study, the Daily Vehicle Miles Traveled (DVMT) was utilized 
as the exposure term ( ) for the calculation of crash rate. This approach of employing DVMT as 
an offset to generate the crash rate has been implemented by previous studies (Miaou et al., 2003; 
Eksler & Lassarre, 2008; Huang et al., 2009; Flask et al., 2014; Dong et al., 2014; Dong et al., 
2016a; Gill et al., 2017a, Gill et al., 2017b). This study preferred the crash rate method over the 
traditional crash count approach which treats traffic exposure as an explanatory variable as the 
former provided better and quicker convergence than the crash count models. More importantly, 
the plots of crash counts and DVMT across all transportation modes depicted the existence of a 
linear relationship, which satisfies the assumption for implementing the crash rate approach. The 
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rationale behind this linear relationship is the large spatial scale of this study where the crash data 
are aggregated at the county level. Moreover, the use of crash rate helps normalize the dependent 
variable across counties as the crash data demonstrated very significant variability due to the 
differences in geographic area and population across 58 counties. 

Model 2: Multivariate Poisson-Lognormal with Time Trend (MVPLNT) 

Under this model, a yearly trend term t is added to Equation 13 resulting in the new expression: 
(17) 

Where is the trend coefficient vector for various crash modes, and T is yearly trend. Various 
types of trend were explored in previous studies (Lawson, Browne, & Rodeiro, 2003). This study 
assumes a linear yearly trend for various crash modes with a non-informative prior N (0, 1002). 

Model 3: Multivariate Poisson-Lognormal Spatial Model (MVPLNS) 

In this model, a spatially structured error term is added to Equation 13 which leads to the 
following expression: 

(18) 

Where is fit by a zero-centered multivariate conditional auto-regressive model (Mardia, 1988) 
which has a conditional normal density shown as follows: 

(19) 

Where each is a positive definite matrix representing the conditional variance matrix, and the 
adjacency matrix is of the same dimension with (Aguero-Valverde, Wu, & Donnell, 2016). 
The precision matrix follows the Wishart distribution as shown in Equation 16. 

As we can see from the above equations, estimation of the risk in any site is conditional on risks 
in neighboring locations. Subscripts i and k refer to a county and its neighbor, respectively, and k 
belongs to Ni where Ni represents the set of neighbors of county i. Besides the identification of 
neighbors, the assigned weights also affect the risk estimation. In the past studies (Wang & Abdel-
Aty, 2006; Guo et al., 2010; Aguero-Valverde & Jovanis, 2006; Xu & Huang, 2015; Gill et al., 
2017a), weight structures such as various adjacency-based, distance-based models, and semi-
parametric geographically weighted, have been explored. As the current study is focused on the 
evaluation of alternate spatiotemporal multimodal models, the commonly used distance-based 
structure was employed as an example to explore the spatial correlations with the following 
formulation: 

(20) 

Where wij is the weight between counties i and j, and dij is the distance between counties i and j. 
With this weight structure, it is known that more weightage was assigned to counties which are 
relatively close. It should be noted that an array of approaches has been employed to generate the 
spatial weights for CAR specification, but this study chose the inverse distance as a representation 
of a large body of existing research which implemented similar approach to accommodate the 
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spatial correlation (Song et al.,, 2006; Guo et al., 2010; Dong et al., 2014; Dong et al., 2015; Cheng 
et al., 2017a; Gill et al., 2017a,b). The introduction of complex approaches is avoided as the 
primary focus is on the comparison of multivariate multimodal models which differ on the basis 
of incorporation of spatial and temporal terms. 

Model 4: Multivariate Poisson-Lognormal Spatial-Temporal Model (MVPLNST) with Fixed 
Time Coefficient 

This model represents the first multivariate space-time model with the assumption of a fixed yearly 
trend for various crash types. The corresponding formula is shown as follows: 

(21) 

Where is an interaction random 
effect between 

is the fixed yearly trend coefficient for all crash modes, and 
space and time which allows different temporal trends in crash risk for different 

spatial locations. was assigned a non-information prior of N (0, 1002) and was assumed to 
have the same prior with . 

Model 5: Multivariate Poisson-Lognormal Spatial-Temporal Model (MVPLNST) with 
Varying Time Coefficients for Crash Types 

This model represents the second multivariate space-time model under the premise that the yearly 
trends for various crash types are different. The model takes the following form: 

ln = + + + + (22) 

Where has the same definition and prior distribution as shown in Equation 17. The time-
varying coefficient specification may be regarded as a limiting case of random parameters 
approach (Cheng et al., 2017b), which has been employed in safety literature to account for the 
unobserved heterogeneity (Dong et al., 2014; Dong et al., 2016b; Dong et al., 2017). 

2.2.2 Goodness-of-Fit of the Models 

For the county-level SPFs, the above five alternate models were evaluated based on some criteria 
used from previous studies: DIC (Spiegelhalter, Thomas, Best, & Lunn, 2003), MAD (Konno & 
Koshizuka, 2005), MSPE (Gill et al., 2017a), the G2 statistic (Cheng & Washington, 2008), the 
Chi-squared RSS (Earnest et al., 2007), and TRD (Cheng & Washington, 2008). The readers 
wishing more detail on these measures can refer to these studies. Descrition about DIC can be 
found in the section of 2.1.3. The details of other criteria are shown as follows. 

Mean Absolute Deviation (MAD) 

MAD is based on the model deviation or residue and frequently used by the researchers across 
different fields to check fitness of data as it is not limited to a particular distribution. MAD aims 
to estimate the average difference between estimated and observed crash counts for each county, 
and it can be calculated with the following equation: 

(23) 

10 



Where is the Bayesian-estimated crash frequency and is the observed crash count for county 
i by a model during the same time period. The smaller the MAD value, the better fitness to the 
data. 

Mean Squared Predictive Error (MSPE) 

This criterion differs from MAD by considering the square of deviation rather than the absolute 
values. To assess the prediction capability of models, the mean-squared predictive error (MSPE) 
was calculated as follows: 

MSPE = (Y O ) (24) 

Where is the Bayesian-estimated crash count of county i by a model, and is the observed 
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crash count of county i by the same model. It is expected that MSPE assigns more penalties to the 
counties whose deviations are larger due to the squared deviation. Again, the larger MSPE 
indicates an inferior performance. 

The G2 statistic 

The sum of model deviances, G2, gives a test of whether the model gives an adequate explanation 
of the data relative to the saturated model (Washington et al., 2003). The G2 statistic is given as: 

(25) 

Where terms are as defined previously. G2 is zero for a model with perfect fit. A large G2 deviating 
from zero indicates that the model fits poorly as compared to the saturated model. 

Residual Sum of Squares (RSS) 

The model comparisons based on MAD and MSPE calculations may be biased as the larger 
counties are expected to subject to more penalties due to greater counts and residues. To address 
this issue, this study employed the chi-squared RSS which tends to remove such bias by calculating 
the squared residual relative to estimated number of crashes. RSS is defined as: 

(26) 

The model with a smaller value of RSS tends to have better predictive capabilities. 

Total Rank Difference (TRD) 

The aforementioned criteria utilized the magnitude of residual value for assessment of model fit 
based on prediction accuracy. TRD introduces a different perspective for model comparison as it 
accounts for the rank deviations based on the observed and estimated crash counts. The rank 
difference is calculated by using the following equation. 

(27) 
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Where ( ) is the observed data rank at county i and ( ) is the rank based on estimated crash 
counts for the same time period. A model is considered superior if smaller TRD value is revealed, 
which signifies that the specific model assigns rankings close to the observed crash counts. 

2.3 SPF of the Macro Level of TAZs 

For this type of SPPs, the Full Bayesian (FB) framework was employed for estimation of six-year 
bicyclist and pedestrian crashes aggregated at the Traffic Analysis Zone level. Four crash 
frequency models were developed. The general functional form of the models is given in the 
following subsections while progressing from simple to sophisticated. 

2.3.1 Different Modeling Formulations 

Model 1: Bivariate 

This model assumes that crash count of certain modal crash j at a given location i, yij, obeys Poisson 
distribution, while the corresponding observation specific error term ij follows a bivariate normal 
distribution: 

(28) 
(29) 
(30) 

Where (31) 

In above equations, X’ ij is the 
independent random effect which captures the extra-Poisson heterogeneity among locations. is 
called the covariance matrix. The diagonal element in the matrix represents the variance of , 
where the off-diagonal elements represent the covariance of crash counts of different modes. The 
inverse of the covariance matrix represents the precision matrix and has the following distribution: 

(32) 

Where I is the J x J identity matrix (Congdon et al., 2006), and J is the degree of freedom, J=2 
herein representing two crash outcomes corresponding to bicyclist and pedestrians crashes. 

Model 2: Bivariate Spatial 

Under Model 2, the spatial random effects were incorporated over the model represented in 
Equation 29. The final model takes the following form to account for spatial correlations among 
the TAZs: 

(32) 

Where uij is the spatially structured random effect which follows the MCAR (multivariate 
conditional autoregressive) (Mardia, 1988) formulation to incorporate the spatial correlation 
among crashes occurring at neighboring TAZs. 
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Where each is a positive definite matrix representing the conditional variance matrix, and the 
adjacency matrix C is of the same dimension with (Jonathan et al., 2016). The precision matrix 

on 5. 

As we can see from the above equations, estimation of the risk in any site is conditional on risks 
in neighboring locations. Subscripts i and k refer to a TAZ and its neighbor, respectively, and k 
belongs to Ni where Ni represents the set of neighbors of TAZ i. Besides the identification of 
neighbors, the assigned weights also affect the risk estimation. In the past studies (Aguero-
Valverde and Jovanis, 2009; Xu and Huang, 2015), weight structures including various adjacency-
based, distance-based models, and semi-parametric geographically weighted, and so on, have been 
explored. The current study employs the commonly used distance-based structure to explore the 
spatial correlations with the following formulation: 

(34) 

Where wij is the weight between TAZ i and j, and dij is the distance between TAZ i and j. With this 
weight structure, it is known that more weightage was assigned to TAZs which are relatively close. 

Model 3: Bivariate Dirichlet Process Mixture 

The parametric model specification of the aforementioned models assumed the distribution of the 
parameters to be specific (normal in this study) across all concerned sites. However, the 
nonparametric specification removes such constraints by employing a flexible approach of the 
Dirichlet process that allows the incorporation of unknown random density for the parameters. The 
current study employs a semi-parametric approach which relaxes the restrictive distributional 
assumption for the intercept only, instead of all of the parameters. The removal of constraints for 
the intercept to follow a specific distribution represents a plausible scenario where the TAZs are 
not expected to have a normal distribution. This flexible approach is expected to capture the extra 
variability which may escape the error terms introduced in parametric models. Equation 2 was 
modified to use Dirichlet process mixture over the intercept as follows (Heydari et al., 2016): 

(35) 
(36) 
(37) 

Where is the intercept for cluster r (r ranges from 1 to C) of mode j, k is the precision 
parameter, and is the baseline distribution for which follows a bivariate normal distribution 
with mean and variance , which also follows the Wishart distribution. essentially 
represents a vector of probabilities over the space of concerned entities (203 TAZs) and follows a 
Truncated Dirichlet Process (TDP) with a vector of parameters represented by . The precision 
parameter k indicates the variability of the Dirichlet process around G0j. The intercept draws 
random points ( ) and the associated probabilities ( ) can be obtained through the stick-
breaking procedure (Shirazi et al., 2016; Ohlsse at al., 2007; Ishwaran and James, 2001). If one 
cluster is occupied, the indicator function ( ) at will take the value of 1, otherwise it would 
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be 0. The number of latent clusters (r) in could range from 1 to infinity, which requires 
immense computational effort. To reduce the computational complexity by obtaining finite 
dimensional approximation, a truncated Dirichlet process is utilized to fix the maximum number 
of possible clusters to C, where C is governed by the precision parameter k and is estimated by 
5k+2 (Ohlssen et al., 2007). As the prior distribution for precision parameter k was assumed to be 
k ~ uniform (0.3, 9), so eventually the number of clusters were limited to be maximum of 47. The 
value of C used in the study can be considered in a normal range given the different C values 
utilized previously such as 5 (Ghosh and Norris, 2005), 10 (Erkanli et al., 2006), and 52 (Heydari 
et al., 2017). 

Model 4: Bivariate Dirichlet Process Mixture Spatial 

Model 4 is distinct from Model 3 by incorporating the spatial random effects to account for the 
correlation among the neighboring TAZs. The model in Equation 9 takes the following form: 

(38) 

Where all terms are defined as previously. 

2.3.2 Goodness-of-Fit of the Models 

To compare the performance of the TAZ-pertinent SPFs, the similar evaluation criteria including 
cross-validatory conditional predictive ordinate (CPO), the log pseudo marginal likelihoods 
(LPML), MSPE, the G2 statistic, the Chi-squared Residual Sum of Square (RSS) and the Rp2 

statistic. The first two criteria, CPO and LPML, are based on the cross validation and the associated 
details are presented in the section of 2.1.2. The last four rely on in-sample validation and the 
description of MSPE, the G2 statistic, and RSS is provided in the section of 2.2.2. The typical R-
square in ordinary linear regression cannot be directly applied to the crash frequency model due to 
the nonlinearity of conditional mean (E[y|X]) and heteroscedasticity associated with the Poisson 
models. Therefore, the research also adopted an equivalent measure, Rp

2, which is based on 
standardized residuals: 

= 1 

Where represents the mean value of the observed counts. Similar to R-square, a smaller Rp 
indicates the inferior performance. 

