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Executive Summary 
The Strategies for Reducing Pedestrian and Bicyclist Injury at the Corridor Level project is an effort of 
the California Department of Transportation (Caltrans) to identify and address systematic and specific 
problems with regard to pedestrian and bicycle safety in California, with the long-term goal of 
substantially reducing pedestrian and bicycle fatalities and injuries in the state. 

This project focused on working closely with Caltrans to translate the tools and models of previous 
pedestrian efforts into an implementable program that supports activities to reduce bicycle crashes, 
and also continuing to develop additional methods that support improvements in pedestrian safety to 
assist Caltrans in meeting its pedestrian and bicycle safety goals. 

Specifically, the core of this phase included four overarching objectives: 

Develop a bicycle safety monitoring tool - The traditional, dominant approach used by state agencies 
to allocate safety resources is framed around the identification of safety hotspots, where agencies 
prioritize locations eligible for safety improvements based on historical collision concentrations. 
Corridorapproachesresult insafety improvementsalongentirecorridors,which includesomehotspots 
as well as locations with lower collision concentrations. The bicycle safety monitoring tool is based on 
the corresponding pedestrian tool and methodologies developed under 65A0547 to identify bicycle-
related HCCLs on the state highway system. In addition, the research team developed a methodology 
for bicycle crash corridor identification using the DBSCAN algorithm. This tool will be used to support a 
pilot bicycle monitoring program as proposed by Caltrans. 

Support the pedestrian safety monitoring tool - The research team responded to enhancements that 
need to be added to the functionality of the existing PSMR tool developed in a previous project. 

Develop a systemic approach and tool for bicycles - The systemic approach consists of targeting blanket 
improvements at sites across a road network based on specific roadway features that are associated 
with a particular crash type. It uses historical crash data to identify the types of roadways that suffer 
from recurring safety concerns and provides a mechanism to make improvements also at sites that do 
not have many (or any) crashes. Research team developed a systemic approach for bicycles as well as 
a spreadsheet-based systemic tool. The systemic approach is intended to be complementary to the 
hotspot and corridorapproaches. 

Develop an approach to model bicycle exposure for the state highway system - The existing Caltrans 
TASAS-TSN highway database does not include any bicycle volume data, which are an important tool 
for understanding bicycle exposure and risk. To meet this challenge the research team developed an 
approach to modeling bicycle volumes across the state highway system. The modeling approach 
includes a Poisson mixture model, which allows for separate formulation of relationships for different 
types of trips—i.e., to have a utilitarian component and a recreational component within the same 
model. The research team performed data collection and processing to support implementation of the 
model in a futurestudy. 
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Chapter 1. Introduction 
The Strategies for Reducing Pedestrian and Bicyclist Injury at the Corridor Level project is an effort of 
the California Department of Transportation (Caltrans) to identify and address systematic and specific 
problems with regard to pedestrian and bicycle safety in California, with the long-term goal of 
substantially reducing pedestrian and bicycle fatalities and injuries in the state. 

This focus on improved pedestrian and bicycle safety in California dovetails well with efforts already 
underway. For example, the Pedestrian and Bicycle Challenge Areas of the Strategic Highway Safety 
Plan have worked for several years torepresent the needs of pedestrians and bicyclists at the State level 
and to develop achievable goals for improved safety. Furthermore, Caltrans underwent an external 
evaluation by the State Smart Transportation Initiative (SSTI) in 2014 to understand how it can improve 
its performance going forward. While rightly pointing out the leadership Caltrans has displayed in the 
past, the SSTI report also highlighted the need for Caltrans to modify its efforts and programmingto 
better reflect statewide goals of improved safety and mobility for non-motorized modes (SSTI, 2014). 
The earlier phases of this project show that Caltrans has already made progress in this direction, and 
provides avenues to further the progress through suggested future research. 

Current road safety management practices can be assessed against a proactiveness continuum that 
goes from fully reactive approaches to truly proactive ones (See Figure 1-1). The traditional, dominant 
approach used by state agencies to allocate safety resources is framed around the identification of 
safetyhotspots,whereagenciesprioritize locations eligibleforsafety improvementsbasedonhistorical 
collision concentrations. This focus constitutes a reactive approach, where the possibility of a safety 
improvement for a location is tied to the that fact that crashes already occurred at that location. 
Corridor approaches are slightly less reactive in that they result in safety improvements along entire 
corridor, which include some hotspots as well as locations with lower collision concentrations. 
Conversely, new approaches like “Vision Zero” and “safe system” that attempt to prevent the very 
possibility of severe crashes anticipate the occurrence of crashes and target improvements at locations 
regardless of their historical collision profile. The systemic approach finds itself somewhat in-between 
these two extremes, with both reactive and proactive components to it. It consists of targeting blanket 
improvements at sites across a road network based on specific roadway features that are associated 
with a particular crash type. It uses historical crash data to identify the types of roadways that suffer 
from recurring safety concerns, which qualifies it as a partly reactive approach. But on the other hand, 
the fact that it provides a mechanism to make improvements also at sites that did not have many (or 
any) crashes yet makes it a partly proactive approach. The systemic approach is typically used in 
parallel to the hotspot approach and is considered a complement rather than an alternative. 

Figure 1-1. The Systemic Approach on the Reactive-Proactive Continuum 
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Review of past and on-going research 
Phase II of the project (65A0509) was completed on January 31, 2017. Under that phase, Caltrans, in 
partnership with the University of California, Berkeley Safe Transportation Research and Education 
Center, accomplished several tasks and activities: (i) studied where systemic efforts fit alongside other 
road safety management efforts in terms of reactive vs. proactive approaches; (ii) identified the core 
components of the systemic approach which led to the development of the systemic matrix; (iii) 
developed and populated the systemic pedestrian crash matrix using available crash and roadway data; 
(iv) customized matrices for intersection and roadway sections; (v) developed lists of relevant 
countermeasures foreach matrix cell; and (vi) developed auser-friendly prototype tool in MS Excel that 
can conduct such an analysis and produce a list of attributes of relevant countermeasures. 

The outcome is a methodology to support systemic pedestrian efforts across the California state 
highway system. The methodology is incorporated into a user-friendly MS Excel prototype tool to 
conduct systemic pedestrian efforts analyses and safety improvements. 

Moreover, as part of Phase II and III of the Pedestrian Safety Improvement Program Project (65A0547 
and 65A0712), several other relevant activities are being developed that can support this project and 
include: (i) a model to estimate pedestrian volumes for different facility types across the state highway 
system; and (ii) methods to identify pedestrian hotspots across the California State Highway System. 

Objectives 
The current phase for this project focused on working closely with Caltrans to translate the tools and 
models of pedestrian efforts into an implementable program that supports activities to reduce bicycle 
crashes, and also continuing to develop additional methods that support improvements in pedestrian 
safety to assist Caltrans in meeting its pedestrian and bicycle safety goals. 

Specifically, the core of this phase included four overarching objectives: 

Develop a bicycle safety monitoring tool - The tool is based on the pedestrian tool and methodologies 
developed under 65A0547 to identify bicycle-related HCCLs on the state highway system. This tool will 
be used to support a pilot bicycle monitoring program as proposed by Caltrans. 

Support the pedestrian safety monitoring tool - The research team responded to enhancements that 
need to be added to the functionality of the existing PSMR tool developed in a previous project. 

Develop a systemic approach and tool for bicycles - In addition to the corridor approach developedin 
this project the research team also developed a systemic approach that seeks blanket improvements 
that can be implemented at sites across the road network, based on specific roadway features that are 
associated with a particular crash type. 

Develop an approach to model bicycle exposure for the state highway system - The existing Caltrans 
TASAS-TSN highway database does not include any bicycle volume data. To meet this challenge the 
research team developed an approach to modeling bicycle volumes across the state highway system. 
The research team performed data collection and processing to support implementation of the model 
in a futurestudy. 
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The rest of this report is structured as follows. Chapter 2 describes the methodology developed for 
bicycle crash corridor prioritization. Chapter 3 describes the work to develop systemic matrices for 
bicycle crashes on highways and at intersections. Chapter 4 describes the work completed towards the 
development of a pilot bicycle exposure model for the state highway system. 
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Chapter 2. Bicycle Safety Monitoring Tool 
Bicycle Crash Corridor Prioritization 
Transportation safety professionals strive to build a system on which no street user can be severely or 
fatally injured. To accomplish such a safe system, it is necessary to effectively harness all of the core 
protective opportunities provided by the system. For bicycle safety this includes safe street design with 
adequate separation from motorized traffic, safe vehicles, safe bicycles, safe cyclist behavior, safe 
behavior of other street users, all of which are governed by safe speeds, and supported by the medical 
emergency system when needed. Due to insufficient efforts to prevent such catastrophicoutcomes, 
bicycle crashes occur. A total of 155 fatal bicycle crashes were reported in California in 2018. Across the 
United States 857 fatal bicycle crashes were reported in 2016. The number of bicycle fatalities in 2018 
reflects an increase of 55 percent relative to 2010 (the end of the most recent financial crisis), and an 
increase of 38 percent across the country. 

Each crash involves a series of undesirable events that results in an instantaneous and violent transfer 
of kinetic energy occurring in a specific time-space spot. The fact that these preventable outcomes 
occur in specific spots, warrants the justifiable response of investigating what went wrong andwhat 
changes need to be implemented so it does not happen at this spot again. While such spot efforts are a 
necessity and can save lives, the approach addresses the problem in a reactive manner and on a very 
small scale. Moreover, the shortage of data to sufficiently reconstruct the events that led to the crash 
cannot facilitate considerations across all the core protective opportunities. 