(39) 

2value 

3. DATA DESCRIPTION 

Even though the research focuses on the development of active transportation-oriented SPFs, the 
data are unavailable for all transportation modes for the different spatial units. In specific, the 
micro level of count data consist of pedestrian and vehicles, while the county-level crashes cover 
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the four modes (vehicle, motorcycle, bicycle and pedestrian) and the TAZ-related counts are 
collected for pedestrians and bicyclists. The data descriptions are presented in order as follows. 

3.1 Data for the Development of SPF of the Micro Level 

The data employed to this type of SPFs are from various database. The first analysis was based 
on the data derived from California Traffic Accident Surveillance and Analysis System 
(TASAS). TASAS is a traffic records system which includes crash database and infrastructure 
database consisting of highway segments, intersections, ramps, and other data. The study focused 
on crashed occurring at the intersections which have 73 variables available in the raw file in 
TASAS. Nonetheless, some of these variables were not associated with pedestrian or vehicle 
collisions like intersection location information (district, county, route and milepost), date of 
intersection update (begin date of intersection update, end date of intersection update), and so on. 
After data cleaning, 21 covariate variables were selected from a total of 6,198 intersections in the 
state routes, where the estimated annual pedestrian volume at each intersection was available 
through the pedestrian count model developed by Griswold et al. (2019). Overall, a total of 
43705 pedestrian and vehicle collisions spanning over six years (2012 to 2017) were aggregated 
for the research purpose. The detailed information for all data including variable names, 
description, and other descriptive statistics are illustrated in Table 1. 

Table 1. Descriptive Statistics of the First Database for the Micro Level 

Numerical Variables 
Variables Description Minimum Maximum Mean S.D. 
MNL Mainline - number of lanes 2 8 3.33 1.39 

MOL Mainline - override length 
15 350 187.90 61.94 

(buffer) 
X-NL Cross street - number of lanes 0 6 2.13 0.55 

X-OL Cross street - override length 0 250 2.25 22.81 

MADT Mainline - average daily 
180 125000 20198 15254.28 

traffic 
X-ADT Cross street - average daily 

0 77000 1911 4272.05 
traffic 

IRG Intersection rate group 1 29 17.91 7.61 
APV Estimated annual pedestrian 

520 9400000 116636 481942.50 
volume (2016) 

Veh counts Vehicle related accidents 
0 137 6.88 11.79 

counts 
Ped counts Pedestrian related accidents 

0 6 0.09 0.39 
counts 

Categorical Variables 
Variables Description Details of categories (frequency, percentage) 
Highway Group Highway group of mainline in 1-Divided Highway (3294, 53.15%); 2-Undivided Highway (2881, 

the intersection 46.48%); 3-Right or Left Independent Alignment (23, 0.37%) 
Population Group Population code of the 

intersection 
-Urban (1539, 24.83%); 2-Rural (1278, 20.62%); 3-Urbanized (3381, 

54.55%) 
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Intersection Design Intersection design 1-Four-legged (2328, 37.56%); 2->four-legs (67, 1.08%); 3-Offset 
(349, 5.63%); 4-Tee (3182, 51.34%); 5-Wye (206, 3.32%); 6-Other 
(66, 1.06%) 

Light Condition Presence of light condition at 1-No Lighting (1561, 25.19%); 2-Lighted (4637, 74.81%) 
Intersection 

Mastarm Presence of signal mastarm on 1-No Mastarm (4901, 79,07%); 2-Yes, Mastarm (1297, 20.93%) 
the mainline of the 
intersection 

Left Turn Left turn channelization on 1-Curbed Median Left Turn Channelization (808, 13.04%); 2-No Left 
mainline at the intersection Turn Channelization (3005, 48.48%); 3 - Painted Left Turn 

Channelization (2355, 37.00%); 4 - Others (30, 0.48%) 
Right Turn Right turn channelization on 1-No Right Turn Channelization (5579, 90.01%); 2-Others (617, 

mainline at the intersection 9.99%) 
Traffic Flow Traffic flow on the mainline 1-Two-Way Traffic, No Left Turns Permitted (297, 4.81%); 2-Two-

of the intersection Way Traffic, Left Turn Permitted (5839, 94.21%); 3 - Others (61, 
0.98%) 

X-Mastarm Presence of signal mastarm on 1-No Mastarm (5341, 86.17 %); 2-Yes, Mastarm (857, 13.83%) 
the cross-street of the 
intersection 

X-Left Turn Left turn channelization on 1-Curbed Median Left Turn Channelization (131, 2.11%); 2-No Left 
the cross-street Turn Channelization (5421, 87.47%); 3-Painted Left Turn 

Channelization (622, 10.04%); 4-Others (24, 0.39%) 
X-Right Turn Right turn channelization on 1-No Right Turn Channelization (5631, 90.85%); 2-Others (567, 

the cross-street. 9.15%) 
X-Traffic Flow Traffic flow on the cross- 1–Two Way Traffic, No Left Turns Permitted (269, 4.34%); 2–Two-

street of the intersection Way Traffic, Left Turn Permitted (5846, 94.32%); 3-Others (83, 
01.34%) 

Intersection Control 
Condition 

Intersection control condition 1-No Control (210, 3039%); 2-Stop signs on Cross Street Only 
(4514, 72.83%); 3-Signals Pretimed (2 Phase) (152, 2.45%); 4-
Signals Semi-Traffic Actuated, Two-phase (125, 2.02%); 5 - Signals 
Full Traffic Actuated, Multi-Phase (993, 16.02%); 6-Others (204, 
3.29%) 

Note: S.D. represents standard deviation. 

The data used in second analysis were obtained from California Department of Transportation, 
which included infrastructure level and accident level. The second database contains the same 
input variables from infrastructure file as the first database except pedestrian volume. In addition 
to independent variables this analysis selected exposure information of vehicle accidents 
occurred from 2015 to 2017 to be the output variable. Overall, 20 covariates pertaining to 
intersection information are available to 18,562 intersections from infrastructure file. As there 
are exactly the same 3,162 intersections matched to the first database, after removing the 
matched observations, the second database utilized 15,401 intersections with 20 infrastructure-
related variables crossing vehicle accident number of each intersection. The detailed descriptive 
statistics for all variables are shown in Table 2. It’s important to note that the difference between 
the first and second database since the it doesn’t have pedestrian volume for intersections. 

Table 2. Descriptive Statistics of the Second Database for the Micro Level 

Numerical Variables 
Variables Description Minimum Maximum Mean S.D. 
MNL Mainline - number of lanes 2 9 3.01 1.32 
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MOL Mainline - override length 
0 350 207.40 61.08 

(buffer) 
X-NL Cross street - number of lanes 0 8 2.07 0.51 

X-OL Cross street - override length 0 250 4.577 32.73 

MADT Mainline - average daily 
95 116817 16200 15515.53 

traffic 
X-ADT Cross street - average daily 

0 980119 1518 8886.67 
traffic 

IRG Intersection rate group 1 30 16.16 7.65 
Veh counts Vehicle related accidents 

0 83 2.89 5.91 
counts 

Categorical Variables 
Variables Description Details of categories (frequency, percentage) 
Highway Group Highway group of mainline in 1-Divided Highway (6030, 40.17%); 2-Undivided Highway (8748, 

the intersection 58.28%); 3-Right or Left Independent Alignment (233, 1.55%) 
Population Group Population code of the 1-Urban (2578, 17.17 %); 2-Rural (7133, 47.52%); 3-Urbanized 

intersection (5300, 35.31%) 
Intersection Design Intersection design 1-Four-legged (4835, 32.21%); 2->four-legs (124, 0.83%); 3-Offset 

(545, 3.63%); 4-Tee (8489, 56.55%); 5-Wye (885, 5.90%); 6-Other 
(133, 0.89%) 

Light Condition Presence of light condition at 1-No Lighting (7608, 50.68%); 2-Lighted (7403, 49.32%) 
Intersection 

Mastarm Presence of signal mastarm on 1-No Mastarm (12903, 85.96%); 2-Yes, Mastarm (2108, 14.04%) 
the mainline of the 
intersection 

Left Turn Left turn channelization on 1-Curbed Median Left Turn Channelization (1327, 9.14%); 2-No Left 
mainline at the intersection Turn Channelization (8994, 59.92%); 3 - Painted Left Turn 

Channelization (4579, 30.50%); 4 - Others (66, 0.44%) 
Right Turn Right turn channelization on 1-No Right Turn Channelization (13444, 89.56%); 2-Others (1567, 

mainline at the intersection 10.44%) 
Traffic Flow Traffic flow on the mainline 1-Two-Way Traffic, No Left Turns Permitted (682, 4.54%); 2-Two-

of the intersection Way Traffic, Left Turn Permitted (14049, 93.59%); 3 - Others (280, 
1.87%) 

X-Mastarm Presence of signal mastarm on 1-No Mastarm (13545, 90.23%); 2-Yes, Mastarm (1466, 9.77%) 
the cross-street of the 
intersection 

X-Left Turn Left turn channelization on 1-Curbed Median Left Turn Channelization (270, 1.80 %); 2-No Left 
the cross-street Turn Channelization (13624, 90.76%); 3-Painted Left Turn 

Channelization (1068, 7.11%); 4-Others (49, 0.33%) 
X-Right Turn Right turn channelization on 1-No Right Turn Channelization (13750, 91.60%); 2-Others (1261, 

the cross-street. 8.40%) 
X-Traffic Flow Traffic flow on the cross- 1–Two Way Traffic, No Left Turns Permitted (606, 4.04%); 2–Two-

street of the intersection Way Traffic, Left Turn Permitted (14023, 93.42%); 3-Others (382, 
2.54%) 

Intersection Control 
Condition 

Intersection control condition 1-No Control (1453, 9.68%); 2-Stop signs on Cross Street Only 
(11012, 73.36%); 3-Signals Pretimed (2 Phase) (220, 1.47%); 4-
Signals Semi-Traffic Actuated, Two-phase (106, 0.71%); 5 - Signals 
Full Traffic Actuated, Multi-Phase (1609, 10.72%); 6-Others (571, 
3.80%) 

Given the importance of ramps, the third analysis focused on the crashes occurring on the ramp 
of highway. The data were also provided by California Department of Transportation from 
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separate files. The average daily traffic from 2015 to 2017, as a main exposure-related factor, 
was extracted from the infrastructure file. It also provided the data for other independent 
variables linked with ramp information such as the highway group of the ramp, type of ramp, 
On/off Indicator. In addition, the vehicle- and pedestrian-related accidents occurred on ramp over 
the corresponding three years were obtained from the accident file. Overall, this analysis would 
utilize six input variables and two output variables crossing 15226 ramp observations to develop 
the Bayesian hierarchical joint model. Then, acquire the ramp SPF of pedestrian and vehicle 
from the model results. Table 3 shows the summary information for variables used in this 
research. 

Table 3. Descriptive Statistics of the Third Database for the Micro Level 

Numerical Variables 
Variables Description Minimum Maximum Mean S.D. 
ADT Ramp - average daily traffic 

1 97301 7359 9021.80 
(2015~2017) 

Veh counts Vehicle-related accidents 
0 173 8.31 12.22 

counts 
Ped counts Pedestrian related accidents 0 8 0.06 0.28 

counts 
Categorical Variables 

Variables Description Details of categories (frequency, percentage) 
Ramp Highway Group Highway group of the ramp 1-Divided Highway (14820, 97.33%); 2-Undivided Highway (98, 

0.64%); 3-Right or Left Independent Alignment (308, 2.03%) 
Ramp Design Code Type of Ramp 1- Frontage Road (34, 0.22%); 2- Collector Road(142, 0.93%); 3-

Dir/Semi Lft Rmp(650, 4.27%); 4- Diamond Interchg(6714, 44.10%); 
5- Slip Ramp(341, 2.24%); 6- Dir/Semi Rgt Rmp (2206, 14.49%); 7-
Loop W/Lft Trn(616, 4.05%); 8- Buttonhook Ramp (1167, 7.66%); 9-
Scissors Ramp (320, 2.10%); 10- Split Ramp (985, 6.47%); 11- Loop 
W/O Lff Trn (1316, 8.64%); 12- Two-Way Ramp (38, 0.25%); 13-
Dummy Paired Rmp (125, 0.82%); 14- Rest Area/Vista(332, 2.17%); 
15- Dummy-Volume Onl (84, 0.55%); 16- Other(156, 1.02%) 

Ramp On/Off Code On/Off Ramp Indicator 1- Off (7369, 48.40%); 2- On (7684, 50.47%); 3- Other (173, 1.13%) 
Ramp Area 4 Indicator Whether the ramp in question 1- No (2979, 19.57%); 2- Yes (12247, 80.43%) 

is associated with “area 4” for 
accident location purposes. 