To complement spot identification methods, transportation safety practitioners have shown an 
increased interest in developing approaches that can also lead to the implementation of improvements 
in a proactive manner. In this context, the distinction between reactive and proactive lies in the ability 
to make improvements exactly where crashes have occurred versus the ability to make improvements 
also at locations that have not yet experienced a crash, or have had relatively fewer crashes. To 
accomplish this, the scope of the potential implementation should have a common thread thatgoes 
beyond the number of crashes in a spot. For example, if a continuous set of segments (or intersections) 
is defined as a long segment and labeled as a corridor, it is possible to compare the safety of corridors 
across the network. The outcome of this can generate a subset of corridors that exhibit a level of safety 
that is below a certain threshold. If an improvement is identified and implemented across all the 
segments (orintersections)ofthecorridor it is implemented inaproactivemanner. Theconjecturehere 
is that when crashes occur at a significant number of spots along the corridor, intermediate spots that 
have not had a crash yet, might be exposed to similar safety issues that can be addressed in a proactive 
manner. The outcome is that, in comparison to spot approaches, corridors present opportunities for 
larger scale operational and safety improvements along a route. Systemic safety is another category of 
proactive safety management, under which the common thread is not spatial but rather a set of 
locations that share common design attributes that are associated with a specific risk. 

In the context of bicycle activity, corridors provide opportunities for improving both bicycle safety and 
mobility, through corridor-level improvement projects such as installation of bicycle lanes, providing 
additional protection through the removal or modification of parking lanes, installing traffic-calming 
measures, etc. Examples of intersection-specific modifications to better accommodate cyclists include 
bicycle boxes, lead bicycle crossing intervals, and protected intersections. 

7 



  

 
  

               
                

                   
                 
                  

                   
                   

                
                   
         

 

    

                 
                 

           

  
               

                   
 

                  
     

          
 

 

            

  
                 

              
     

Methodology 
Corridor identification 
Density Based Spatial Clustering of Application with Noise (DBSCAN) is used to identify bicycle crash 
corridors. The DBSCAN algorithm is illustrated in Figure 2-1. Given a set of points in two-dimensional 
space, the algorithm can detect core points (A in Figure 2-1), border points (B in Figure 2-1), and outliers 
(N in Figure 2-1) under two predefined parameters: (i) a searching radius; and (ii) the minimum number 
of points within the area. Points that satisfy the above two criteria are designated as core points, while 
points that do not satisfy these criteria but are within a radius of these core points are designated as 
border points, while others are designated as outliers. A cluster is formed by at least one core point and 
a few border points. Several continuous core points are density reachable to each other, allowing a 
cluster to be extended. Therefore, since the length of a cluster is not restricted, DBSCAN can be used to 
identify bicycle crash corridors which also have flexible lengths. 

Figure 2-1. DBSCAN Illustration 

In the case of bicycle crash corridor identification, each point in the figure represents a crash location, 
while each cluster represents a crash corridor. The searching radius was set to 0.25 mile and the 
minimum number of points within the area was set to 5. 

Corridor Analysis 
Several attributes of crash corridors are defined in order to help safety investigators for prioritization: 

1. Corridor Length 𝐿: the distance between the postmile of the start point and the end point of a 
corridor. 

2. Total number of crashes in a corridor 𝑁: the number of crashes that occurred within a corridor. 
𝑁 3. Crash per mile 𝐶𝑃𝑀 = : the density of the crashes for a corridor. 

𝐿 

Corridors can be prioritized based on the ranking of the above attributes. 

BSMR Tool 
We implemented the above algorithm in a MS ExcelMacro and built a revised Bicycle Safety Monitoring 
Report (BSMR) Tool for high collision concentration location (HCCL) and corridor analysis. Below are 
some functionalities of thetool. 
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The tool uses collision data from TASAS tables in CSV format. Figure 2-2 shows the interface for 
importing crash data and the option to match TASAS data to the corresponding SWITRS data. 

Figure 2-2. Import crash data 

The bicycle corridor query (Figure 2-3) requires two parameters, the search radius in miles and the 
threshold number of collisions. The defaults are 0.25 miles and 5 collisions, respectively, but the safety 
investigator may adjust the values to modify the prioritization. 
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Figure 2-3. Bicycle crash corridor query 

Figure 2-4 shows the output results from the corridor query. Each record describes one corridor, and 
specific collision attributes such as postmile, date, facility type, access control, and severity are listed 
in series in the respective fields. Other fields include summaries and rankings of the corridor for use in 
prioritization. 
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      Figure 2-4. Corridor results and prioritization 
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Chapter 3. Systemic Safety Tool for Bicycles 
Road safety researchers and professionals have identified the value of the systemic approach to safety. 
The Federal Highway Administration Office of Safety has acknowledged four benefits of the systemic 
approach and developed the Systemic Safety Project Selection Tool (Figure 3-1): (i) solves an unmet 
need in transportation safety; (ii) uses a risk-based approach to prevent crashes; (iii) results in a 
comprehensive road safety program; and (iv) advances a cost-effective means to address safety 
concerns (FHWA 2013). 

Figure 3-1. FHWA’s Systemic Safety Project Selection Tool. Element 1: The Systemic Safety Planning 
Process (from FHWA 2013) 

This chapter describes the overall task and findings. The next section includes a description of the 
proposed systemic approach. The subsequent sections detail the core elements of the systemic crash 
elements and the resources that were used to establish the bicycle crash matrix structure, present the 
development of thecountermeasure matrix, anddescribe the development of the prototypeExcel tool. 
Finally, we present conclusions and recommendations for further development and implementation of 
the proposed approach andtool. 

The Systemic Matrix Approach 
The systemic approach to road safety originated at the intersection of two distinct strategies of road 
safety management that have emerged over the past two decades—the traditional, reactive approach, 
and the proactiveapproach. 

12 



  

                 
             

               
              

              
              

                
                 

             
              

                
     

                
                

                  
                

               
                  

               
                

                
          

              
            

             
                

               
               

      

               
                 

                 
                 

             
           

             
               

   

           
              

                   

The first is the traditional approach, for which sites with a higher than expected occurrence of crashes 
are identified. Appropriate countermeasures are then adopted for these specific sites, which are 
commonly called hotspots. Whether the high-crash locations are isolated from one another in a spot 
approach or considered along corridors with recurring safety concerns in a corridor approach, both 
schemes utilize a reactive rationale. This type of approach is problematic because addressing safety 
issues requires waiting for a crash occurrence, and in addition because underreporting issues can 
negatively impact the accuracy of the data upon which safety analyses are based. Indeed, not all 
crashes are reported, and not all those that are reported can be found in a single database—police, 
hospitals, road administrations, and insurance companies each have their own reporting systems and 
cannot individually capture all previous crashes (Turner et al. 2015). Furthermore, in some contexts 
these high-risk location approaches are no longer relevant due to the increase of crashes at locations 
with fewer crashes (SWOV2010). 

The second is the proactive approach, of which the most emblematic program is Vision Zero. This 
approach was first introduced in Sweden in 1997, when it was passed into the national legislation. 
Vision Zero maintains that no loss of life is acceptable for users of the transportation system and assigns 
the responsibility for traffic deaths and permanent injuries on the designer of the system. From this 
perspective, human error is considered and the system’s features should make it impossible under any 
circumstances for anyone to be killed or severely injured as a result of road traffic. This approach has 
been proven to generate quite satisfying results in Sweden, with traffic deaths having plummeted since 
the new policy was implemented. The Swedish Vision Zero program has been translated into the safe 
systems approach, which according to involves “building a system in which people cannot be fatally or 
severely injured on despite human error.” (Jobs et al. 2016a). 

The systemic approach is found between these two extremes. Defined by the Federal Highway 
Administration (FHWA) as making “improvement[s] that [are] widely implemented based on high-risk 
roadway features that are correlated with particular crash types,” the systemic approach intersects 
reactive and proactive strategies. Indeed, it uses historical crash data to target road facilities that have 
experienced higher incidences of crashes. However, it goes beyond identifying clusters of crashes, as it 
does not consider specific locations, but rather high-risk road features, and ultimately would also apply 
countermeasures to low or no-crash sites. 

The rationale behind the adoption of this approach is that transportation agencies moved away from 
approaches trying to address all levels of crash severity and chose to focus on reducing the occurrence 
of the most severe crashes (Turner et al. 2015). Considering the low density and wide distribution of 
suchcrashesovertheroadnetwork—in2013,53%offatalcrasheswithinthefederalroadnetworkwere 
located in rural areas—adopting a traditional hotspot approach would not efficiently identify potential 
safety investments. In addition, adopting a systematic approach, that is, implementing 
countermeasures across the entire network, is not realistic in a budget-constrained environment. The 
systemic approach therefore appears to be best suited to address the occurrence of severe crashes 
across road networks. 

Measuring Safety Using the Systemic Approach: Choosing the Right Safety Indicators 
Ultimately, the systemic approach is about improving road safety, by better identifying safety needs— 
that is, by better spotting unsafe features of the road network. But measuring road safety is not an easy 
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task because the concept of safety itself is hard to define, though the term is broadly used among both 
experts and the public (Oppe 1994). The core problem lies in the fact that safety problems are brought 
to light when unsafe situations occur in the form of crashes and subsequent injury or fatality. This is 
why Ezra Hauer felt the need to state at the beginningof his Observational before-after studies in road 
safety that “road safety is manifest in the occurrence of accidents and their harm,” as opposed to the 
subjective feeling ofsecurity (Hauer 1997). Crashes are manifestly correlated with road “unsafety,” and 
crash counts have therefore been widely used as metrics for road safety, especially by policy makers 
because figures of road fatalities and injuries make a stronger case for road safety than complex 
measurements. 

However, using crash data as a direct measure of road safety has its caveats. The overarching goal of 
safety analysis as formulated by Leonard Evans is to “examine factors associated with crashes with the 
aim of identifying those that can be changed by countermeasures (or interventions) to enhance future 
safety” (Evans,1991).This implies theneed for large sample sizes for significant statistical observations, 
which is not always possible when it comes to crash data. Additionally, relying solely on crash data 
ignores the fact that crashes themselves are a result of the emergence of hazardous situations—some 
of which resulted in a crash, while the others do not. This distinction is essential, because it recognizes 
an essential dilemma: what do we consider to be a safer system, a lower number of crashes or a lower 
risk of getting into a crash? Traffic events can be represented as a continuum of situations in pyramidal 
layers(seeFig.xx),whosevolumescorrespondstoanevent’sfrequency(Hyden1987;Hauer1997;Tarko 
2012).Theconnectionbetweentheseeventsandroad“unsafety”makethecasefortheuseofsurrogate 
measures of safety, which: (i) are correlated with the occurrence of crashes, and (ii) capture the effects 
of safety countermeasures (Hauer1997; Gettman andHead2003;Tarko et al.2009; Tarko,2012).These 
twofeatures makesurrogatemeasuresof roadsafety valuablebecausetheydeepen theunderstanding 
of factors leading to failure mechanisms in the road system. Furthermore, as shown in Fig. xx, more 
frequent events are easier to measure, which would call for a wider reliance on surrogate measures. 
Still, as mentioned by Hauer, using surrogate measures to quantify safety “rests on the observation that 
where there is smoke, there is fire.” Such an assumption, true or not, reinforces the fundamental link 
between road safetyand crashes. Nonetheless, somenuanced interpretation should be madebetween 
fluctuating crash counts and the permanent idea of the safety of a road entity: facilities with zero past 
occurrences of crashes should not be considered perfectly safe, since that only roads with no traffic at 
all have a zero chance of a crash. 

Recognizing this last point calls for taking into account levels of traffic when measuring whether a traffic 
facility is safe. The busier a roadway is, the more likely it is, all else being equal, that vehicles will collide. 
Therefore, some studies have relied on crash exposure rather than crash frequency to measure road 
safety. And furthermore, why should agencies worry about fixing facilities that are not predominant 
within their network? This is the concern that could be addressed by relying on a third road safety 
indicator: crash density—the ratio between the number of crashes and the “size” of the road network, 
whether in terms of the mileage of roadways or the number of intersections. These last two indicators 
are quite similar, in the sense that they can be respectively seen as an activity-based measures of 
exposure and an infrastructure-based one. The Dutch Institute for Road Safety Research summarizes 
the concept of exposure measures as capturing a unit amount of risk—a unit that can express duration, 
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distance, population, expected number of encounters, or other factors, depending on the intended use 
of the measure—mainly useful for making situations comparable (Oppe 1994; Hakkert et al. 2002). 
While they are in no way the only indicators for measuring safety on a road network, they share 
important advantages over more elaborate ones, the first one being their ease of calculation based on 
crash data from police reports and basic infrastructure data. Depending on data availability, it may be 
relevant for some agencies to consider mixed safety indicators that would go beyond the dichotomy 
between crash numbers and rates. An example is the ratio between crash frequency and vehicle-miles 
traveled, a combined infrastructure- and activity-based exposure rate that takes into account both the 
length of the road network and the traffic flow onthe infrastructure.Many other safety indicators could 
be built, some of them more direct measures of safety, some more surrogate measures. Ultimately, the 
purpose of the present study is not to outline in a definitive manner the right way of measuring road 
safety, and the unique safety indicator to be used when implementing the systemic approach. Each and 
every indicator responds to different safety concerns, and choosing one over the others constitutes 
nothing less than a political choice. It is therefore the responsibility of each safety agency to decide 
which indicator is most appropriate in identifying systemic safety concerns. In this study, for illustrative 
purposes, the level of safety of a traffic facility is measured as the number of crashes, by kind and 
severity, that occurred on this facility during a specified period—considering that crash counts 
constitute the most directly available information on crashes based on any police reports, regardless 
of the local jurisdiction. 

The Systemic Matrix Scheme 
At the core of the proposed approach is an easy-to-interpret systemic crash matrix that shows what 
types of crashes occur on what types of facilities. Matrix rows represent crash types, while columns 
correspond to facility types. The cells of the matrix are referred to as crash profiles and include 
aggregate information on crashes that occurred for each crash profile. The way in which this 
information is aggregated depends on the chosen safety indicator—in the case of crash frequencies, 
each cell contains the number of type X crashes that occurred on type α roadways. The cells with the 
highest value represent systemic hotspots, which are systemic challenges on the roadway network in 
which a particular crash profile is consistently associated with a particular type of road infrastructure. 

Using such a matrix provides agencies with a snapshot of any systemic problems on their networks that 
are both easy to assemble and to interpret. The advantage of this scheme is that it is compatible with 
the data-driven rationale of the systemic approach, offering enough flexibility to allow agencies with 
varying degrees of data availability to implement it. The approach mainly expands on two previous 
initiatives in the United States: FHWA’s Systemic Safety Project Selection Tool, and California’s 
Systemic Pedestrian Safety Analysis. Both approaches involved building a matrix, the rows and 
columns of which were determined to best illustrate the infrastructure-related dynamics behind road 
collisions. The FHWA tool has been regularly used to guide road safety analyses across the nation and 
to help prioritize locations. The process developed by FHWA starts with the identification of focus crash 
types and facility types based on crash data and infrastructure information. This principle was adopted 
by the Californian analysis, in which the crash matrix uses columns representing locational 
characteristics understood to influence the collisions and bases on data availability, and rows 
corresponding to crash types, understood as primary collision factors and behaviors thought to 
influence the crash. The following section will guide road safety professionals and researchers through 
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the process of creating a systemic safety matrix. While it builds on findings from a methodology 
elaborated with data from the Highway Safety Information System (HSIS), this data-driven process was 
considered to be generalizable to other data sources and road networks beyond the seven HSIS 
member states, and the following will provide guidance on how to assess various matrix structures and 
select the most appropriateone. 

The Crash Matrix 
Oncethe matrixcategories are identified,each categorywill result ina different pairofmatrices (acrash 
matrix and a countermeasure matrix) being developed, with each their own structure, determined 
based on the dataset that falls within that category. 

At the core of the proposed approach is a transparent systemic crash matrix that shows what types of 
crashes occur on what types of facilities. Matrix rows represent crash types, while columns correspond 
to facility types. The cells of the matrix are referred to as crash profiles and include aggregate 
information on the crashes that occurred for each crash profile. The way in which this information is 
aggregated depends on the chosen safety indicator: in the case of crash frequencies, each cell contains 
the number of type A crashes that happened on type α roadways. The cells with the highest value 
represent so-called systemic hotspots, i.e. systemic challenges on the roadway network where a 
particular crash profile is consistently associated with a particular type of road infrastructure. Using 
such a matrix provides state agencies with a snapshot of any systemic problems on their network that 
is both easy to assemble and to interpret. The benefits of this scheme are that it is compatible with the 
data-driven rationale of the systemic approach, offering enough flexibility to allow agencies with 
varying degrees of data availability to implementit. 

Figure 3-2 shows the concept of the crash matrix. Total mileage of roadways or total number of 
intersections are also included. Each cell indicates the number of a specific type of crash (in the rows) 
happening at a specific type of location (in the columns). Systemic hotspots then get identified based 
on a screening criterion that either uses crash frequency or exposure to determine what crash profiles 
to prioritize in the implementation of systemic safety improvements. 
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Figure 3-2. Structure of systemic crash matrix 

Developing the Crash Matrix 
Data requirements 
Building a systemic matrix requires the collection of historical data on road collisions as well as 
infrastructure characteristics – ideally of the entire road network, but at the very least of the locations 
where crashes occurred. The present section will detail data needs when developing a systemic crash 
matrix for bicycles. Each of the subsequent sub-sections will detail our guidelines for what data 
elements are needed to create systemic matrix, followed by the decisions we made regarding the 
development of systemic matrices with accident and infrastructure data from Caltrans Traffic Accident 
Surveillance and Analysis System(TASAS). 

Crash data 
The singularity of the systemic approach resides in both its reactive and proactiveness. The use of 
historical crash data to identify systemic road safety challenges is at the center of the approach. While 
not all characteristics of a specific crash are used to identify systemic hotspots, it is important to meet 
some minimum requirements when undertaking the systemic approach. 

For the California State Highway System (SHS), collision data comes from TASAS data. Five years of data 
were used for the present project, with a first iteration using 2010-2014 data and the final versionof the 
systemic bicycle tool being based on more recent data, from 2013 to 2017. In general, increasing the 
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number of years of collision data represents one way of mitigating the lack of data points, which is 
critical in a data-driven process, as generalizability is key. However, the caveat of settling for too many 
years is that road infrastructure is not permanent. There should therefore be a balance between 
maximizing data points and considering potential roadway network changes, or travel pattern 
modifications evolutions. Assuming that the database structure is conservative/solid, this could be 
solved by ensuring the appropriate pairing of crashes with roadway characteristics that were prevailing 
at the time of the crash, but this requires regular internal updates to the roadway elements of the 
database and prevents from populating the matrix with exposure-based rates instead of crash 
frequency. This is the reason why using five years of data is recommended. The distribution of SHS 
crashes for the years 2013 to 2017 for California is shown on Figure 3-3. 
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Figure 3-3. Distribution of 2013-2017 bicycle crashes by location type (Source: TASAS) 

The systemic approach requires at a minimum the elements listed in Table 3-1. TASAS data includes 
most of these elements but is missing some information: for instance, the violation code is not present, 
and only the derived “primary cause” of the crash (which is equivalent to the “primary collision factor” 
in Table 3-1) is included. Information on the actual violation is more informative when it comes to 
implementing the systemic approach than having information on a broad primary cause, because it can 
dictate more closely what engineering countermeasure could address the corresponding violation. 
TASAS records were therefore matched with information for the same collisions included in the 
Statewide Integrated Traffic Records System (SWITRS) database to include the violation code as well as 
the party type at fault. This last variable has also proved to be very valuable information to determine 
what countermeasure would more appropriate: for example, a failure to yield by a motorized vehicle 
would not call for the same safety measures as a failure to yield by a bicycle. 
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Table 3-1. Minimum crash data requirements for the systemic approach 

ID 

C1 

C2 

C3 

C4 

Variables 

Crash 
identifier 

Crash date 

Crash time 

Crash 
location 

Description 

Unique identifier 
within a given year 
that identifies a 
particular crash. 
Date on which the 
crash occurred. 
Time at which the 
crash occurred, using 
the 24-hour clock 
format. 
Exact location at 
which the crash 
occurred. 

Data type 

Numeric or 
character 
string 

Numeric 

Numeric 

Character 
string 

Data values 

0123456789 

DDMMYYY 

HHMM 

Comments 

Value usually assigned by the police, as the first entity 
recording the incident at the crash scene. 

Useful for seasonal comparisons and time series 
analyses, among others. 
Useful forcomparisonsbetweenperiods(e.g.AM,PM, 
nighttime). 