Ramp Population 
Group 

Population group of the ramp 1- Urban (859, 5.64%); 2- Rural (2459,16.15%); 3- Urbanized 
(1190878.21%) 

3.2 Data for the Development of County-Level SPF 

The development of county-level SPFs is based on the crashes of different modes occurring in 
the 58 counties of California over a six-year period (2008-2013). The segregated collision counts 
over a relatively long period were considered to closely assess the impact of different temporal 
treatments for crash prediction models. Four different transportation mode-related crashes were 
collected for each year of the period 2008-2013 from SWITRS (California Statewide Integrated 
Traffic Records System) which include pedestrian, bicyclist, motorcyclist and vehicle only 
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crashes. In cases of crashes pertaining to two or more crash modes, the relatively vulnerable 
mode is designated as the crash victim and hence that crash is counted towards that specific 
mode. For example, in case of a crash involving a motorcycle and a vehicle, that crash would 
count towards a motorcycle crash as such crashes are usually underrepresented. Also, this crash 
would only be counted once towards motorcycle crashes and not for vehicle crashes otherwise 
one crash would result in two counts. Similarly, in case of a crash between a pedestrian and a 
bicyclist, the crash would be counted as a pedestrian crash. The mode-based crash counts were to 
develop crash prediction models for the estimation of crash rate, where the crash counts were 
offset by Daily Vehicle Miles Travel (DVMT), which is a main exposure-related factor at the 
macro-level (Miaou et al., 2003) and was collected from Highway Performance Monitoring 
System (HPMS) for the corresponding six years. HPMS also provided the data for independent 
variables linked with roadways and traffic conditions such as maintain miles and travel time for 
work trips, respectively. The other independent variables comprised of various demographic, 
socioeconomic, and land use data which were expected to impact the multimodal activity in the 
counties and influence the collisions. The main demographic factor, population, along with other 
factors depicting the socioeconomic activity such as retail sales, household income, per capita 
income, and percent of people in poverty, employment, and land area were obtained from the 
California Department of Finance and the US Census Bureau, respectively. In addition, the data 
for the geometric centroid distance among the counties were provided by Southern California 
Association of Governments (SCAG), which was utilized for calculation of distance-based 
weights for accommodating the spatial aspect of models. 

Table 4 illustrates the summary information for all dependent and independent variables 
considered for model development. It should be noted that this study incorporated a mix of time-
varying (yearly) and constant variables which account for the temporal trends and spatial-only 
covariates, respectively. This dataset replicates the real-world scenario where the possibility for 
collection of a continuous set of some variables is not feasible at the macro-level. The continuous 
data for the given time period were available for multimodal crashes, DVMT, population, and 
roadway miles, while rest of the variables were mostly obtained from average of data over some 
time period. The studies which focus on crash counts on yearly-basis may be prone to erroneous 
inferences due to the bias induced in the model estimates by the excessive amount of zero crash 
counts present in the data. As evident from the nature of independent variables, some variables 
were observed to be correlated and filtered out using two techniques before incorporating during 
the model development for crash estimation. First, the correlation tests were conducted using the 
Harrell Miscellaneous package in R software which allowed the calculation of Pearson 
correlation coefficient. The variables observed to be correlated at a significance level of 0.05 
were then eliminated in multiple steps using engineering judgment to prevent exclusion of any 
potential influential variables which would result in loss of precision of estimated parameters. 

Table 4. Descriptive Statistics of Collected Data of Various Counties 

Variables Description Year Minimum Maximum Median Mean S.D. 

Collision Motor Vehicle 

2008 15 41,794 631 2,389 5,841 

2009 20 40,197 611 2,289 5,612 

2010 18 39,560 537.5 2,249 5,531 

19 



     

     

     

     

  

     

   

     

     

     

  

   

   

     

     

   

   

 
   

  

     

     

     

     

  

  

  

     

     

 

  

   

     

     

     

  

2011 14 38,933 576 2,184 

2012 16 38,477 560 2,171 

2013 21 38,855 544 2,140 

2008 0 5,199 41.5 231 

2009 0 5,097 41.5 224 

Collision Pedestrian 
2010 0 4,730 36.5 218 

2011 0 4,748 37 218 

2012 0 5,024 35 228 

2013 0 4,932 38.5 213 

2008 0 3,348 46.5 203 

2009 0 3,747 48 208 

Collision Bicycle 
2010 1 4,226 49.5 219 

2011 0 4,788 51.5 236 

2012 0 4,955 44.5 241 

2013 0 4,682 51.5 230 
2008 7 3,048 66.5 205 

2009 3 2,802 60 181 

Collision Motorcycle 
2010 2 2,711 60.5 171 

2011 5 3,112 57.5 189 

2012 4 3,349 54.5 200 

2013 3 3,614 65.5 208 

2008 168.265 214,971 5,005 15,387 

2009 170.69 214,236 4,836 15,317 

DVMT Daily Vehicle Miles 
Traveled (miles) 

2010 169.42 211,876 5,448 15,482 

2011 164.587 214,458 4,761 15,353 

2012 166.923 214,482 4,551 14,768 

2013 165.18 215,817 4,462 14,924 

2008 1,214 10,347,422 180,923 656,696 

2009 1,194 10,398,067 182,519 662,962 

Pop Population 
2010 1,177 9,840,555 179,588 644,265 

2011 1,113 9,866,172 179,134 647,470 

2012 1,088 9,923,806 180,800 652,028 

2013 1,078 10,002,804 181,150 657,967 

2008 287 21,686 2,009 2,974 

MM Maintained Miles 
2009 266 21,678 2,012 2,963 

2010 266 21,746 2,012 2,967 

2011 266 360,857 2,008 9,128 
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644 
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399 

388 

443 

483 

516 

31,617 

31,469 

31,148 

31,594 

31,478 

31,747 

1,469,310 

1,478,749 

1,408,182 

1,413,526 

1,422,391 

1,434,566 

3,329 

3,333 

3,341 
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2012 

2013 

270 

265 

21,694 

21,858 

2,021 

1,921 

3,026 

3,017 

3,432 

3,428 

RS Total Retail Sales ($1,000) 2012 576 121,389,378 1,859,337 8,306,904 18,251,399 

TT Mean Travel Time to Work 
(minutes) 2014 13 34 25 24 4 

HI Median Household Income 
(dollars) 2014 35,997 35,997 35,997 35,997 35,997 

PCI Per Capita Income for past 
year (dollars) 2014 16,409 58,004 26,190 27,604.34 8,198 

PP Persons in Poverty 
(percentage) 2014 7 28 16 16 5 

TE Total Employment 2014 211 3,932,904 44,911 232,458 573,978 

AF All Firms 2012 125 1,146,701 13,613 61,845 160,522 

LA Land Area (Square miles) 2010 46 20,056 1,535 2,685 3,102 

Distance Distance among centroids of 
counties (miles) N/A 25 962 227 273 176 

Note: S.D. represents standard deviation; N/A means Not Applicable 

3.3 Data for the Development of TAZ-Level SPF 

The development of TAZ-level SPFs is based on the Pedestrian and bicyclist crashes which 
occurred in the City of Irvine from 2007 to 2012. Like many other research studies (Ladron de 
Guevara et al., 2004; Hadayeghi et al., 2007; Abdel-Aty et al., 2011), TAZs were selected as the 
base units, and the crash data were aggregated at the TAZ-level. Overall, there are 203 TAZs in 
the City. The map in Figure 1 displays the distribution of all TAZs and associated crash counts. 
The two transportation mode-related crashes were collected from SWITRS (California Statewide 
Integrated Traffic Records System) Shape file of TAZ boundary and TAZ characteristics were 
provided by SCAG (Southern California Association of Governments). 
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Figure 1. TAZ Map with Crash Distributions in the City of Irvine, California. 

The variables used for model development and the associated descriptive statistics are shown in 
Table 4. The six-year aggregated pedestrian and bicyclist crashes were used as the dependent 
variables. DVMT acted as a measure of exposure. The explanatory variables were the predictors 
commonly used in previous regional safety analyses which include socioeconomic, transportation-
related, and environment-related factors, and so on. It is worth mentioning that the data from 2008 
were available for explanatory variables due to less frequent collection by the agencies and hence 
it is used for model development. Also, the distance matrix containing distances among various 
TAZ centroids were also collected from SCAG for the estimation of distance-based spatial random 
effect. Their descriptive statistics can be found in Table 4 as well. 

Table 4. Summary Statistics of Variables for TAZ’s of the City of Irvine 

Variables Description Mean SD Minimum Maximum 

Bike Total bike-involved crashes 
(2007-2012) 

1.82 2.45 0 12 

Ped Total pedestrian-involved 
crashes (2007-2012) 

0.81 1.33 0 8 

DVMT Daily vehicle miles traveled 5,4262.44 56,156.84 112.57 276,079.90 
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Acre TAZ Area in acre 282.90 431.75 0.69 5,062.95 

Median Median house income ($) 48,440.78 50,635.10 0 183,347 

Pop_den Population density by area 6.18 7.96 0 32.40 

HH_den Household density by area 2.34 3.15 0 13.62 

Emp_den Employment density by area 10.34 17.43 0 121.10 

Ret_den Retail job density 0.79 2.02 0 17.45 

% age 5_17 % of population age 5-17 8.64% 8.78% 0 27% 

% age 18_24 % of population age 18-24 5.79% 7.42% 0 40% 

% age 24_64 % of population age 24-64 38.35% 36.12% 0 95% 

% age 65+ % of population age 65 or 6.25% 10.21% 0 83% 
older 

K12 K12 student enrollment 0.39 1.00 0 5.52 

College College student enrollment 0.11 1.00 0 12.59 

Int34_den Intersection density (3- and 0.12 0.12 0 0.62 
4- legs) 

BKlnACC Bike lane access (1=if a 0.92 0.28 0 1 
TAZ has bike lane) 

BL_den Bike lane density 3.40 1.80 0 7.26 

Rail 1=at least one rail station in 0.01 0.10 0 1 
a TAZ 

TTbus_D Total Bus Stop Density 0.05 0.09 0 0.53 

Exbus_D Stop density for Express Bus 0.002 0.007 0 0.06 
and BRT 

HFLbus_D High-Frequency Bus Stop 0.001 0.004 0 0.03 
Density (local bus headway 
<= 20 mins) 

WalkAcc Walk Accessibility 3.87 9.46 0 74.53 

% Arterial Percent of main arterial (45- 10.61% 17.33% 0 80% 
55mph) of TAZ 

Distance Distance among TAZ 4.06 2.09 0.16 11.78 
centroids (in miles) 

Note: S.D. represents standard deviation. 
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4. RESULTS 

Similar to the methodology and data description, the results are also presented in the order of the 
micro level, county level and the TAZ level. 

4.1 Results for the Micro-Level SPF 

The micro level data consist of intersection and ramp data. For the intersection-related SPF, the 
SPFs for both pedestrians and vehicles were developed jointly via the Bayesian joint hierarchical 
model for those intersections with both pedestrian and vehicle volumes are available. However, 
lots of other intersections where the pedestrian volumes are unavailable, for these intersections, 
the Bayesian joint models results cannot be used due to the lack of the pedestrian volumes. To 
address this issue, the SPF(P)’s were first developed for the intersections where the pedestrian 
volumes are available and included in the model. The SPF(V)’s were then developed for the 
same intersections where the pedestrian volumes are available but excluded from the model, or, 
only the vehicle volume is included in the mode. The ratio of SPF(P) to SPF(V) can then be used 
as a rough adjustment factor to estimate the crash count at the intersections where only vehicle 
volume is available. It is important to note that both SPF(P) and SPF(V) were developed using 
the Negative Binomial model. Finally, due to ramp data availability, the SPFs for both 
pedestrians and vehicles were also developed jointly via the Bayesian joint hierarchical model 
for the ramps. 