Various referencing methods are possible and include: (1) 
latitude/longitude coordinates; (2) linear referencing 
system; (3) link-node system. Ideally, a combination of 
GPS coordinates with the route name or another 
designation is desired to best relate geographic 
coordinates to roadway elements listed in the road 
infrastructure directory. If not available, the crash 
location should at the very least document the street or 
road name, a reference point, and the distance and 
direction from that reference point. The accuracy of the 
crash location documentation is critical for the 
identification and implementation of engineering 
countermeasures on crash sites. 

C5 Crash type Other party or object 
that led to the injury 
or damage-producing 
event of the crash. 

Categorical Moving vehicle; 
parked vehicle; 
pedestrian; bicycle; 
fixed object; non-
fixed obstacle; 
animal; train; no 
object; etc. 

Collisions can include more than one event. However, the 
main triggering element of the collision should be listed, 
and is key to identifying countermeasures. 
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ID Variables Description Data type Data values Comments 

C6 Primary 
collision 
factor 

Principal cause of the 
collision. 

Categorical Alcohol; failure to 
yield; improper turn; 
following too closely; 
speeding; etc. 

Similarly, there may be multiple factors at play in a single 
crash. Knowing the primary cause is key to identifying 
countermeasures. 

C7 Violation 
code 

If applicable, legal 
code of the traffic 
violation that led to 
the crash. 

Categorical 22107 Provides more flexibility in the grouping of crashes by 
traffic violation types (e.g. control violation) than the 
standard primary collision factor (C6) categories listed 
above, at the discretion of the matrix developer. Provides 
more details on the specific primary causes of a collision. 

C8 Impact type Manner in which the 
motorized vehicle(s) 
involved initially 
collided with another 
vehicle, object or 
person. 

Categorical Single-vehicle crash; 
rear-end; head-on; 
Sideswipe; broadside; 
etc. 

Useful for suggesting the trajectory of the vehicles 
involved in the collision. 

C9 Movement 
prior to the 
collision 

Type of movement of 
the primary vehicle 
preceding the first 
impact. 

Categorical Proceeding straight; 
left turn; right turn; U 
turn; backwards; 
changing lanes; 
unknown; etc. 

Useful for suggesting the trajectory of the vehicles 
involved in the collision. 

C10 Number of 
parties 
involved 

Number of parties 
involved, including 
motorized andnon-
motorizedvehicles 

Numeric Informs on the overall scale of the crash. 

C11 Party type Type of parties 
involved in the crash, 
in addition to the 
motorized vehicle(s). 

Categorical Auto-involved; 
pedestrian-involved; 
bicycle-involved. 

Informs on the involvement of non-motorized individuals 
in the collision. Considering that some collisions may 
involve vehicles, bikes and pedestrians, they would be 
flagged as both pedestrian and bike-involved, and thus 
included in more than one of the matrix categories listed 
in the previous section. 
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ID Variables 

C12 Crash 
severity 

C13 Number of 
fatalities 

C14 Number of 
non-fatal 
injuries 

C15 Weather 
conditions 

Description 

Most severe injury of 
any person involved. 

Number of deaths 
resulting from the 
crash. 
Number of non-fatal 
injuries resulting from 
the crash. 
Prevailing 
atmospheric 
conditions at the 
crash location, at the 
time of the crash. 

Data type 

Categorical 

Numeric 

Numeric 

Categorical 

Data values 

Fatal; severe injury; 
slight injury; property 
damage only. 

Clear; rain; snow; fog; 
strong winds; 
unknown; etc. 

Comments 

Facilitates the grouping of crashes by severity level, thus 
enabling different policy focuses (e.g. reducing traffic 
deaths and severe injuries). 
Count includes all vehicles and individuals involved in 
the crash. 

Count includes all vehicles and individuals involved in 
the crash. 

Unveils potential causes of vision impairment or 
challenging conditions of the road pavement surface. 

C16 Light 
conditions 

Level of natural and 
artificial light at the 
crash location, at the 
time of the crash. 

Categorical Daylight; dusk; dark; 
dark with streetlights; 
unknown; etc. 

Unveils potential issues of visibility. 
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Infrastructure data 
The systemic approach links crash profiles and infrastructure types, in order to unveil linkages between 
specific types ofcrashesandspecific featuresofroadways, thusallowingthe implementationofblanket 
improvement across an entire facility type. Infrastructural elements at the location of a collision are 
therefore central in the development of a systemic matrix. 

In the systemic matrix, columns represent locational attributes of the infrastructure that help predict 
the likelihood of the occurrence of a crash. For the California State Highway System, infrastructure data 
comes from TASAS-TSN. 

Table 3-2 lists the minimum infrastructure data requirements to allow the purposeful selection of the 
final set of columns for the systemic matrix. Not all matrix categories require the same information on 
infrastructure: quite simply, medians are not present at intersections, and the corresponding 
information irrelevant for an intersection systemic matrix, but still very relevant for a highway systemic 
matrix. Therefore, the table differentiates between location types. 

Table 3-2. Minimum infrastructure data requirements for the bicycle systemic approach 

Attributes Label Variables Data type Data values Intersection Highway 
Lanes I1 Number of through lanes – both 

directions – mainline 
Numeric x x 

Lanes I2 Number of through lanes – both 
directions – cross-street 

Numeric x 

Lanes I3 Number of left turn lanes – 
mainline 

Numeric x 

Lanes I4 Number of right turn lanes – 
mainline 

Numeric x 

Lanes I5 Number of left turn lanes – cross-
street 

Numeric x 

Lanes I6 Number of right turn lanes – 
cross-street 

Numeric x 

Median I7 Presence and type of median Categorical Raised; 
striped; etc. 

x 

Speed I8 Speed limit – mainline Numeric or 
categorical 

25 mph x x 

Speed I9 Speed limit – cross-street Numeric or 
categorical 

25 mph x 

Traffic 
control 

I10 Presence and type of intersection 
control 

Categorical No control; 
four-way 
stops; etc. 

x 

Traffic 
counts 

I11 Traffic volumes along mainline Numeric x x 

Traffic 
counts 

I12 Traffic volumes along cross-street Numeric x 
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It is important to note that these variables correspond to information needed to determine the 
systemic matrix structure and will not all be included as columns. Using the systemic approach for an 
extensive, diverse road network can lead to the temptation of trying to be too exhaustive when 
describing facility types in the systemic matrix columns. A roadway can be described with its number 
of lanes in each direction, the presence of traffic controls, its traffic volumes, the presence of a 
median, of a bike lane, its design speed, as well as many other attributes. And yet, the more roadway 
characteristics are included in the matrix columns, the more the matrix expands. This leads to a much 
larger number of cells, and therefore lowers significantly the “size” of systemic hotspots by spreading 
road crashes among a greater number of cells. As a consequence, interventions on the road network 
following the identification of relatively small systemic hotspots would have a smaller scale, thus 
reducing the impact of the systemic approach. It is therefore important to thoughtfully select the 
attributes that will be used to describe the roadway infrastructure. 

Data Needs Specific to Exposure Indicators 
Regardless of the structure of the crash and infrastructure data at hand, crash frequency constitutes 
the most straightforward safety indicatorbecause it does not require the combination of infrastructure 
information – like the number of roads falling under a certain facility type, or the traffic volumes of a 
certain facility – to the raw number of collisions, as required crash density or crash exposure. 

Populating the systemic matrix with crash exposure instead of crash frequency would require to divide 
the number of collisions that fall under a specific crash profile and happened in a specific facility type 
by the traffic levels experienced by that facility. There are some nuances in this calculation depending 
on which location category is considered. For intersections, there is the option to either take into 
accountthetraffic flow on the primaryroadonly,oracombinationof boththemainline andcross-street 
traffic flows. One important challenge arising from the calculation of exposure is that it imposes the 
inclusion of traffic counts as one of the column attributes – or else, facilities with different volumes 
would belong to the same facility and call for the use of volume averages, which would defeat the 
purpose of illustrating the singularities of facility types. Second, when it comes to bicycle-involved 
collisions, relying solely on car traffic counts only addresses part of the problem: a comprehensive 
approach would require taking into account jointly car traffic volumes and bicycle traffic volumes. 
Nevertheless, this ambition is thwarted by the challenge of having access to network-wide volume 
counts for bicycles. 

When it comes to crash density, the matrix cells should contain the ratio between the number of 
collisions falling under the corresponding crash profile and facility type, and the number of 
corresponding facilities on the network being studied – in the case of intersections – or the total 
combined length of said facilities on the entire network – in the case of road segments. This implies 
that unlike frequency and exposure, the use of density rates does not allow direct comparisons 
between intersection and roadway segments, since the denominator is different, which can be an 
issue for an agency willing to consider the systemic safety challenges of its network as a whole. 

Data Processing 
Data collection was followed by thoughtful data processing, to both pair the two data sources and 
ensure the validity of the conclusions coming from the systemic matrix. Crash data was first filtered to 
retrieve only bicycle records, then the few duplicates of a same crash were removed, and the cleaned 
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bicycle crash dataset was then matched with infrastructure data based on crash location (postmile), 
which resulted in one dataset with bicycle intersection crashes and the corresponding intersection 
features, and one dataset with bicycle highway crashes and the corresponding highway features. The 
matching was followed by the cleaning of the matched records. It included reformatting some variables, 
combining some into a single variable (e.g. mainline and cross-street number of lanes), adding labels, 
and creating ad hoc categories (e.g. individual traffic volumes into ADT categories). The rationale 
behind the creation of new categories will be detailed in the subsequent sections, and definitions for 
these new variables are listed in Appendix 1. 

The resulting clean dataset is a table with a combination of crash and infrastructure data for the 
corresponding location type (intersection or highway), ready for use in the systemic matrix. 

Crash Matrix Generation 
Generating a systemic matrix for a given matrix category is a data-driven process, based on numerous 
successive trial-and-error iterations with the years of crash records available. It is important to note 
that a different dataset (even for the same road network but with different years of collisions) may lead 
to a different arbitration between options for selecting the matrices’ rows and columns. Defining rows 
and columns therefore happens concurrently with populating the matrix. Identifying these rows and 
columns is equivalent to defining the crash profiles and creating the framework for the systemic matrix. 
As mentioned in the data collection section, this crucial step should consider the tradeoffs between the 
desire to include as many crash profiles as possible and the need for a compact and legible matrix 
structure. Judging whether a particular structure is fit for the dataset under study requires to find the 
just balance between the personal logic ofthe matrix developerand some objective measure of fitness. 
Adding a variable in the rows, deleting one in the columns, every single choice on the variables to be 
included affects not only the sizeof the matrix, but more importantly, the story told by thecrash profiles 
they define, as will be detailed in the case studies to follow. 

Rows and columns are defined separately, in no particular order: starting with one or the other does 
not affect the final matrix structure. The following will therefore detail each consecutively – starting 
with the definition of rows – for intersections and highways respectively, though they follow the same 
overall logic. 

Determining the intersection systemic matrix structure 
Defining Rows 
In order to illustrate how crashes are influenced by the built environment, the rows of the matrix need 
to represent crash dynamics. These dynamics are specific to each party type involved, as crashes 
between a car and a cyclist show many dissimilarities with crashes between two cars. The row 
arrangement therefore was therefore tailored to bicycles for the present project. 

Primary collision factor 
As emphasized before, unlike mere crash counts for hotspots, a systemic matrix tells a story – a story 
about the entire road network. What the systemic approach intends to unveil is the underlying causes 
of typical collisions, so that their causes can be addressed in a comprehensive way and their future 
occurrence be prevented on all suspect road locations. The primary cause of a collision allows to 
“explain” its occurrence better/more concisely thana longcombinationof its individual characteristics, 
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especially in the perspective of keeping the number of rows reasonable. However, with a database like 
TASAS-TSN, the values listed in the corresponding categories are too broad to be insightful, as shown 
on Figure 3-4. 

Other violations 
Failure to yield 
Improper turn 

Speeding 
Unknown 

Alcohol 
Other than driver 

Other 
Improperdriving 

Following too close 

0 200 400 600 800 1000 

Bicycle Crashes 

Figure 3-4. Bicycle intersection crashes by primary collision factor (2013-2017) 

Crashes are therefore best described by the underlying violation code that were assigned to them by 
the reporting officer that registered the collision. 

Violation category 
As mentioned in the section on data requirements for a bicycle systemic matrix, TASAS-TSN data was 
supplemented with information from SWITRS to include the violation code for each collision. Using 
violation codes presents the opposite challenge of using primary collision factors: there are too many 
possible values. This is not desirable when developing a systemic matrix, as too much detail results in 
crash profiles being too narrow and limits the scope of the resulting safety improvements. One way of 
obtaining a compact matrix is to group variable values into larger overarching categories: for example, 
several violation codes may correspond to different instances of the same violation type, such as a 
failure to yield under various circumstances. One easy way of defining these groupings is tousesections 
of the California driving code, but ultimately, this new categorization is equivalent to manually 
redefining primary collision factors in a way that is deemed logical. 

Because this process requires the review of individual violation codes and their manual categorization 
in a logical way, the abovementioned grouping cannot be exhaustive. It is therefore acceptable to focus 
on the most represented crash types. For the present project, the following rule was established: 
violation categories will be created to cover violation codes that account for at least 95% of all crashes 
(excluding crash records with missing violation codes) for that particular matrix (i.e. here, intersection 
crashes only), as long as each violation code accounts for at least 10 crashes. The remaining collisions 
are categorized into a default violation category named “Other”, as are records with missing violation 
codes. This rule is meant to reduce the burden for the analyst while being representative enough of the 
violations present in the dataset. It is up to the discretion of the analyst to include additional violation 
codes in the categories, although there is limited interest in expanding them since violation codes that 
are not included only cover very few crashes in the crash dataset under consideration. In the case of the 
present project, the research team decided to include additional codes that had been used for a 
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systemic safety analysis for a local agency in California in addition to the top 95% violation codes. Table 
0-1 in Appendix 1 shows the violation categories that resulted from this process for 2013-2017 TASAS-
TSN and SWITRS data. 

Note that in order to allow for meaningful comparisons when trying to describe the dynamics behind 
any particular hotspot, it is recommended to homogenize the resulting violation crash types across 
matrix categories (i.e. in the present case, for the intersection crash matrix and the highway one).When 
homogenizingtheviolationcategories across matrix categories,no morethan 5% ofcrashes with a non-
blank violation code should fall within the “Other” violation category for each matrix category. The 
distribution of intersection crashes across the new violation categories is shown in Figure 3-5 and gives 
a better breakdown of crashes than when using the TASAS-TSN primary collision factor. The fact that 
the most represented category is “Other” is due to missing violation codes, but the breakdown of the 
subsequent prevailing categories issatisfactory. 

Other 
Unsafe driving, overtaking and passing 

Control violation 
Unsafe turning 
Failure to yield 

Entering from minor facility 
Unsafespeed 

Under theinfluence 
Bike equipment 

Following too closely 
Unsafe door opening 

0 100 200 300 400 

Bicycle Crashes 

Figure 3-5. Bicycle intersection crashes by violation category (2013-2017) 

Bicycle movement type 
The TASAS-TSN database provides party-level information for each collision, which means that several 
records correspond to a single crash. However, it does not specify which party was the one at fault, 
whichlimits how the levelof informationprovided by the variable on movement types, consideringthat 
the analyst cannot infer which record to prioritize for a given crash. For the present project, movement 
types were looked at for records that corresponded to bicycles, considering that bicycle safety was the 
focus of the analysis. For a given collision, only bicycle records were retrieved. Whenever there were 
several bicycles involved, only one record was kept in order to avoid double-counting a single crash. 
This led the research team to leave out less than 20 bicycle records, which is minimal in comparison 
with the over 1,600 records for 2013-2017 TASAS-TSN data. Bicycle movements for these crashes are 
displayed on Figure 3-6. It appears that the vast majority of cyclists involved in collisions at intersections 
on the California state highway system were proceeding straight. Such an imbalanced distribution is 
not desirable for a systemic matrix, as the excessive way of the first category would lead to too many 
crashes being captured in one row, which results in safety resources being devoted to tackle a problem 
that is too large. 
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Figure 3-6. Bicycle intersection crashes by movement type (2013-2017) 

Collision type 
The collision type describes the impact between parties involved in a crash and whether it was 
broadside, rear-end, sideswipe, etc. Similar to the type of movement, in the case of bicycle intersection 
SHS crashes, it appeared that there was an imbalance between different categories (See Figure 3-7), 
which indicates that this variable is not the most ideal descriptor of crash dynamics. Broadside crashes 
are the most represented, followed by “other” types of collision. 

Broadside 
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Figure 3-7. Bicycle intersection crashes by collision type (2013-2017) 

Party at fault 
For bicycle-involved collisions, the story behind a particular crash changes dramatically depending on 
which party is at fault, because cyclists are more vulnerable than motorized vehicles. The safety 
measures taken from identifying the party at fault will also be different: different countermeasures will 
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be taken if in a crash with a failure to yield, the bike was at fault, or if it was the car, regardless of the 
location. In the case of 2013-2017 bicycle intersection crashes, bicycles were at fault in most cases (See 
Figure 3-8). 
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Figure 3-8. Bicycle intersection crashes by party at fault (2013-2017) 

Combining row levels 
Having information from only one of the abovementioned variables is not enough to create meaningful 
crash profiles: for instance, knowing that bicycle intersection crashes where the bicycle was at fault 
happened at intersections with high traffic volumes is not informative enough to determine what 
engineering countermeasures should be applied to the corresponding systemic hotspot. This is the 
reason why combinations of variables are considered after having explored individual distributions. 

Several combinations resulted in the top categories not being insightful because they included “other” 
values. This was the case when combining primary collision factor and collision type or violation 
category with collision type. On the other hand, combining violation category and party at fault proved 
interesting, as illustrated by Figure 3-9. 
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Figure 3-9. Bicycle intersection crashes by violation category and party at fault (2013-2017) 

Considering that the top violation was still flagged “other”, a third variable was added to break it down 
more, which resulted in a final row structure made of the following variables: 

(i) violation category 
(ii) party at fault 
(iii) collision type. 

Figure 3-10 shows the frequency of crashes by combined category, where unsafe driving, overtaking 
and passing, at-fault bicycle, and broadside is the most common type. 
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Figure 3-10. Bicycle intersection crashes by violation category, party at fault and collision type (2013-
2017) 

As will be discussed later, this row structure was enough to flag systemic hotspots once the column 
structure was finalized, and it kept the row size within reasonable bounds. 

The research team did not include as rows other variables that are important but relate more to the 
overall context or the policy focus and should therefore be used as filters for the entire matrix. This 
includes considerations onthe severity ofthecrash (e.g. to focus on fataland severe injury crashes only). 
Similar decisions were made for very broad infrastructure information regarding the type of area (e.g. 
to focus on urban crashes), roadway class (e.g. to focus on freeways), district, etc. 

Defining columns 
Traffic control 
It is common to implement the systemic approach at intersections by differentiating between types of 
signalization, if any. Many variations exist in terms of signalization, but several bear resemblance and 
therefore call for groupings. The research team created new categories listed in Appendix 1 that 
resulted in differentiating between intersections that had no traffic control, traffic signals, four-way 
stops, two-way stops, yield signs or something else. The large imbalance between categories of traffic 
control shown on Figure 3-11 indicates the need to add more detail to characteristics of intersections 
with traffic signals or with two-way stop signs. It is also interesting to note the total absence of bicycle 
crashes at intersections with yield signs in 2013-2017. 
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Figure 3-11. Bicycle intersection crashes by type of traffic control (2013-2017) 

Number of lanes 
The number of lanes at an intersection is a good indication of the geometrical attributes of an 
intersection. It also gives an indication of the distance that bicycles need to cross to get to the other 
side. Considering the number of lanes on the mainline road as well as the cross-street is considered best 
practice, as it is not possible to know which leg of the intersection each party was coming from without 
looking at the police crash reports one by one. However, a majordownside of using the number of lanes 
as is in the systemic approach is that it results in a large number of categories, thus expanding 
significantly the number of columns – and not always in a meaningful way: there is little difference 
between a 7+2 and a 8+2 intersection, and yet, each would get a separate column, thus complicating 
the inference of appropriate engineering countermeasures. Figure 3-12 shows the number of 
intersection bicycle crashes by number of lanes on the mainline and cross-street. 
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Figure 3-12. Bicycle intersection crashes by number of lanes (mainline and cross-street) (2013-2017) 
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Vehicular traffic volumes 
Including vehicular traffic volumes in a systemic matrix for bike safety is challenging because as 
mentioned earlier, it only partly captures the use of infrastructure and does not describe the intensity 
of use by cyclists. In the case of bicycle safety, considerations about traffic volumes are only relevant 
when deciding between bicycle lane classes, and as such, do not apply to intersections. This 
information was therefore not included in the systemic intersection matrix. 