4.1.1 Bayesian Joint Hierarchical Model Results for Intersections 

To develop the bivariate joint model, the distinct covariates were selected for pedestrians and 
vehicles by using random forest metric and correlation analysis. Under the INLA framework, 
models were developed with the posterior mean serving as the estimate for the model parameters 
Different evaluation criteria were used to assess the predictive accuracy of the models. 

a) Feature Importance Ranking by Random Forest 
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(a) Vehicle (b) Pedestrian 

Figure 2. A Variable Importance Plot for (a) Vehicle Crash Counts and (b) Pedestrian 
Crash Counts 

The importance of variables was reported and ranked using the R package “randomforest” 
(Cutler et al., 2012). When estimating the random forest model, m = 4 variables were randomly 
sampled as candidate at each split, with the OOB error rate reaching a minimum value of 0.132 
and 59.24% of data variability being explained by the model. The variable importance plots for 
both pedestrian and vehicles are shown in Figure 1 with the decreasing order of 
“IncNodePurity”, which represents the mean decrease of node purity in predictions on OOB 
samples with a given variable being excluded from the model (James et al., 2017). 

b) Correlation Analysis for Covariates 
Table 5. Correlation Coefficients and P-Value for the Numerical Variables 

MNL 

MOL 

X-NL 

X-OL 

MADT 

X-ADT 

IRG 

MNL 

1.000 

0.000 

0.000 

0.925 

0.000 

0.000 

0.000 

MOL 

-0.116 

1.000 

0.000 

0.917 

0.000 

0.014 

0.000 

X-NL 

0.230 

0.046 

1.000 

0.000 

0.000 

0.000 

0.000 

X-OL 

0.001 

-0.001 

0.118 

1.000 

0.683 

0.000 

0.008 

MADT 

0.722 

-0.088 

0.227 

0.005 

1.000 

0.000 

0.000 

X-ADT 

0.273 

0.032 

0.600 

0.187 

0.269 

1.000 

0.000 

IRG 

0.118 

-0.139 

-0.087 

-0.034 

0.154 

-0.118 

1.000 

APV 

0.254 

-0.152 

0.112 

0.194 

0.257 

0.184 

-0.046 

APV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

Notes: 1. The upper triangle of the matrix shows the correlation coefficients of the variables, and the gray 
grids in the lower triangle of the matrix shows the p-values. 2. Highly correlated estimate with correlation 
coefficient greater than 0.6 are marked as bold font. 3. Refer to Table 1 for details of variable definition. 
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Variable importance ranking was used along with the correlation of numerical variables for 
determination of the covariate inputs to the model development. The correlation tests were 
conducted using the Harrell Miscellaneous package in R software which allowed the calculation 
of Pearson’s correlation coefficient and the accompanying p-values. The variables observed to be 
correlated by using the popular cut line of 0.6 for the correlation coefficient and with a 
significance level of 0.05 were eliminated in multiple steps using engineering judgment to 
choose the minimum subset of variables while maintaining the maximum data variability. In 
other words, the selection procedure strived to strike the balance between omitted variable bias 
and multi-collinearity issues. As shown in Table 5, the upper portion values are the Pearson’s 
correlation coefficient magnitudes and lower shaded cells represent the associated p-values. 
Based on the results of correlation test, out of eight numerical variables, six of them which 
include MOL, X-OL, MADT, X-ADT, IRG and APV were retained. 

Combining both results from random forest and correlation analysis, the final list of predictors to 
be fed into subsequent model development can be found in Table 6. It is important to note that 
variables of “Right Turn” and “X-OL” were retained only for pedestrians, while “X-Mastarm” 
and “X-Right Turn” were included only for vehicles. They were not considered for both modes 
at the same time since they had little influence on one of the modes according to the variable 
importance ranking results via RF. 

c) Joint Model Estimates 

Table 6. Description of Model Parameter Estimates 

Variables 
Mean SD Mean SD 

Fixed Effects 
(Intercept) -5.222 0.772 3.788 0.735 

Highway Group Highway Group 1 (Base) 

Highway Group 2 -0.008 0.053 -0.082 0.141 
Highway Group 3 0.494 0.37 -0.941 0.831 

Population Group Population Group 1 
(Base) 
Population Group 2 -0.834 0.092 -0.38 0.321 
Population Group 3 0.247 0.051 0.088 0.141 

Intersection Design Intersection Design 1 
(Base) 
Intersection Design 2 -0.215 0.176 -0.34 0.448 
Intersection Design 3 -0.341 0.085 -0.401 0.21 
Intersection Design 4 0.391 0.157 -1.761 0.485 
Intersection Design 5 0.485 0.189 -3.634 1.107 
Intersection Design 6 0.681 0.246 -1.994 0.779 

Light Condition Light Condition 1 (Base) 
Light Condition 2 0.307 0.054 0.747 0.213 

Mastarm Mastarm 1 (Base) 
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Mastarm 2 -0.207 0.131 -0.087 0.271 
Left Turn Left Turn 1 (Base) 

Left Turn 2 -0.264 0.078 -0.041 0.183 
Left Turn 3 0.048 0.063 -0.152 0.14 
Left Turn 4 0.572 0.284 1.682 0.559 

Right Turn Right Turn 1 
Right Turn 2 N/A N/A -0.246 0.153 

Traffic Flow Traffic Flow 1 (Base) 
Traffic Flow 2 0.871 0.148 -0.025 0.336 
Traffic Flow 3 0.338 0.256 0.784 0.455 

X-Mastarm X-Mastarm 1 (Base) 
X-Mastarm 2 0.251 0.077 N/A N/A 

X-Right Turn X-Right Turn 1 (Base) 
X-Right Turn 2 0.038 0.068 N/A N/A 

X-Left Turn X-Left Turn 1 (Base) 
X-Left Turn 2 0.118 0.14 0.182 0.264 
X-Left Turn 3 0.159 0.136 0.232 0.258 
X-Left Turn 4 0.079 0.353 -1.311 1.125 

X-Traffic Flow X-Traffic Flow 1 (Base) 
X-Traffic Flow 2 0.143 0.144 0.169 0.345 
X-Traffic Flow 3 0.292 0.224 0.234 0.473 

Intersection Control Intersection Control 
Condition Condition 1 (Base) 

Intersection Control 
1.134 

Condition 2 0.137 0.708 0.503 

Intersection Control 
1.975 

Condition 3 0.201 0.922 0.554 

Intersection Control 
2.218 

Condition 4 0.219 1.446 0.59 

Intersection Control 
1.899 

Condition 5 0.192 1.168 0.566 

Intersection Control 
1.611 

Condition 6 0.186 0.662 0.578 

MOL 0.002 0.001 -0.001 0.001 
X-OL N/A N/A 0.002 0.001 
MADT 2.997 0.215 1.845 0.497 
X-ADT 3.581 0.388 2.598 0.718 
IRG -0.076 0.01 0.048 0.031 
APV -0.146 0.451 0.429 0.775 

Random Effects 
Observation. ID 0.643 0.018 2.297 0.462 

Goodness-of-fit Criteria 
DIC 29113.63 

D 24753.94 
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P 43596.89 
LPML -32668.16 

Notes: Notes: 1. S.D. represents standard deviation; DIC represents deviance information 
criterion; D represents posterior mean deviance; represents effective number of parameters; 
LPML represents log pseudo marginal likelihood; NA means Not Applicable. 2. Refer to Table 1 
for details of variable definition. 3. The bold fonts represent the variables with statistically 
significant impact. 

The posterior model estimates of model parameters across pedestrian and vehicle crash counts 
are shown in Table 6. The estimated coefficients for ten influential variables including 
‘Intersection Design 2’ (>four legs), ‘Intersection Design 3’(offset), ‘Intersection Design 4’ (tee), 
‘Intersection Design 5’ (wye), ‘Intersection Design 6’ (others), ‘Light Condition 2’ (Lighted), 
‘Left turn 4’ (No left turn channelization), ‘Intersection Control Condition 4’ (signals semi-
traffic actuated, two phase), ‘Intersection Control Condition 5’ (signals full traffic actuated, 
multi-phase), ‘MADT’ (mainline-average daily traffic), and ‘X-ADT’ (crossline-average daily 
traffic), appeared to be statistically significant across both pedestrian and vehicle crash counts. 
Interestingly, among these significant covariates, five variables were found to have a negative 
impact, in which one variable (‘Intersection Design 3’) was common for both modes and other 
four variables were observed for vehicles crash count only (or, ‘Intersection Design 4’, 
Intersection Design 5’, Intersection Design 6’, ‘Right Turn 2’). It follows that, compared with the 
base condition of four-legged intersection, offset intersection seems to be more advantageous in 
terms of traffic safety for both pedestrians and vehicle drivers. For vehicle drivers only, the tee 
and wye intersections and those without right-turn channels tend to provide more safety benefits 
compared with the base conditions of four-leg and intersection with right turn channels, 
respectively. The better safety performance associated with those without right turn channels is 
somewhat counterintuitive, which warrants further verifications from other studies. 

At the individual mode level, ten covariates which contains ‘Population Group 2’ (rural), 
‘Population Group 3’ (urbanized), ‘Left Turn 2’ (no left turn channelization), ‘Traffic Flow 2’ 
(two-way traffic, left turn permitted), ‘X-Mastarm 2’ (presence of signal mastarm), ‘Intersection 
Control Condition 2’ (stop signs on cross street only), ‘Intersection Control Condition 3’ (signals 
pretimed), ‘Intersection Control Condition 6’ (others), ‘MOL’(mainline - overide length), and 
‘IRG’ (intersection rate group) observed to be statistically significant for pedestrians. Similarly, 
for vehicles, there are two statistically significant variables which include ‘Right Turn 2’ (right 
turn channelization) and ‘X-OL’ (cross street - override length). Such phenomenon indicates 
that, relative to drivers, pedestrians are not only subject to more injury severities, but also 
sensitive to more intersection features such as left turn channelization, intersection control, and 
so on. 

This study also employed various types of evaluation criteria including ( ) (measure of training 
errors), DIC (indirect measure of test errors), and LPML (measure of test errors) to assess the 
models from different perspectives. Under close review of the evaluation results, it is obvious 
that DIC is the sum of and Pd, where Pd serves as the correction term to the in-sample error so 
that DIC can approximate the out-of-sample error. Different from DIC, the LPML provide a 
direct cross validation-oriented error. Both values have relatively large magnitude (or, 29113.63 
and -32668.16) due to the large sample size of the intersections used in the study, that is, 6,198. 
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Table 7. Correlation and Covariance Matrix between the Random Effects of Pedestrian and 
Vehicle Counts 

Observation. ID 

1 (Pedestrian) 

1 (Pedestrian) 

1.000 

2 (Vehicle) 

0.899 

2 (Vehicle) 0.344 1.000 

Notes: 1.The lower triangle of the matrix shows the covariance, while the upper triangle of the matrix 
shows the associated correlation coefficient. 2. The bold font indicates the statistics is statistically 
significant at the significance level of 0.05. 3. Correlation coefficients are listed in the diagonal of the 
matrix at the same time. 4. Refer to Equation 6 for definition of covariance of the two random effects. 

To better explore the suitability of using the bivariate setting, the random effects of the two 
transportations modes were also collected. Their correlation and covariance are shown in Table 
7. The statistically significant correlation coefficient signifies the strong positive correlation 
between the two types of crashes, corroborating the importance of developing the joint models 
where the correlation between the two response variables was explicitly considered. 

4.1.2 Development of SPF(P) & SPF(V) for Intersections Via Negative Binomial Model 

As previously mentioned, both SPF(P) and SPF(V) were developed separately using the 
Negative Binomial models where the ratio of SPF(P) to SPF(V) can be utilize to estimate the 
pedestrian-related counts at the intersections where only the vehicle volumes are available. The 
calculation of such ratio is important given the difficulty to collect the pedestrian volumes and 
most intersections do not have such volume information. The two SPFs function are presented 
as follows. For any intersections, once the values for the covariates are known beforehand, the 
ratio can then be easily calculated to estimate the pedestrian crash counts. 

SPF (P) = exp(-33.45 – 0.6959 * Highway_Group(L) – 2.012 * Highway_Group(R) – 0.1614 * 
Highway_Group(U) – 0.2883 * Population_Group(R) + 0.1643 * Population_group(U) – 0.3789 * 
Design_Code(M) - 0.5059 * Design_Code(S) - 1.935 * Design_Code(T) - 3.655 * Design_Code(Y) – 
2.082 * Design_Code(Z) + 0.6229 * Lighted_Ind(Y) + 0.5730 * Main_Signal_Mast_Arm_Ind(Y) + 
0.1055 * Main_Left_Channel_Code(N) – 0.06056 * Main_Left_Channel_Code(P) + 1.599 * 
Main_Left_Channel_Code(R) + 1.108 * Main_Left_Channel_Code(Y) - 0.7116 * 
Main_Right_Channel_Code(N) - 0.4238 * Main_Right_Channel_Code(P) - 0.9187 * 
Main_Right_Channel_Code(Y) + 0.4112 * Main_Flow_Code(P) + 1.136 * Main_Flow_Code(R) + 1.788 
* Main_Flow_Code(W) +0.8833 * Main_Flow_Code(Z) – 0.4608 * Cross_Signal_Mast_Arm_Ind(Y) -
0.2015 * Cross_Left_Channel_Code(N) + 0.04076 * Cross_Left_Channel_Code(P) – 0.3690 * 
Cross_Left_Channel_Code(R) - 34.71 * Cross_Left_Channel_Code(Y) – 1.465 * 
Cross_Right_Channel_Code(N) – 1.130 * Cross_Right_Channel_Code(N) – 1.827 * 
Cross_Right_Channel_Code(Y) + 0.1194 * Cross_Flow_Code(P) + 1.440 * Cross_Flow_Code(R) 
+0.04587 Cross_Flow_Code (W) – 0.2921 * Cross_Flow_Code(Z) + 0.4822 * Control_Code(B) – 32.94 
Control_Code(C) +1.024 * Control_Code(D) + 1.086 * Control_Code(E) -33.69 * Control_Code(F) – 
33.90 * Control_Code(G) – 32.21 * Control_Code(H) + 0.2521 * Control_Code(J) + 0.7080 * 
Control_Code(K) – 0.7541 * Control_Code(L) + 0.2734 * Control_Code(M) + 0.6973 * 
Control_Code(N) + 0.3742 * Control_Code(P) + 1.514 * Control_Code(Z) + 0.08851 * 
Main_Lanes_AMT - 0.002416 * Main_Override_Length_AMT – 0.1326 * Cross_Lane_AMT + 
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0.002418 * Cross_Override_Length_AMT + 3.079 * 10-6 * Mainlane_ADT + 2.721 * 10-5 Cross_ADT + 
0.06172 * Rete_Group + 7.727 * 10-8 * Ped_Volume) 

SPF(V) = exp(-0.5155 + 1.234 * Highway_Group(L) + 1.700 * Highway_Group(R) – 0.04159 * 
Highway_Group(U) – 0.6334 * Population_Group(R) + 0.2074 * Population_group(U) – 0.3364 * 
Design_Code(M) - 0.3521 * Design_Code(S) + 0.1232 * Design_Code(T) + 0.2753 * Design_Code(Y) 
+ 0.4219 * Design_Code(Z) + 0.2221 * Lighted_Ind(Y) + 0.04814 * Main_Signal_Mast_Arm_Ind(Y) -
0.1247 * Main_Left_Channel_Code(N) + 0.1073 * Main_Left_Channel_Code(P) + 0.08698 * 
Main_Left_Channel_Code(R) + 0.6138 * Main_Left_Channel_Code(Y) – 1.148 * 
Main_Right_Channel_Code(N) – 0.9084 * Main_Right_Channel_Code(P) – 1.028 * 
Main_Right_Channel_Code(Y) + 0.7688 * Main_Flow_Code(P) + 0.5570 * Main_Flow_Code(R) – 
0.8873 * Main_Flow_Code(W) +0.2613 * Main_Flow_Code(Z) + 0.03921 * 
Cross_Signal_Mast_Arm_Ind(Y) + 0.09065 * Cross_Left_Channel_Code(N) + 0.1435 * 
Cross_Left_Channel_Code(P) - 0.1662 * Cross_Left_Channel_Code(R) - 0.05379 * 
Cross_Left_Channel_Code(Y) + 0.9430 * Cross_Right_Channel_Code(N) + 0.8555 * 
Cross_Right_Channel_Code(N) + 0.9924 * Cross_Right_Channel_Code(Y) + 0.06795 * 
Cross_Flow_Code(P) – 0.1321 * Cross_Flow_Code(R) + 0.2146 * Cross_Flow_Code (W) + 0.1416 * 
Cross_Flow_Code(Z) + 1.085 * Control_Code(B) + 1.713 * Control_Code(C) + 1.522 * 
Control_Code(D) + 1.539 Control_Code(E) + 2.030 * Control_Code(F) + 1.140 * Control_Code(G) – 
0.3689 * Control_Code(H) + 1.625 * Control_Code(J) + 0.8943 * Control_Code(K) + 1.254 * 
Control_Code(L) + 1.584 * Control_Code(M) + 1.835 * Control_Code(N) + 1.497 * 
Control_Code(P) + 0.9204 * Control_Code(Z) + 0.01029 * Main_Lanes_AMT + 0.002098 * 
Main_Override_Length_AMT – 0.02036 * Cross_Lane_AMT + 1.444 * 10-4 * 
Cross_Override_Length_AMT + 2.311 * 10-5 * Mainlane_ADT + 4.971 * 10-5 Cross_ADT + 0.05554 * 
Rete_Group) 
Note: The bold fonts represent the variables which are statistically significant at the significance level of 0.05 in the negative 
binomial model. 

As displayed above, SPFs consist of various categorical and numerical variables which contain 
plenty of intersection characteristics (number of lanes, traffic control type, average daily traffic, 
etc). Equations revealed the impacts of each variable on corresponding target variable, and it’s 
able to predict average number of crashes at certain location. In both equations, there are several 
categorical variables. To substitute suitable categorical values into SPF, each categorical level 
was listed in the equations, so that we can directly substitute observed categorical value into 
equation. The following tables illustrate the base condition and Crash Modification 
Factors(CMFs) of each categorical variable. 

Table 8. Base Conditions of SPFs based on Negative Binomial Models 

Variable Base Condition Description of Base Condition 

Highway Group Highway Group 1 Divided highway 

Population Group Population Group 1 Urban 

Design Code Design Code 1 4-Legged intersection 

Lighted Ind Lighted Ind 1 No lighting 
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Signal Mast Arm Ind Signal Mast Arm Ind 1 No mast arm 

Main Left Channel Code Main Left Channel Code 1 Curbed median left turn 
channelization 

Main Right Channel Code Main Right Channel Code 1 Curbed median right turn 
channelization 

Main Flow Code Main Flow Code 1 2-Way traffic, no left turns 
permitted 

Cross Mast Arm Ind Cross Mast Arm Ind 1 No mast arm 

Cross Left Channel Code Cross Left Channel Code 1 Curbed median left turn 
channelization 

Cross Right Channel Code Cross Right Channel Code 1 Curbed median right turn 
channelization 

Cross Flow Code Cross Flow Code 1 2-Way traffic, no left turns 
permitted 

Traffic Control Code Traffic Control Code 1 No control 

Table 9. Crash Modification Factors Associated with the Base Conditions 

Variables Crash Modification Factor 
(Pedestrian) 

Crash Modification Factor 
(Vehicle) 

Highway Group 1 
(Base) CMF = 0 CMF = 0 

Highway Group 2 CMF = exp (-0.6959) =0.4986 CMF = exp (1.234) =3.4349 

Highway Group 3 CMF = exp (-2.012) =0.1337 CMF = exp (1.700) =5.4739 

Highway Group 4 CMF = exp (-0.1614) =0.851 CMF = exp (-0.04159) =0.9593 

Population Group 1 
(Base) CMF = 0 CMF = 0 

Population Group 2 CMF = exp (-0.2883) =0.7495 CMF = exp (-0.6334) =0.5308 

Population Group 3 CMF = exp (0.1643) =1.1786 CMF = exp (0.2074) =1.2305 

Design Code 1 (Base) CMF = 0 CMF = 0 

Design Code 2 CMF = exp (-0.3789) =0.6846 CMF = exp (-0.3364) =0.7143 

Design Code 3 CMF = exp (-0.5059) =0.603 CMF = exp (-0.3521) =0.7032 

Design Code 4 CMF = exp (-1.935) =0.1444 CMF = exp (0.1232) =1.1311 

Design Code 5 CMF = exp (-3.655) =0.0259 CMF = exp (0.2753) =1.3169 
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Design Code 6 CMF = exp (-2.082) =0.1247 CMF = exp (0.4219) =1.5249 

Lighted Ind 1 (Base) CMF = 0 CMF = 0 

Lighted Ind 2 CMF = exp (0.6229) =1.8643 CMF = exp (0.2221) =1.2487 

Main Signal Mast 
Arm 1 (Base) CMF = 0 CMF = 0 

Main Signal Mast 
Arm 2 CMF = exp (0.5730) =1.7736 CMF = exp (0.04814) =1.0493 

Main Left Channel 
Code 1 (Base) CMF = 0 CMF = 0 

Main Left Channel 
Code 2 CMF = exp (0.1055) =1.1113 CMF = exp (-0.1247) =0.8828 

Main Left Channel 
Code 3 CMF = exp (0.06056) =1.0624 CMF = exp (0.1073) =1.1133 

Main Left Channel 
Code 4 CMF = exp (1.108) =3.0283 CMF = exp (0.08698) =1.0909 

Main Left Channel 
Code 5 CMF = exp (1.599) =4.9481 CMF = exp (0.6138) =1.8474 

Main Right Channel 
Code 1 (Base) CMF = 0 CMF = 0 

Main Right Channel 
Code 2 CMF = exp (-0.7116) = 0.4909 CMF = exp (-1.148) =0.3173 

Main Right Channel 
Code 3 CMF = exp (-0.4238) =0.6546 CMF = exp (-0.9084) =0.4032 

Main Right Channel 
Code 4 CMF = exp (-0.9187) =0.3990 CMF = exp (-1.028) =0.3577 

Main Flow Code 1 
(Base) CMF = 0 CMF = 0 

Main Flow Code 2 CMF = exp (0.4112) =1.5086 CMF = exp (0.7688) =2.1572 

Main Flow Code 3 CMF = exp (1.136) =3.1143 CMF = exp (0.5570) =1.7454 

Main Flow Code 4 CMF = exp (1.788) =5.9775 CMF = exp (-0.8873) =0.4118 

Main Flow Code 5 CMF = exp (0.8833) =2.4189 CMF = exp (0.2613) =1.2986 

Cross Signal Mast 
Arm 1 (Base) CMF = 0 CMF = 0 

Cross Signal Mast 
Arm 2 CMF = exp (-0.4608) =0.6308 CMF = exp (0.03921) =1.04 

32 



 

   
  

      

   
  

          

   
 

          

   
  

          

   
 

        

   
   

      

   
 

          

   
  

          

   
  

          

    
 

      

            

           

            

           

       

          

          

          

          

          

          

          

          

Cross Left Channel 
Code 1 (Base) CMF = 0 CMF = 0 

Cross Left Channel 
Code 2 CMF = exp (-0.2015) =0.8175 CMF = exp (0.09065) =1.0949 

Cross Left Channel 
Code 3 CMF = exp (0.04076) =1.0416 CMF = exp (0.1435) =1.1543 

Cross Left Channel 
Code 4 CMF = exp (-0.3690) =0.6914 CMF = exp (-0.1662) =0.8469 

Cross Left Channel 
Code 5 CMF = exp (-34.71) =0 CMF = exp (-0.05379) =0.9476 

Cross Right Channel 
Code 1 (Base) CMF = 0 CMF = 0 

Cross Right Channel 
Code 2 CMF = exp (-1.465) =0.2311 CMF = exp (0.9430) =2.5677 

Cross Right Channel 
Code 3 CMF = exp (-1.130) =0.323 CMF = exp (0.8555) =2.3526 

Cross Right Channel 
Code 4 CMF = exp (-1.827) =0.1609 CMF = exp (0.9924) =2.6977 

Cross Flow Code 1 
(Base) CMF = 0 CMF = 0 

Cross Flow Code 2 CMF = exp (0.1194) =1.1268 CMF = exp (0.06795) =1.0703 

Cross Flow Code 3 CMF = exp (1.440) =4.2207 CMF = exp (-0.1321) =0.8763 

Cross Flow Code 4 CMF = exp (0.04587) =1.0469 CMF = exp (0.2146) =1.2394 

Cross Flow Code 5 CMF = exp (-0.2921) =0.7467 CMF = exp (0.1416) =1.1521 

Control Code 1 (Base) CMF = 0 CMF = 0 

Control Code 2 CMF = exp (0.4822) =1.6196 CMF = exp (1.085) =2.9594 

Control Code 3 CMF = exp (-32.94) =0 CMF = exp (1.713) =5.5456 

Control Code 4 CMF = exp (1.024) =2.7843 CMF = exp (1.522) =4.5814 

Control Code 5 CMF = exp (1.086) =2.9624 CMF = exp (1.539) =4.6599 

Control Code 6 CMF = exp (-33.69) =0 CMF = exp (2.030) =7.6141 

Control Code 7 CMF = exp (-33.90) =0 CMF = exp (1.140) =3.1268 

Control Code 8 CMF = exp (-33.21) =0 CMF = exp (-0.3689) =0.6915 

Control Code 9 CMF = exp (0.2521) =1.2867 CMF = exp (1.625) =5.0784 
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Control Code 10 CMF = exp (0.7080) =2.0299 CMF = exp (0.8943) =2.4456 

Control Code 11 CMF = exp (-0.7541) =0.4704 CMF = exp (1.254) =3.5043 

Control Code 12 CMF = exp (0.2734) =1.3144 CMF = exp (1.584) =4.8744 

Control Code 13 CMF = exp (0.6973) =2.0083 CMF = exp (1.835) =6.2651 

Control Code 14 CMF = exp (0.3742) =1.4538 CMF = exp (1.497) =4.4683 

Control Code 15 CMF = exp (1.154) =3.1709 CMF = exp (0.9204) =2.5103 

Main lanes AMT CMF = exp (0.08851) =1.0925 CMF = exp (0.01029) =1.0103 

Main Override Length 
AMT CMF = exp (-0.002416) =0.9976 CMF = exp (0.002098) =1.0021 

Cross Lanes AMT CMF = exp (-0.1326) =0.8758 CMF = exp (-0.02036) =0.9798 

Cross Override Length CMF = exp (0.002418) =1.0024 CMF = exp (-1.444*104) =1.0001 

Mainline ADT CMF = exp (3.079*10-6) =1.0000 CMF = exp (2.311*10-5) =1.0000 

Cross ADT CMF = exp (2.721*10-5) =1.0000 CMF = exp (4.971*10-5) =1.0000 

Rate Group CMF = exp (0.06172) =1.0637 CMF = exp (0.05554) =1.0571 

Ped Volume CMF = exp (7.727*10-7) =1.0000 NA 

Note: In order to fit statistical model more accurate, the original value of three variables (Mainline ADT, Cross 
ADT, Ped Volume) is reduced by 1000 times when imported data into the model. Therefore, when using SPF to 
predict the number of accidents, the substituted value should also be reduced by 1000 times. 