Turn channelization 
The prevalence of unsafe turns in the row categorization described above makes understanding what 
turning movements are allowed at intersections that had crashes critical for the analysis. This is why 
turn channelization was considered. The TASAS-TSN database includes detailed information on left and 
right-turn channelization respectively, for the main road and for the cross-street. For compactness 
purposes, different types of channelization where grouped (see Appendix 1) to only describe the 
presence or absence of a left or right turn channelization, for the mainline or cross-street respectively. 
Considering the importance of permissive left turns in transportation planning in California, only left 
turn channelization was considered. Nearly two thirds of bicycle intersection crashes occurred at 
intersections where left turns were channelized (See Figure 3-13 and Figure 3-14). 
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Figure 3-13. Bicycle intersection crashes by left turn channelization on mainline (2013-2017) 
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Figure 3-14. Bicycle intersection crashes by left turn channelization on cross-street (2013-2017) 

32 



  

   
               

                 
              
              

       
 

      

       

       

       

      

      

       

       

    

  

              
    

      
  

               
               

   
              

                
    

 

  
  

 
   

 
   

 
  

   
 

     

  

          

 
  

 
 

 
  

 
 

Combining column levels 
Based on the previous sections, the most promising column categories to describe intersections on the 
California State Highway System that had bicycle crashes between 2013 and 2017 are the type of traffic 
control and left turn channelization (mainline and cross-street). Figure 3-15 displays the distribution of 
crashes when combining them. The result is a well-balanced distribution that describes well different 
types of facilities in a compact way. 
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Figure 3-15. Bicycle intersection crashes by type of traffic control and left turn channelization 

(mainline & cross-street)(2013-2017) 

Determining the highway systemic matrix structure 
Defining rows 
Similar to the intersection systemicmatrix,historical crashdatafrom2013-2017 was used to determine 
the most appropriate variables that should be used as row in the highway systemic matrix. 

Primary collision factor 
The primary collision factor presented the same issues of representativeness as explained in the 
previous section: the values listed in the corresponding categories are too broad to be insightful, as 
shown on Figure 3-16. 
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Figure 3-16. Bicycle highway crashes by primary collision factor (2013-2017) 
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Crashes are therefore best described by the underlying violation code that were assigned to them by 
the reporting officer that registered the collision. 

Violation category 
Following the same logic as previously, violation categories were created based on the most 
represented violation codes. This resulted in the distribution of intersection crashes shown inFigure 
3-17, which gives a better breakdown of crashes than when using the TASAS-TSN primary collision 
factor. The fact that the most represented category is “Other” is due to missing violation codes, but the 
breakdown of the subsequent prevailing categories is satisfactory. 
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Figure 3-17. Bicycle highway crashes by violation category (2013-2017) 

Bicycle movement type 
The vast majority of cyclists involved in collisions on road segments were proceeding straight – which 
is logical for a road segment, unless one of the parties was entering from a minor facility. As a 
consequence, the type of bicycle movement was not included in the highway matrix. 

Collision type 
Unlike for intersectioncrashes, the types of collision forhighway crashes were wellbalanced.Broadside 
crashes were still among the most represented, although “other” types of collision were most 
represented – most likely because of missing data (See Figure 3-18). 
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Figure 3-18. Bicycle highway crashes by collision type (2013-2017) 
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Party at fault 
As explained in the previous section, for bicycle-involved collisions, the story behind a particular crash 
changes dramatically depending on which party is at fault, because cyclists are more vulnerable than 
motorized vehicles. In the case of 2013-2017 bicycle intersection crashes, bicycles were at fault in most 
cases (See Figure 3-19). 
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Figure 3-19. Bicycle highway crashes by party at fault (2013-2017) 

Combining row levels 
As for intersection crashes, combining violation category and party at fault and collision type allowed 
to obtain an interesting, well-balanced breakdown for highway crashes, as illustrated by Figure 3-20. 
This was selected as the final row structure for highway matrices. 
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Figure 3-20. Bicycle highway crashes by violation category, party at fault and collision type (2013-
2017) 

Defining columns 
Median 
The presence of a physical delimitation between opposite flows of traffic can prevent the occurrence of 
some types of crashes, like head-on collisions. However, medians can be designed in various ways, 
which makes the presence of a median and the type of barrier important characteristics to study in the 
systemic approach. Only 4 SHS bicycle crashes happened on undivided highways between 2013 and 
2017, against 121 on divided highways with a raised median, and more than 1,400 on divided highways 
without a physical barrier (See Figure 3-21). This great imbalance may be related to the overall makeup 
of the SHS network – which could be explored as part of exposure calculations. 
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Figure 3-21. Bicycle highway crashes by median and barrier type (2013-2017) 

Number of lanes 
For highway segments, the number of lanes gives aslightly different information than for intersections. 
While it also describes the geometry of a highway, it mainly suggests the potential intensity of vehicular 
traffic happening to the left of bicycles riding on that highway, but does not relate to a distance that 
bikes would have to cross. Again, a major downside of using the number of lanes as is in the systemic 
approach is that it results in a large number of categories. It appears that most crashes happened on 
narrow, symmetrical highways, with one or two lanes in each direction (See Figure 3-22). 
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Figure 3-22. Bicycle highway crashes by number of lanes (left & right) (2013-2017) 

When combining the number of lanes with information on median and barrier type, it results in Figure 
3-23, which still appears quite imbalanced since the top two categories account for about three 
quarters of highway crashes, which calls for the addition of another variable. 
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Figure 3-23. Bicycle highway crashes by median type and number of lanes (left & right) (2013-2017) 

Vehicular traffic volumes 
As explained for the intersectionmatrix, including vehicular traffic volumes in a systemic matrix for bike 
safety is challenging because it does not describe the intensity of roadway use by cyclists. However, it 
remains a common descriptor of highway segments, especially when deciding between bike lane 
classes. The difficulty with numerical variables like ADT (average daily traffic) is to choose the 
appropriate categorization that will yield a balanced yet meaningful breakdown. Using the median as 
the cutoff is not an option because too many bicycle crashes happened on very low traffic highways, 
and considering roads with volumes below 1000 ADT separately would not be insightful regarding the 
appropriate engineering countermeasures. The research team therefore used a breakdown that had 
been adopted for the systemic approach for a local agency in California, with ADT thresholds at 7,000 – 
15,000 – 25,000. When combined with the type of median and the number of lanes, it resulted in a 
balanced, acceptable breakdown of crashes (See Figure 3-24). 
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Figure 3-24. Bicycle highway crashes by median type, number of lanes (left & right) and vehicular 
traffic volumes (2013-2017) 

Validating crash matrix structures 
The final structure for the systemic intersection matrix is as follows: 

 Rows: descriptors of crashdynamics: 
o Violation category (categorical) 
o Party at fault (categorical) 
o Collision type (categorical) 

 Columns: descriptors of infrastructure features: 
o Traffic control type (categorical) 
o Mainline left turn channelization (dummy) 
o Cross-street left turn channelization (dummy) 

The final structure for the systemic highway matrix is as follows: 

 Rows: descriptors of crashdynamics: 
o Violation category (categorical) 
o Party at fault (categorical) 
o Bicycle movement type (categorical) 

 Columns: descriptors of infrastructure features: 
o Median presence (dummy) 
o Median barrier type (categorical) 
o Number of lanes – left & right (categorical) 
o Vehicular traffic volume – ADT(categorical) 

The structures outlined above were chosen after successive iterations, based on the five years of crash 
records available. They were selected because they were best aligned with the goals of the present 
project and best suited to enable the actual implementation of engineering countermeasures on the 
identified systemic hotspots. And yet, it is important to keep in mind that the systemic approach is a 
data-drivenone. Therefore, while theprevious sectionoutlined decisions mostly based onprofessional 
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judgment and expertise, the present section will detail some tools that can support a data-driven 
decision-making process when looking for an acceptable systemic matrix structure. 

First, regardless of its size, it is useful to keep in mind the possible extreme forms that a systemic matrix 
can take. On one hand, it can be almost empty, with all crashes being clustered in a single hotspot, i.e. 
a unique pair of collision characteristics and infrastructure characteristics. On the other hand, it can be 
almost full, with each crash profile having occurred at least once in the period of study. Both cases are 
to be avoided, as they prevent the identification of an appropriate number of systemic hotspots. Having 
too few means that a couple crash profiles with high numbers of collisions will be the only systemic 
hotspots. In that case, the crash profile appears to be too general, meaningless, and defining the 
numerous corresponding countermeasures will result too burdensome and expensive. Conversely, 
having too many systemic hotspots, that is, if the matrix is too balanced between crash profiles, too 
many cells willhavesimilar numbers of crashes, meaningthat too many infrastructuretypes will require 
engineering countermeasures, which is not realistic financially. In summary, finding the appropriate 
balance in terms of matrix structure is key to the success of the implementation of the systemic 
approach, which culminates with countermeasures and ought to be feasible. 