4.1.3 Bayesian Joint Hierarchical Model Results for Ramps 

Given the importance of ramp, this project also developed ramp SPF of pedestrian and vehicle 
using Bayesian joint hierarchical model. The model inputs contain 5 categorical variables and 
ramp ADT across pedestrian and vehicle crash counts shown in Table 10. The estimated 
coefficients for ‘Ramp On/Off Code 2’ (On ramp), ‘Ramp Area 4 Indicator 2’ (No), ‘Average 
Daily Traffic’, seems to be statistically significant with both pedestrian and vehicle. It appears 
that, compared to base condition of off ramp, on ramp has negative impact on both traffic model. 
In addition, ramps which are associated with “Area 4” seems more advantageous in terms of 
traffic safety for both modes. For vehicle crashes only, ‘Highway Group 4’(Undivided 
Highway), ‘Ramp Design Code 3’(Dir/Semi Left Ramp), ‘Ramp Design Code 5’ (Slip Ramp), 
‘Ramp Design Code’ (Dir/Semi Right Ramp), ‘Ramp Design Code 8’(Buttonhook ramp), ‘Ramp 
Design Code 9’ (Scissors Ramp), ‘Ramp Design Code 10’ (Split Ramp), ‘Ramp Design Code 
14’ (Rest Area/Vista), ‘Ramp Design Code 16’ (Others), ‘Ramp On/ Off Code 3’(Others), 
‘Ramp Population Group 2’ (Rural), tend to provide more safety benefits compared with related 
base condition. Compared with rural and urban, urbanized area provides less safety performance 
to vehicle. 

Table 10. Description of Model Parameter Estimates for Ramps 
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Variables 
Mean SD Mean SD 

Fixed Effects 
(Intercept) -5.731 1.191 6.519 1.167 

Highway Group Highway Group 1 (Base) 

Highway Group 2 0.477 0.321 -0.159 0.107 
Highway Group 3 -0.386 0.463 -0.206 0.117 
Highway Group 4 -0.013 0.727 -0.605 0.162 

Ramp Design Code Ramp Design Code 
1(Base) 
Ramp Design Code 2 0.339 1.094 -0.414 0.245 
Ramp Design Code 3 0.466 1.186 -0.549 0.270 
Ramp Design Code 4 0.981 1.173 -0.133 0.266 
Ramp Design Code 5 -0.427 1.215 -1.335 0.274 
Ramp Design Code 6 0.401 1.175 -0.542 0.266 
Ramp Design Code 7 0.175 1.193 -0.213 0.270 
Ramp Design Code 8 -0.324 1.188 -0.577 0.268 
Ramp Design Code 9 -0.547 1.242 -0.934 0.275 
Ramp Design Code 10 -0.610 1.190 -1.295 0.270 
Ramp Design Code 11 -0.008 1.182 -0.324 0.267 
Ramp Design Code 12 -4.547 13.396 -0.031 0.312 
Ramp Design Code 13 -7.023 11.564 -12.717 8.716 
Ramp Design Code 14 0.302 1.256 -0.874 0.278 
Ramp Design Code 15 -7.140 11.517 -13.122 8.601 
Ramp Design Code 16 0.595 1.206 -0.619 0.280 

Ramp On/Off Code Ramp On/Off Code 
1(Base) 
Ramp On/Off Code 2 -0.415 0.075 -0.473 0.021 
Ramp On/Off Code 3 -1.150 0.651 -1.017 0.173 

Ramp Area 4 
Indicator 

Ramp Area 4 Indicator 1 
(Base) 
Ramp Area 4 Indicator 2 0.692 0.128 0.300 0.030 

Ramp Population 
Group 

Ramp Population Group 1 
(Base) 
Ramp Population Group 2 -1.340 0.342 -0.634 0.056 
Ramp Population Group 3 1.132 0.233 1.024 0.049 

Average Ramp ADT (15~17) 5.1*10-5 5*10-6 7.3*10-5 1*10-6 

Random Effects 
Observation. ID 0.870 0.014 2.873 0.399 

Goodness-of-fit Criteria 
DIC 4102463 

D 2078761 
P 2023702 

LPML -46863.44 
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To better explore the suitability of using the bivariate setting, the random effects of the two 
transportations modes were also collected. Their correlation and covariance are shown in Table 
11. The statistically significant correlation coefficient signifies the strong positive correlation 
between the two types of crashes, corroborating the importance of developing the joint models 
where the correlation between the two response variables was explicitly considered. 

Table 11. Correlation and Covariance Matrix between the Random Effects of Pedestrian 
and Vehicle Counts 

Observation. ID 

1 (Pedestrian) 

1 (Pedestrian) 

1.000 

2 (Vehicle) 

0.995 

2 (Vehicle) 0.448 1.000 

Notes: 1. The lower triangle of the matrix shows the covariance, while the upper triangle of the matrix 
shows the associated correlation coefficient. 2. The bold font indicates the statistics is statistically 
significant at the significance level of 0.05. 3. Correlation coefficients are listed in the diagonal of the 
matrix at the same time. 4. Refer to Equation 6 for definition of covariance of the two random effects. 

4.2 Results for the County-Level SPF 

4.2.1 Model Estimates 

In general, the larger the effective number of parameters is, the easier it is for the model to fit the 
data. To obtain a parsimonious model and avoid the risk of inclusion of collinear variables, 
backward stepwise and multi-collinearity methods were employed in selecting covariates, 
respectively. Besides, a correlation matrix for the variables entered in the final models has been 
checked to avoid multi-collinearity issues. Results of parameter estimation and associated 
uncertainty estimates of significant variables in the final models are presented in Table 12. It is 
known that mostly the same significant variables are identified for all five models across 
different crash modes. The robustness of results indicates that the models yield mostly consistent 
inferences by selecting the influential factors of crashes. The variable coefficients change little 
across the five multivariate models. Comparatively speaking, the change of coefficients for the 
smaller sample size outcomes (motorcyclists, bicyclists, and pedestrians) is larger than that of the 
larger one (vehicle-only). It is also worth mentioning that some coefficients exhibit varying 
relationship (positive and negative) for the same crash mode across different models. For 
example, the positive coefficient of Median House Income in case of Model 1 motorcycle 
crashes changes to a negative coefficient for rest of the models. This may be explained by the 
inclusion of additional spatial and temporal specifications for rest of the models which account 
for the unobserved heterogeneity that may have escaped the explanatory variables, which are 
account for the variability in case of Model 1. The consistent negative relationship between 
Median House Income and motorcycle crashes for four models may suggest that the inclusion of 
space-time specifications generated accurate posterior estimates and should be incorporated for 
obtaining more informed inferences. Another example of reversing relationship between 
dependent and independent variable across five models is the case of yearly trend for bike and 
motorcycle crashes. The contradictory coefficient signs for Model 2 and Model 4 may be 
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explained by the different treatment of temporal correlation. Model 2 attempts to address the 
temporal changes by introducing a linear trend for each of four crash modes while Model 4 
adopts a more restrictive approach of a fixed coefficient across all modes. The fixed approach 
seems to be limited in accounting for the temporal instability for multiple modes as it intuitive to 
perceive that different crash modes would experience a varying impact of time (Readers are 
referred to Mannering (2018) for complete review of temporal instability in crash data). The 
model results also demonstrate consistency in terms of variable significance as except for 
maintain miles of roadways, rest of the explanatory variables were observed to be consistently 
significant across different modes and models. As for the yearly trend, if the fixed trend is 
assumed for all crash types, the coefficient is significant with a negative value. However, if the 
varying trends are expected for different crash outcomes, the coefficient was not significant for 
bicycle crashes. 

Table 12. Estimates of Regression Coefficients Obtained by various Multivariate Models 

Crash Types Variables Model 1: 
MVPLN 

Model 2: 
MVPLNT 

Model 3: 
MVPLNS 

Model 4: 
MVPLNST 
(fixed time 
coefficient) 

Model 5: 
MVPLNST 
(varying time 
coefficients) 

Motorcycle 

Intercept -4.136 
(0.3174) 

-4.788 
(0.2594) 

-2.904 
(0.1903) 203.3 (12.51) -3.773 (0.157) 

Population -0.1246 
(0.01406) 

-0.1595 
(0.01351) 

-0.3 
(0.03681) 

-0.07534 
(0.01261) 

-0.1509 
(0.009309) 

Maintain Miles 0.01771 
(0.01096) 

0.008537 
(0.01257) 

0.01726 
(0.01005) 

0.007134 
(0.01105) 

0.003428 
(0.01105) 

Mean Travel 
Time 

0.7519 
(0.05739) 

1.013 
(0.03292) 

1.219 
(0.04727) 

1.312 
(0.1081) 

1.243 
(0.05635) 

Median House 
Income 

0.01055 
(0.03558) 

-0.0183 
(0.0247) 

-0.08794 
(0.02847) 

-0.1458 
(0.03375) 

-0.1632 
(0.03605) 

Land Area -0.1773 
(0.04202) 

-0.09556 
(0.06168) 

-0.1182 
(0.03334) 

-0.03841 
(0.04562) 

-0.1168 
(0.04535) 

Yearly trend NA 0.0118 
(0.00229) NA -0.02315 

(0.001936) 
-0.0268 
(0.003868) 

Bike 

Intercept 1611 (89.29) 37.73 (0.1686) 38.4 35.8 37.11 
(0.2814) (0.1714) (0.1224) 

Population -1.206 -1.08 -0.9042 -0.1633 -0.8376 
(0.0161) (0.01198) (0.02227) (0.08462) (0.01467) 

Maintain Miles 
(0.008597) (0.00803) (0.01002) (0.009951) (0.009377) 
0.01595 0.009649 0.01801 0.02482 0.01493 

Mean Travel -3.975 -4.552 -4.13 -3.891 -4.136 
Time (0.05043) (0.1291) (0.04431) (0.07165) (0.1293) 

Median House -0.6162 -0.5001 -0.8102 -1.1 -0.9162 
Income (0.0205) (0.02759) (0.02916) (0.02324) (0.02111) 

Land Area -1.287 
(0.02203) 

-1.083 
(0.04495) 

-1.284 
(0.02056) 

-0.8865 
(0.02032) 

-1.179 
(0.02715) 
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Yearly trend NA 0.02759 
(0.002135) NA -0.02315 

(0.001936) 
-0.003148 
(0.004556) 

Pedestrian 

Intercept 0.8672 
(0.2519) 

0.3048 
(0.4678) 

1.801 
(0.147) 

-203.6 
(10.21) 

-0.1208 
(0.6806) 

Population 0.008662 
(0.03157) 

0.122 
(0.01273) 

0.0923 
(0.02112) 

0.0387 
(0.01525) 

0.04489 
(0.01151) 

Maintain Miles 0.004058 
(0.008569) 

0.0045 
(0.01035) 

0.003207 
(0.01223) 

-0.0002712 
(0.008451) 

0.003542 
(0.008898) 

Mean Travel 
Time 

-0.6804 
(0.09504) 

-1.016 
(0.05308) 

-0.9415 
(0.118) 

-1.555 
(0.1048) 

-0.4644 
(0.1235) 

Median House 
Income 

-0.06005 
(0.02965) 

-0.08702 
(0.02407) 

-0.1553 
(0.01316) 

0.04646 
(0.01498) 

-0.1021 
(0.03049) 

Land Area -0.4166 
(0.01479) 

-0.3362 
(0.03252) 

-0.4307 
(0.02115) 

-0.4611 
(0.02627) 

-0.3457 
(0.06915) 

Yearly trend NA -0.01135 
(0.002134) NA -0.02315 

(0.001936) 
-0.0245 
(0.004889) 

Vehicle 

Intercept 39.03 
(0.08003) 

39.35 
(0.06195) 

40.08 
(0.2003) 

-84.76 
(7.271) 

39.86 
(0.09192) 

Population -0.8921 
(0.00555) 

-0.9098 
(0.005664) 

-0.8547 
(0.003782) 

-0.8458 
(0.006263) 

-0.8649 
(0.01119) 

Maintain Miles -0.004897 
(0.002662) 

0.0006527 
(0.003382) 

-0.006827 
(0.002789) 

0.00002946 
(0.003023) 

0.0006173 
(0.003312) 

Mean Travel 
Time 

-3.838 
(0.01695) 

-3.827 
(0.03526) 

-4.161 
(0.02898) 

-4.105 
(0.0119) 

-4.06 
(0.03589) 

Median House 
Income 

-1.001 
(0.007701) 

-1.114 
(0.01056) 

-1.054 
(0.006385) 

-1.022 
(0.005542) 

-0.9793 
(0.007107) 

Land Area -0.9818 
(0.01169) 

-0.8436 
(0.0161) 

-0.9957 
(0.006574) 

-0.9722 
(0.005265) 

-0.9735 
(0.01605) 

Yearly trend NA -0.02453 
(0.0006668) NA -0.02315 

(0.001936) 
-0.02508 
(0.001537) 

Note: 1. Refer to Table1 for detailed description of variables 
2. Numbers in parentheses represent uncertainty estimates, or, posterior standard deviations 
3. The statistically significant correlation coefficients are shown in bold. 

4.2.2 Correlation among Crash Types 

Similar to previous literature (Park & Lord, 2007; Aguero-Valverde & Jovanis, 2009; Aguero-
Valverde et al., 2016), the variance estimates of all four crash types for all multivariate models 
are statistically significant at the 0.05 level of significance which indicate the presence of over-
dispersion in all modal crashes. In addition, a correlation analysis of error terms for all models 
was conducted. The result for multivariate space-time model with varying time trend (Model 5) 
is shown in Table 13 for the illustrative purpose. Table 13 depicts the variance-covariance and 
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correlation of heterogeneity error term, the spatial random effect, and the space-time interacted 
term, among various crash modes. 

In case of heterogenous residuals, the results demonstrate the presence of strong posterior 
correlation between some crash modes. For example, the bicycle crashes exhibit the highest 
correlation coefficient of 0.989 with vehicular crashes, followed by pedestrians and bikes (0.84) 
and pedestrians and vehicles (0.816). These findings suggest that some pairs of crash modes have 
closer behaviors and the heterogeneity error term helps account for the variability due to 
common factors which may not be incorporated as explanatory variables during model 
development. Interestingly, the correlation results also depict a negative relationship (though 
non-significant and relatively weak as shown by small coefficients) of motorcycle crashes with 
bicycle and vehicular crashes. This finding suggests that unaccounted factors may have a 
reversed impact on the crash risk of such modes. In other words, an increase in the quantity of a 
specific common factor may increase the crash risk of one mode and decrease it for another 
mode. 

In case of spatial and interacted spatial, the variance is observed to be statistically significant. 
This demonstrates the expected spatial clustering of similar crash types among neighboring 
entities. It should be noted that the statistical significance of variance demonstrates the clustering 
of crashes for a particular mode only. For example, the increased vehicular crash risk at one site 
is positively correlated with increased vehicular crash risk at neighboring site. However, the non-
significance of covariance results suggest that the crashes of different modes may not be 
correlated across neighboring sites. For example, the increased vehicular crash risk at a site may 
not be correlated with an increased pedestrian crash risk at a neighboring site. Overall, the 
correlation results demonstrate that existence of common factors among different crash modes, 
but the crashes of multiple modes may not be correlated across neighboring sites. 

Table 13. The Estimate of the Correlation among Crash Types and associated p-values for 
Model 5 

Modes 

MC 

Bike 

Ped 

MC 

0.21 

-0.117 

0.119 

Bike 

-0.14 

6.8 

0.840 

Ped 

0.03 

1.2 

0.3 

Veh 

-0.17 

6.23 

1.08 

Independent Spatial (uij) 
MC Bike Ped 

0.001 9.20E-05 9.14E-05 

0.092 0.001 8.83E-05 

0.0914 0.088 0.001 

Veh 
8.79E-

05 
9.04E-

05 
8.77E-

05 

MC 

0.001 

0.0923 

0.0933 

Bike 

9.23E-05 

0.001 

0.093 

Ped 
9.33E-

05 
9.34E-

05 

0.001 

Veh 
9.49E-

05 
9.33E-

05 
9.12E-

05 
Veh -0.153 0.989 0.816 5.83 0.0879 0.0904 0.0877 0.001 0.0949 0.093 0.0912 0.001 

Notes: 1. The shaded cells represent covariance matrix 
2. Unshaded cells represent correlation coefficient 
3. Bold text represents statistical significance at 0.05. 

4.2.3 Goodness-of-fit 
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The goodness-of-fit measures reveal the notable variations in performance of models. As 
exhibited in Table 14, the spatiotemporal models (Model 4 and Model 5) were observed to 
exhibit substantially lower D value, indicating that the interaction of space and time while 
comprising the multivariate nature fits the data very well. However, such benefit is accompanied 
by the largest values of PD, showing the relatively large effective number of parameters. On the 
contrary, the model without consideration for spatial correlations or temporal trend (Model 1) 
enjoyed the lowest value of PD, which was roughly half of the sophisticated spatiotemporal 
models. However, this significant difference of model complexity failed to compensate for poor 
model fit as the overall fit (DIC) for Model 1 remained among the highest. Since the DIC 
differences are more than 7 points among all models, it can be concluded that MVPLNST, 
especially the one with varying time coefficient for different transportation mode users, 
significantly improves the model-fitting performance by borrowing strength from neighbors as 
well as considering the time trend. On the other hand, the MVPLN model, which doesn’t 
consider either temporal or spatial effect, has the inferior modeling performance. In case of rest 
of the evaluation criteria, Model 5 consistently performed the best due to least discrepancy 
between estimated and observed crash counts, followed by Model 4. The results clearly 
demonstrated that the spatiotemporal models were remarkably superior in all respects while the 
traditional MVPLN performed the worst. This was expected as this model did not have the 
benefit of accommodating the heterogeneity which escaped from the covariates. Model 2 shows 
slightly better results which may be accredited to the inclusion temporal trend. However, the 
MVPLNS model failed to enhance crash prediction performance indicating that the spatial 
correlations may have been addressed by the explanatory variables and additions of such 
structures adversely impact model performance due to the increased complexity associated with 
a potentially higher number of effective parameters employed for spatial random effects during 
model development. Such negative impact of spatial random effects seems to have been 
compensated by the interaction with time trend for the spatiotemporal models which enabled 
them to have a superior edge at predictive accuracy and goodness-of-fit. Model 5 was noted to 
have the best scores across all evaluation criteria, closely followed by Model 4, while Model 1 
and Model 3 exhibited the worst performance, which was more pronounced in case of MSPE 
with four times higher score. This repetitive trend across different evaluation criteria 
corroborates the previous observation that the consideration of only spatial correlations over a 
multivariate specification raises model complexity while the interaction of space and time 
substantially benefits the model. This benefit at model fit may be attributed to the inclusion of 
temporal trend since Model 2 (which only had temporal trend over multivariate) also exhibited 
significant improvement at model fit, compared to Model 3 with spatial, indicating that the crash 
data at the macro level of county is distributed preferably more across time. It is noteworthy that 
the overall trend between the models for predictive accuracy is similar to the trend for D, which 
is the measure of in-sample error. It may be inferred from the results of both the measures that 
there is a correlation between the posterior deviance (D) and the prediction capability of a model. 

Table 14. Evaluation Results for Alternate Models 

Models D PD DIC MAD MSPE G2 RSS TRD 

Model 1 15804.9 222.76 16027.7 40.92 21290.61 6838.81 6640.32 37420 
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Model 2 

Model 3 

Model 4 

14243.2 

15878.7 

12888.8 

225.002 

256.34 

529.68 

14468.3 

16135.0 

13418.5 

32.4 

41.03 

25.97 

7935.69 

22092.09 

5438.21 

5242.59 

6852.41 

3929.03 

5093.35 

6671.17 

3499.34 

37352 

37468 

32133 

Model 5 12716.7 527.42 13244.2 25.31 5194.17 3342.29 3319.39 31708 

Note: Bold text represents best performance for the particular criterion. 

4.3 Results for the TAZ-Level SPF 

The crash prediction models for the 203 TAZs in the City of Irvine were estimated with the 
freeware statistical package WinBUGS (Abdel-Aty et al., 2011). A total of 10,000 MCMC 
iterations were utilized for parameter estimation after discarding first 1,000 iterations as burn-in. 
The convergence was ensured by employing different approaches such as visual inspection of 
history plots, trace plots, and Gelman-Rubin diagram (Gelman and Rubin, 1992). The Pearson 
correlation coefficient was calculated and the covariates correlated at a significance level of 0.05 
were subsequently eliminated. 

4.3.1 Modeling Results 

As shown in Table 15, the posterior inferences for influential factors for all four models 
demonstrate their robustness to fit the multimodal crash data at the TAZ spatial scale. All four 
models identify similar significant factors that affect crash frequency for a particular mode. In 
the case of bicycle crashes, three variables are observed to be statistically significant, namely: 
K12 student enrollment, percentage of arterials, and bike-lane density for the TAZ. The TAZs 
with higher K12 student enrollment increases the crash risk as the instances of interaction of 
bicyclists with other modes increases due to more exposure. However, the similar positive 
correlation for bike-lane density seems counter-intuitive since the presence of bike lanes is 
expected to facilitate more usage of bicycles due to lower perceived risk of interaction with other 
modes. The possible rationale for this finding may be explained by the lower perceived risk 
which may encourage bicyclists to ride more in such areas, while conversely increasing the crash 
risk due to higher exposure of bicyclists to vehicular traffic. The negative relationship among 
percentage of arterial roads and bicycle crashes indicates that maybe the bicyclists tend to travel 
less in areas with more arterials. For the crashes pertaining to pedestrians, the college enrollment 
is also observed to be influential, along with other three factors shared with bicycle crashes. The 
increase in student population in the colleges of TAZs is noted to be negatively linked with 
pedestrian crashes, though the increased pedestrian activity usually associated with the presence 
of college students was expected to increase crash occurrence. The probable justification may be 
that the known presence of students influences the vehicle drivers to be more cautious and drive 
sensitively, or the vehicular activity may be minimal in such areas which may help significantly 
reduce the possibility of interaction with pedestrians. The common significant factors (K12 
student enrollment, percentage of arterials, and bike-lane density) responsible for bicycle and 
pedestrian crashes support the joint estimation of such modes which are most vulnerable and 
impacted by similar characteristics. As shown in Table 16, the heterogeneity error term 
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demonstrates the presence of statistically significant correlation among the bicycle and 
pedestrian crashes which further justifies the employment of bivariate structure for joint 
estimation of crashes. However, the spatial random effect term exhibits the absence of a 
significant correlation, as indicated by the covariance matrix. It may be possible that the 
explanatory variables incorporated for model development are sufficiently robust to account for 
the spatial characteristics that influence crash occurrence for the particular modes. 

Table 15. Posterior Inference for Bicyclist and Pedestrian-involved Crash Counts 

Count Type Variables Model 1 Model 2 Model 3 Model 4 

Bicyclist Intercept -10.860 (0.243) -10.880 (0.246) -10.780 (0.248) -10.790 (0.234) 

% age 65+ 1.532 (0.922) 1.467 (0.895) 1.413 (0.830) 1.401 (0.798) 

K12 0.203 (0.088) 0.203 (0.091) 0.213 (0.079) 0.211 (0.074) 

College -0.013 (0.078) -0.015 (0.077) -0.014 (0.079) -0.012 (0.075) 

WalkAcc -0.007 (0.010) -0.008 (0.010) -0.006 (0.010) -0.007 (0.010) 

% Arterial -3.517 (0.674) -3.529 (0.685) -3.472 (0.691) -3.399 (0.655) 

BL_den 0.260 (0.056) 0.271 (0.057) 0.245 (0.056) 0.246 (0.056) 

Pedestrian Intercept -12.390 (0.326) -12.430 (0.357) -12.360 (0.340) -12.380 (0.346) 

% age 65+ 1.205 (1.145) 1.192 (1.101) 1.097 (1.074) 1.131 (1.009) 

K12 0.280 (0.104) 0.280 (0.106) 0.291 (0.095) 0.291 (0.094) 

College -0.976 (0.567) -0.968 (0.563) -0.962 (0.562) -0.957 (0.558) 

WalkAcc 0.009 (0.010) 0.008 (0.010) 0.010 (0.010) 0.009 (0.010) 

% Arterial -3.826 (0.989) -3.805 (0.985) -3.727 (0.991) -3.658 (0.996) 

BL_den 0.384 (0.068) 0.397 (0.075) 0.374 (0.069) 0.375 (0.074) 

Notes: 1. Intercept for Dirichlet Process models indicates the intercept mean from mixture 
points. 
2. Refer to Table 4 for detailed description of variables. 
3. Numbers in parentheses represent uncertainty estimates, or, posterior standard deviations. 
4. The statistically significant variable coefficients are shown in bold. 
5. Model 1: bivariate; Model 2: bivariate spatial; Model 3: bivariate dirichlet process mixture; 
Model 4: bivariate dirichlet process mixture spatial. 

Table 16. Covariance Matrices for the Four Alternative Models 

Models Modes ij) Spatial (uij) 

Bicycle Pedestrian Bicycle Pedestrian 

Model 1 Bicycle 0.896 (0.166) 0.854 (0.166) 
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Pedestrian 0.854 (0.166) 0.890 (0.237) 

Model 2 Bicycle 0.860 (0.168) 0.827 (0.153) 0.001 (2.2x10-4) 6.7x10-5 (1.5x10-4) 

Pedestrian 0.827 (0.153) 0.856 (0.213) 6.7x10-5 (1.5x10-4) 0.001 (2.2x10-4) 

Model 3 Bicycle 0.602 (0.200) 0.538 (0.182) 

Pedestrian 0.538 (0.182) 0.561 (0.226) 

Model 4 Bicycle 0.507 (0.231) 0.461 (0.234) 0.001 (2.1x10-4) 7.4x10-5 (1.5x10-4) 

Pedestrian 0.461 (0.234) 0.503 (0.270) 7.4x10-5 (1.5x10-4) 0.001 (2.2x10-4) 

Notes: 1. Numbers in parentheses represent posterior standard deviations. 
2. The statistically significant covariance values are shown in bold. 
3. Model 1: bivariate; Model 2: bivariate spatial; Model 3: bivariate dirichlet process mixture; 
Model 4: bivariate dirichlet process mixture spatial 

4.3.2 Evaluation Results 

As previously stated, the four models are evaluated from different perspectives using five 
evaluation criteria. Unlike the traditional parametric models which usually employ DIC 
(deviance information criterion) for model comparison, LPML is adopted in this study as DIC is 
not generated by the WinBUGS due to its sensitivity to different parameterizations (Ohlssen et 
al., 2007; Geedipally et al., 2014). The higher value of LPML is desirable as it reflects relatively 
superior model fit property and a difference of more than 5 points among two competing models 
help identify the model of interest (Ntzoufras, 2012). As shown in Table 17, the LPML values of 
all four models are close enough to not cross the threshold of 5 points for identification of the 
model of interest. However, the sample size also impacts the numerical value of LPML. Hence it 
may be worthwhile to record the model with highest LPML value and compare the observation 
with other criteria. As evident from the evaluation results, Model 3 demonstrates the best fit 
based on relatively large LPML (-474.433), closely followed by Model 4. A similar trend is 
observed for all other criteria suggesting the strong correlation among the capability of a model 
to fit crash data and its performance at crash predictive accuracy. 