What this strive implies, is that ultimately, the share of empty cells in a systemic matrix does not matter. 
It is only important that it does not fall into one extreme or the other. As shown in Table 3-3, the actual 
shareof blank cells for the 2013-2017 matrices for California described in the case study stand relatively 
high, above 80%. As emphasized throughout this report, the focus of the systemic matrix is cells with 
the highest weights in terms of numbers of collisions, not crash profiles with only few occurrences. This 
iswhythekurtosisofthematrixconstitutesaninterestingindex toaidchoice-makingbetweendifferent 
matrix structures. Indeed, the kurtosis indicates the extent to which a distribution is peaked or flat. 
Knowing that a normal distribution has a kurtosis of 3, matrices with an overall kurtosis superior to 3 
have systemic hotspots that significantly stand out. Conversely, a kurtosis below 3 would indicate a less 
than ideal matrix structure, where collisions are too evenly distributed. Though this index validates in 
an absolute manner the structure of a systemic matrix, since kurtosis is non-linear, it does not allow to 
directly measure the advantages of switching from one structure to the other. Doubling thekurtosis 
does not divide by two the number of systemic hotspots, or increase their weight by two. In short, the 
kurtosis only indicates how much a particular distribution of crash profiles peaks; it only says whether 
the matrix structure is acceptable as is, not whether it is inherently better than another “acceptable” 
matrix structure. As illustrated by Table 3-3, it is the case for the highway and intersection matrices. 

The emergence of systemic hotspots is best enabled by the presence of peaks in rows and columns as 
well. This is indicated by the row and column totals and allows to use their respective kurtosis as 
informative indicators as well. Logically, the row kurtosis of an almost empty matrix will be greater than 
3: since almost all of its crashes will be contained in a single hotspot, the row on which this hotspot is 
located will also contain the wide majority of the crashes. The same goes for the columns’ kurtosis. On 
the contrary, an evenly-distributed matrix will have balanced rows and columns, respectively, and 
therefore both kurtoses will stand below 3. When using these two indices, it looks like the two final 
matrices have amoderately acceptable structure. However, basedon the previous sections, thechosen 
variables were the best options based on data availability and road safety expertise. 
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Another useful and straightforward index is the size of the matrix. It allows to assess the legibility of the 
matrix, which shall remain in reasonable proportions to allow better navigation between crash profiles. 
However, the compactness of a systemic matrix is very relative, since it depends tremendously on the 
number of variables included in the structure, and the number of categories that these include. 
Sometimes, variables are just binary (e.g. median presence), while others need to be broken down in 
many categories to be comprehensive (e.g. types of violations). 

Finally, the last quantitative index is the ratio of the cell maximum (i.e. the number of collisions 
pertaining to the first systemic hotspot) to the 95th percentile. This index goes beyond the kurtosis in 
that it not only indicates how acute the peak of the distribution is, but it also allows more fathomable 
comparisons between two distributions, since it is a percentage. Additionally, the higher the ratio, the 
easier it is to set the threshold for hotspot identification, since the top five percent of the crash profiles 
stand out so much. 

Table 3-3. Summary indices on various systemic matrix structures. 

Matrix Syst_H Syst_I Blank Even Random 
Share of blank 
cells 

91% 83% 99% 20% 49% 

Overall kurtosis 46.23 20.31 17.00 -2.00 0.84 

Column kurtosis 6.52 0.40 17.00 1.15 1.67 

Row kurtosis -1.20 20.32 175.00 -0.05 -0.58 

Max to 95th pctile 482% 209% 400% 0% 62% 

Number of rows 183 175 175 175 175 

Number of 
columns 

34 17 17 17 17 

Table size 6222 2975 2975 2975 2975 

Mean 95th pctile 38 45 1394 1 28 

Using the abovementioned indices does not disqualify the case-by-case decision-making detailed 
previously. The two processes are complementary and should both be applied when considering how 
many variables should be included in the systemic matrix, which ones, and in what order. As 
emphasized before, these structures are by no means the only valid ones. They only correspond to 
“acceptable”, meaningful matrix structures that fit the data for 2013-2017 bicycle crashes well and told 
a story about systemic safety hazards on the Californian state highway system for these years. 
Ultimately, the systemic matrix is nothing but a decision-making tool to inform agencies about the flaws 
of their road network and the potential improvements they could make in order to improve safety 
outcomes for some subsets of the population (drivers, bicyclists and/or pedestrians). This thoughtful 
approach allows the emergence of systemic hotspots, which then call for another decision to be made: 
how should systemic hotspots be defined? Should there be a fixed cut-off number of collisions? The 
next section will detail how to identify systemic hotspots once the structure of the systemic matrix has 
been finalized. 
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Screening systemic hotspots 
Developing the quantitative criteria for systemic hotspots 
Once the systemic crash matrices are generated, systemic hotspots are identified, using quantiles. For 
the vehicle matrices the criteria for high-priority systemic hotspots is matrix cells with crashes counts 
that are above the 99% percentile. For both matrices, the percentile was rounded down to prevent 
situations where a systemic hotspot was missed due to a fraction of a crash. 

High-priority systemic hotspots are defined as matrix cells that require attention from the agency 
managing the road network, and represent the primary output of the systemic matrices. Considering 
the material constraints experienced by public agencies in charge of road infrastructure, there is the 
need for a metric that can efficiently and reliably alert these agencies of systemic safety concerns. If the 
metric is too restrictive, it can miss valuable safety-improving opportunities. However, if the metric is 
too inclusive, it can reduce the agency’s ability to respond effectively. In light of this, the trade-off 
between the desire to have an inclusive list and the efficiencies of a restrictive list was taken into 
account by the researchteam. 

Descriptive statistics and data visualizations were used to assess several approaches for criteria-setting. 
This includes average-based confidence intervals, signal-to-noise ratios, triangular distributions, and 
quantiles. The quantile method was determined to provide the best fit across the different types of 
matrices. This is partly driven by the empirical distributions across matrices. More specifically, although 
the data in each of the matrices is zero-inflated the behavior at the upper extremities varied quite a bit 
and a quantile-based method provided the most transparent and consistent outcome. 

To determine the actual criteria, the data for each matrix was broken down to 1000 quantiles. The data 
was then plotted and reviewed to look for change-points. Figure 3-25 shows a graph of the quantiles for 
the highway and intersection matrices. The quantiles go from left to right. At the far left is the 0.001 
percentile, and at the far right is the 99.9 percentile. Figure 3-26 is a zoomed in graph of the upper part 
of the data for each matrix, between the 90th and 99.9th percentile. Using 1000 quantiles allows to 
identify a criterion that is at a lower resolution than the plotted quantiles. After reviewing the data, a 
threshold of 99th percentile is indicated as a reasonable threshold for the two matrices. While the 
inflexion point is clear for the highway matrix, the plot for intersection crashes did not demonstrate a 
clear inflexion point, at a resolution of 0.01 percentile, a criterion of 90th percentile emerged as a 
reasonable threshold (See Figure 3-27). This threshold was deemed too low, as it would have resulted 
in systemic hotspots of as little as 5 crashes for the highway matrix. This is the reason why the research 
team decided on a threshold of 99th percentile. 
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Figure 3-25. Bicycle highway and intersection crash quantiles (0.001 percentile) 
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Figure 3-26. Bicycle highway and intersection crash quantiles (0.001 percentile) on zoomed axis 
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Prioritizing among systemic hotspots 
Once the high-priority crash profiles are identified, they are considered systemic hotspots and are 
labeled as first, second, and third priority. The priorities are determined by the order of each systemic 
hotspot within a column: the top systemic hotspot in a column is labeled as first priority, the second 
highest is labeled as second priority, and any additional systemic hotspots are labeled as third priority. 
The final ranking of the systemic hotspots is by descending order (in the number of crashes) of all of the 
first-priority systemic hotspots, followed by descending order of all of the second-order priority ones, 
and ends with all of the third-priority hotspots, by descending order. Finally, the total number of 
crashes for an entire facility type (or column) are used as tie-breakers between hotspots with the same 
crash counts: the hotspot corresponding to the “most dangerous” facility type will come first. If the tied 
crash profiles pertain to the same facility type, then it is the row totals that help decide between them. 

Table 3-4. Bicycle intersection collisions: (systemic hotspot threshold of 51 crashes for the 99th 

percentile). 
Row Structure: Violation category – Party at fault – Collision type 
Column structure: Traffic control type – Mainline left turn channelization – Cross-street left turn 
channelization 

Crashes Crash type Roadway type Priority Tie-breakers 
68 Control violation | Bicycle | 

Broadside 
Traffic signal | Yes | Yes 1 n/a 

66 Unsafe driving, over taking and 
passing | Bicycle | Broadside 

Two-way stop signs | Yes | 
No 

1 n/a 

55 Unsafe driving, over taking and 
passing | Bicycle | Broadside 

Two-Way stop signs | No | 
Np 

1 n/a 

65 Unsafe driving, over taking and 
passing | Bicycle | Broadside 

Traffic signal | Yes | Yes 2 n/a 

51 Unsafe turning | Vehicle | 
Broadside 

Two-way stop signs | Yes | 
No 

2 n/a 

59 Other | Other | Broadside Traffic signal | Yes | Yes 3 n/a 
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Table 3-5. Bicycle highway collisions: (systemic hotspot threshold of 25 crashes for the 99th 
percentile). 
Row Structure: Violation category – Party at fault – Bicycle movement type 
Column structure: Median presence – Median barrier type – Number of lanes (left & right) – ADT 

Crashes Crash type Roadway type Priority Tie-breakers 
64 Other | Other | Proceeding 

straight 
Divided | No physical barrier 
| 2+2 | 25,000+ 

1 n/a 

54 Unsafe speed | Bicycle | 
Proceeding straight 

Divided | No physical barrier 
| 1+1 | 0-7,000 

1 n/a 

42 Unsafe driving, overtaking, 
passing | Bicycle | Proceeding 
straight 

Divided | No physical barrier 
| 3+3 | 25,000+ 

1 n/a 

25 Unsafe turning | Vehicle | 
Proceeding straight 

Divided | No physical barrier 
| 1+1 | 7,000-15,000 

1 n/a 

43 Unsafe turning | Vehicle | 
Proceeding straight 

Divided | No physical barrier 
| 2+2 | 25,000+ 

2 n/a 

31 Other | Other | Proceeding 
straight 

Divided | No physical barrier 
| 3+3 | 25,000+ 

2 n/a 

25 Unsafe turning | Vehicle | 
Proceeding straight 

Divided | No physical barrier 
| 1+1 | 0-7,000 

2 n/a 

This logic allows a first-level systemic hotspot to be ranked above a second-level hotspot with more 
crashes, and is established to provide more opportunities to develop systemic improvements across 
multiple facility types. Indeed, a first-level hotspot will be the first type of facility that will benefit from 
engineering countermeasures to prevent the occurrence of certain crash types. By treating this facility 
type, it is possible that some co-benefits will result and also reduce the occurrence of a difference type 
of crashes for this facility (i.e. lower the number of crashes in different cells of the same column). 
Treating it before other columns therefore allows to solve systemic concerns across the road network 
in a more comprehensive way than focusing too much on a specific facility type. 
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Chapter 4. Bicycle Exposure Modeling Approach 
Background 
This section summarizes existing research on bicycle volume models, highlighting variables that can 
potentially be used to estimate bicycle volumes at specific locations on the California State Highway 
System. The estimated bicycle volumes can ultimately be added to the Caltrans transportation system 
information database for planning, design, and safety analysis purposes. Existing literature includes 
bicycle volume studies from California as well as other parts of North America. 