Further inspection of the evaluation results reveals that the models which account for spatial 
correlations (Models 2 and 4) have consistently inferior performance to those with spatially 
unstructured heterogeneity (Models 1 and 3). Such phenomenon suggests that the inclusion of 
spatial correlation structures raises the model complexity without notable advantage at crash 
prediction, which is usually expected in such cases as reduced posterior deviance compensates 
the increased complexity. The potential reason might be due to the insignificant spatial 
dependency among the two modal crashes as shown in Table 16. Clearly, the Dirichlet models 
(Models 3 and 4) outperform the non-Dirichlet ones (Model 1 and 2) based on all five criteria 
suggesting the use of such flexible framework. 

Apart from the above findings, the logical aspect of employing the flexible approach should also 
be given consideration. For a given crash dataset, the parametric approach assumes a restrictive 
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stationary distribution of explanatory variables across all the sites under focus. As discussed in 
previous studies of semi-parametric models (Heydari et al., 2016; Shirazi et al., 2016), the 
Dirichlet formulation allows the examination of the adequacy of standard parametric assumption. 
As clearly shown in Figure 3, the kernel posterior density plots of Dirichlet precision parameter k 
illustrate the closeness of the peak towards zero which reflects that the unknown density (G) of 
non-parametric intercept is far from the baseline distribution (G0). Similar plots for both 
Dirichlet models suggest their robustness and indicate that the normal assumption of intercept 
associated with traditional parametric models does not hold true for the TAZ level crash dataset 
of the current study. This indicates that the 203 intercepts associated with the TAZs are not 
normally distributed and the standard parametric approach does not hold true for the concerned 
pedestrian and bicycle crashes at the planning level. This finding seems plausible since the safety 
mechanisms which impact the pedestrian and bicycle crashes may vary across different TAZs 
due to diverse factors (such as driving behavior, road environment, and so forth) which may not 
be captured in the explanatory variables. These findings also suggest the presence of distinct 
subpopulations among the crash data which was confirmed from the histogram of posterior 
number of latent clusters with a median of 2 clusters for most of the data. This capability of 
Dirichlet models to identify the latent subpopulations may prove highly beneficial for the safety 
agencies to investigate similarities in the safety issues among different sites and allocate funding 
for dedicated countermeasures (Shirazi et al., 2016). This is achieved by calculating the expected 
probabilities of sites to fall into same clusters, which allows detection of the degree of similarity 
or dissimilarity among sites based on the crash risk (Heydari et al., 2016). 

The aforementioned advantages justify the use of Dirichlet process mixture with a flexible 
intercept as such model specification helps more precise estimation leading to better inferences. 
Contrary to the parametric models which restrict the priors to a specific distribution fixed across 
all entities, the latent clusters capture the multimodality due to unconstrained nature. 

Table 17. Evaluation Results for Alternative Models 

Model LPML MSPE 2Rp G2 RSS 

Model 1 -476.753 0.690 0.786 177.995 272.367 

Model 2 -477.492 0.691 0.781 179.544 278.749 

Model 3 -474.433 0.682 0.823 169.137 225.018 

Model 4 -474.831 0.687 0.823 169.998 225.291 

Notes: Model 1: bivariate; Model 2: bivariate spatial; Model 3: bivariate dirichlet process 
mixture; Model 4: bivariate dirichlet process mixture spatial. 
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(a) Kernel densities for Dirichlet Spatial (Model 4) 

(b) Kernel Densities for Dirichlet without Spatial (Model 3) 

Figure 3. Kernel Density Plots for Precision Parameter and Latent Clusters 

5. CONCLUSIONS AND RECOMMENDATIONS 

Likewise, for ease of description, the conclusions and recommendations are outlined in the order 
of the micro-level, county-level, and TAZ-level SPFs. 

5.1 Conclusions and Recommendations for the Micro-level SPF 

For this type of SPF, compared with the vehicle modes, much less research has been dedicated to 
the development of SPF for active transportation modes such as pedestrians. There are multiple 
reasons behind such situation which include the dominant use of vehicle modes and the difficulty 
to obtain exposure information of pedestrians. For the intersection SPF exploration, bivariate 
models are used to account for the common unobserved heterogeneity shared by the two types of 
crashes at the same intersections. Then, both robust variable importance ranking technique and 
correlation analyses among numerical variables are employed to determine the mode-specific 
covariate inputs, enhancing both model flexibility and accuracy with more related variables 
being included for each of the modes. In addition, this project also employed negative binomial 
model to investigate SPFs without feature selections, and determined Crash Modification Factors 
(CMFs) for all variables to pedestrian and vehicle. The following conclusions were drawn based 
on the research results: 

1. Compared with the base condition of four-legged intersection, offset intersection 
demonstrates better safety performance for both pedestrians and drivers. 
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2. In contrast of off ramp, on ramp is more advantageous in terms of traffic safety for both 
traffic modes. 

3. For drivers only, the tee and wye intersections and those without right-turn channels tend 
to provide more safety benefits compared with the base conditions of intersections with 
four-leg and right turn channels, respectively. The better safety performance associated 
with the intersections without right turn channels is relatively contradictory, which 
warrants further investigations from other studies. 

4. There are much more statistically significant variables associated with pedestrians on the 
intersection, suggesting that pedestrians are more sensitive to various intersection 
features than the vehicle drivers. In contrast, vehicles have more statistically significant 
variables on the ramp, indicating that vehicles are relatively unsafe on the ramp. 

5. The correlation and covariance matrix between the random effects of both pedestrian and 
vehicle counts demonstrates existence of strong correlation for both of intersection and 
ramp analysis, indicating the sensibility of using the bivariate models which explicitly 
consider the correlation between the two modes. 

The aforementioned findings from this study reflect an improvement to current SPF development 
with mode-specific inputs of predictors and count model-estimated pedestrian exposure being 
utilized. However, it is important to mention that the current findings are based on the empirical 
results obtained from the intersection- and ramp-related crash data in California. Some of the 
model findings may not hold true when employing data at a different spatial level. Moreover, 
only crashes of two modes are investigated. More modes involved might lead to different results 
given more complex interrelationships are introduced among all crash outcomes. Finally, this 
study considered timely aggregated crashes only. The consideration of serial correlation among 
various years of crashes is also worth of further investigation. 

5.2 Conclusions and Recommendations for the County-level SPF 

For the county-level SPF, the traffic safety field has employed separate temporal and spatial 
correlations for simultaneous estimation of crash outcomes. However, this is no or little research 
considering both dimensions of time and space, as well as the associated interactions, for the 
multivariate models. To this end, this study proposed two multivariate spatial-temporal models. 
The proposed models were developed using the Full Bayesian framework and incorporated the 
spatial-temporal random effects with fixed and mode-varying time coefficients for various modal 
crashes. This study was primarily focused on the comparison of the proposed models with the 
alternate multivariate models which either did not incorporate or incorporated only one 
correlation: spatial or temporal. 

The models were compared based on the fitness of estimated and observed crash data using 
different evaluation criteria. The model fitness results from DIC revealed that the proposed 
models significantly improved the model fitting by pooling strength from the neighbors, 
consideration of time trend, as well as their interactions. Among the two proposed models, the 
model with mode-varying time coefficients was observed to be superior. The influential factors 
for all the models were mostly the same. The in-sample error (D ) was observed to be the 
governing factor for overall fit of the model and consistently showed a strong positive correlation 
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between model fit and prediction accuracy. In other words, the models with closer DIC or D 
values tend to yield more similar prediction performance. 

Although the study clearly demonstrated the advantages of the proposed models due to the 
capabilities of combination of spatial and temporal random effects, still there are some 
recommendations to further bolster the significance of these models. Firstly, this study was 
focused at the county level with a set of influential variables. Somewhat different results may be 
expected for other geographic areas, like block level, TAZ, or smaller entities like intersections. 
Secondly, the inverse of distance was calculated to generate the spatial weights for CAR 
specification. Future studies may adopt other approaches. Thirdly, the fitness of models was 
assessed by employing the DIC. Other techniques could be utilized for such assessment like 
MAPE (mean absolute percentage error), RMSE (root-mean-square error), among others. 
Moreover, cross-validation techniques would also help verify the expected advantages at crash 
prediction. The model comparison results may also exhibit deviations from this study when such 
multivariate space-time specifications are employed using the crash count approach, unlike the 
crash rate used in this study, for a smaller spatial scale. Finally, this study used a linear time-
space interaction and the time-varying coefficients for development of models. The fitness and 
performance of other time-space relationships or random parameter models could be explored 
and compared with the proposed models. 

5.3 Conclusions and Recommendations for the TAZ-level SPF 

For the TAZ-level SPF, The current study contributes to the safety literature by proposing a 
bivariate Dirichlet process mixture spatial model and comparing its performance for crash 
predictions with other three competing models. The proposed semi-parametric model accounted 
for the unobserved heterogeneity by combining the strengths of incorporating bivariate 
specification to accommodate correlation among crash modes, spatial random effects for the 
impact of neighboring TAZs, and Dirichlet process mixture for random intercept. The present 
model structure allowed the flexibility to infer stochastic parameter from the crash data instead of 
a prespecified distribution. 

All four models shared similar influential factors across both crash modes which indicated the 
robustness of the models. For crashes pertaining to bicycles, K12 student enrollment, percentage 
of arterials, and bike-lane density for the TAZ were observed to be statistically significant at the 
95% confidence interval. The positive correlation of K12 student enrollment with crash risk 
suggests the increased risk due to higher chances of physical interactions of bicyclists/pedestrians 
with other modes due to more exposure. However, the perceived risk appears to be the governing 
factor in the case of positive correlation for bike-lane density, which seems counter-intuitive. The 
lower perceived risk may encourage bicyclists to ride more in such areas and therefore yield higher 
chances of the exposure of bicyclists to vehicular traffic. A negative correlation was observed for 
percentage of arterial roads and bicycle crashes which suggests a lesser tendency of bicyclists to 
travel in areas with more arterials, hence reducing the exposure to possible interactions. The 
pedestrian crashes were observed to reduce with an increase in student population in the colleges 
of TAZs. This may be justified by the policies implemented in these areas for reduced vehicular 
traffic which eventually reduces the possibility of interaction with pedestrians. 
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The heterogeneity error term demonstrated the presence of statistically significant correlation 
among the bicycle and pedestrian crashes while the spatial random effect term exhibited the 
absence of a significant correlation, which might explain why models considering the spatial 
random effects did not yield the expected advantages compared with their non-spatial counterparts. 
In the comparison between Dirichlet and non-Dirichlet models, the former ones were consistently 
superior to typical bivariate ones under all criteria. These findings demonstrate the advantages 
associated with consideration of flexible approach, Dirichlet process mixture in the current study, 
based on the goodness-of-fit and predictive accuracy of estimated crash counts. Moreover, the 
Dirichlet models exhibited the capability to identify the latent distinct subpopulations and 
suggested the that the normal assumption of intercept associated with traditional parametric 
models does not hold true for the TAZ level crash dataset of the current study. These findings 
justify the development of sophisticated flexible models which generate more precise estimate due 
to the unrestrictive approach which eventually leads to better inferences. 

Based on the results, this study recommends careful consideration of spatial correlations at the 
macro-level of TAZs as they increased the complexity without any significant advantage at model 
fit or predictive accuracy. The authors also recommend exploring other spatial levels and observe 
if the results of the current study hold true or if the spatial random effects prove beneficial. Similar 
to other studies that focus on crashes pertaining to modes of active transportation, it should be 
noted that both the pedestrian and bicycle crashes have been modeled by utilizing the exposure of 
vehicles, rather than pedestrians and bikes, due to the unavailability of exposure data for the 
concerned modes. It is recommended that novel methods may be explored to account for the 
exposure data such as using bike mode share, or calibrating the exposure from socio-economic 
factors related to such modes (e.g. number of employees walking or cycling to work). Finally, the 
crash dataset utilized for model development was aggregated for a six-year period and future 
studies may incorporate temporal correlations and adopt disaggregated crash counts (Cheng et al., 
2017). 
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