Bicycle volume data are important for safety analysis because they can be used as a basic measure of 
exposure at a specific location. For example, the relative risk of bicycle crashes for people traveling 
along state highways can be estimated as the number of bicycle crashes per million bicycles. Further, 
using bicycle volume as a variable in safety performance functions can show which roadway design 
features or other characteristics of a location should be modified to reduce bicycle crashes and injuries. 
Volume data can also be used to identify how common bicycle activity is on the State Highway System, 
indicating the importance of designing roadways for safe and convenient bicycle access. 

It is impractical tocount bicycles atevery intersection and alongevery segment ofthe15,000-mileState 
Highway System on a routine basis. This problem can be addressed by applying statistical models to 
estimate volumes at specificlocations. 

Previous Bicycle Demand Models 
There are generally two approaches for bicycle volume estimation. One is choice based and the other 
is facility based (Proulx2016). 

 Choice-based models. Traditional activity-based modeling estimates large scale travel demand. 
Trips by different modes of transportation are summarized by an Origin-Destination Matrix 
(ODM) where each entry indicates the estimated number of trips between each OD pair by time 
of day, trip purpose etc. With ODM, a route choice model must be built to determine link or 
intersection-level volumes. This modeling framework is limited in estimating nonmotorized 
travel because of the relatively high occurrence of recreation trips where there’s no destination. 
What’s more, it’s also not applicable in estimating intersection-level bicycle activity because 
extra data (e.g. stated preference data) need to be collected for route choice model 
construction. 

 Facility-based models. This approach relies on volume counts at discrete locations. It can be 
decomposed into temporal extrapolation and spatial interpolation. (Proulx 2016) Temporal 
extrapolation tries to find out how traffic is distributed across time in order to map short 
duration observed volumes into Annual Average Daily Bicyclists (AADB) whereas spatial 
interpolation tries to figure out how volume counts vary across different locations. For ourtask, 
we are going to focus on spatial interpolation of facility-based model, or “direct demand” 
models. 

Direct demand models are usually based on regression modeling to explain the relationship between 
volume counts and ‘measured characteristics of the adjacent environment’ (Kuzmyak et al. 2014). That 
is, the model explains the spatial variation in bicycle demand in terms of characteristics of surrounding 
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environments like land use, transportation network, sociodemographics, etc. The model lacks in 
behavioral realism compared with choice-based model, but it is generally simple and easy to apply, 
which makes it the most widely used tool for bicycle volume estimation modeling. Typical steps used 
in the direct demand approach are listed below. 

 First, bicycle counts are taken at a sample of locations in a community. These counts are often 
collected manually over short periods of time, but automated detection techniques that collect 
data over weeks, months, or even years can also be used. 

 Second, short-period counts may be expanded to represent annual volume estimates (annual 
volume estimates can be compared with crash data that is reported on a yearly basis). 

 Third, the estimated annual bicycle volumes are used as the dependent variable. A predictive 
model is built to establish the relationships between the bicycle volumes at each study location 
and explanatory variables describing the characteristics of the surrounding environments. 

 Finally, the preferred prediction model can be used to estimate pedestrian volumes in other 
locations throughout thecommunity. 

Table 4-1 summarizes several recent direct demand bicycle volume models. Count data are obtained 
from different sources including manual count, automated count, public database and Strava tracking 
data. Manual counts are usually short counts (hourly or peak period). Models built based on manual 
counts usually make prediction for hourly or peak period demands. Some (Chen & Sun 2017) included 
both spatial and temporal (non-winter/winter, weekend etc.) variables in model so that the model can 
estimate bicycle demands through a full year but it required the count data to cover an entire year. 
Automated counts can have duration of a day or even a year and thus models built on these could 
produce hour-specific demand (Lu et al. 2018) or annual average daily bicyclist (AADB) (Roy et al. 2019). 
Hochmair et al. (2019) used Strava tracking data to build a model and estimated bicycle exposure in bicycle 
kilometer traveled rather than volumes. Most of the models considered land use, transportation system, 
and socioeconomic characteristics as independent variables. Some models that output hourly specific 
estimation also included temporal and weather variable for correction. Model structures include log-
linear, stepwise linear, generalized linear mixed model, negative binomial, and geographically weighted 
regression. For example, Strauss et al. (2013) used hourly, weekly and monthly expansion factor to get 
average seasonal daily volumes (ASDV). 
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Table 4-1. Direct Demand Bicycle Volume Models 

Model 
Location 

Alameda 
County, CA 

Montreal, 
Quebec, 
Canada 

Montreal, 
Quebec, 
Canada 

Source 

UC 
Berkeley 
SafeTREC 
(Griswold 
et al. 2011) 

McGill 
University 
(Jillian 
Strauss & 
Luis F 
Miranda-
Moreno 
2013) 

McGill 
University 
(Jillian 
Strauss et 
al. 2013) 

Locations 
Used for 
Model 
81 

758 

647 

Bicycle Count 
Description 

Bicycle was 
logged 
according to 
the movement 
that was made. 
Only ridden 
bicycles were 
included 
8-h manual 
bicycle counts 
collected by the 
city of 
Montreal; 
Counts were 
then 
normalized to 
get average 
seasonal daily 
bicycle flows 
using expansion 
factors 
estimated from 
permanent 
automatic 
bicycle count 
stations 
8-h manual 
bicycle counts 
collected by the 
city of Montreal 

Type of 
Count Sites 

Intersections 
along 
arterial or 
collector 
roadways 

Signalized 
intersection 

Signalized 
intersections 

Count Period(s) 
Used for Model 

Weekdays 
12am -6 pm; 
weekends 9 am 
– 6 pm 

6 - 9 am, 11 am 
- 1 pm, 3:30 -
6:30 pm 

6 - 9 am, 11 am 
- 1 pm, 3:30 -
6:30 pm 

Land Use 

• Number of 
Commercial 
properties. (0.1 mi) 
• Natural log of 
network dist. to UC 
Berkeley Campus 
Edge 

• Employment 
(400m) 
• Presence of 
school (400m) 
• Land mix (800m) 

• Employment 
(400m) 
• Presence of 
school (400m. 
• Land mix (800m) 
• Area of 
commercial land 
use (50m) 

Transportation 
System 

• Connected node 
ratio (0.5 mi) 
• Presence of bicycle 
markings on any 
approach 

•Number of bus 
stops (150 m) 
• Presence of a 
bicycle lane (15 m) 
• Presence of a cycle 
track (15 m) 
• Presence of parking 
entrance 

• Number of metro 
stations (150 m) 
• Length ofbicycle 
facilities (800m) 

Socioeconomic 
Characteristics 

• Mean 
income (50 m) 

Other 

• Average slope 
(degrees) of 
terrain (0.5 mi) 

• Humidity 
• Presence of 
precipitation 

Model 
Output 

Total bicycle 
demand at 
intersections 
in Alameda 
for 2 hours 

Hourly 
bicycle flow 
adjusted for 
weather 
conditions, 
average 
seasonal 
daily 
volumes 
(ASDV) 

Average 
annual daily 
bicycle flows 

Model Type 

Log linear 

Log-linear; 
negative 
binomial 

Bivariate 
Poisson model 

Calgary, University 34 6-h counts Signalized 7 - 9 am, 11 am •Area of • Number of bus Total bike Multiple linear 
Canada of Calgary 

(Maryam 
Tabeshian 
& Lina 
Kattan 
2014) 

provided by the 
City of Calgary 

and 
unsignalized 
intersections 
located on 
major 
arterials 

- 13 pm, 16 - 18 
pm 

institutional space 
(0.5 mi) 
• Area of low-
density residential 
space (0.1mi) 
• Area of 
commercial space 
(0.1 mi) 

stop (0.25 mi) 
• Total number of 
street lanes reaching 
the intersection in all 
directions. 

flow during 
the p.m. 
peak 

and Poisson 
regression 
model 
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Model 
Location 

Seattle, WA 

Minneapoli 
s, MN 

Seattle, WA 

Source 

University 
of Utah & 
University 
of Texas at 
Austin 
(Daniel J 
Fagnant 
2016) 
Virginia 
Polytechnic 
Institute 
and State 
University 
Steve 
Hankey & 
Greg 
Lindsey 
2016) 

Harbin 
Institute of 
Technology 
& 
University 
of 
Washingto 
n (Chen & 
Sun 2017) 

Locations 
Used for 
Model 
251 

471 

50 

Bicycle Count 
Description 

Cyclist count 
data obtained 
from the Puget 
Sound Reginal 
Council 

Count data set 
is part of an 
ongoing effort 
by the 
Minneapolis 
Department of 
Public Works 

Count data 
collected by 
SDOT according 
to the National 
Bicycle and 
Pedestrian 
Documentation 
methodology 

Type of 
Count Sites 

Signalized 
and 
unsignalized 
intersections 

Signalized 
and 
unsignalized 
intersections 

Signalized 
and 
unsignalized 
intersections 

Count Period(s) 
Used for Model 

6 – 9 am, 3 – 6 
pm, Tu & Th 

4 – 6 pm 

Jan, May, July, 
and Sept. 10 -
12 am, 4 – 6 
pm, 5 – 7 pm 
on weekdays; 
12 – 2 pm on 
Sat. 

Land Use 

• Population 
density 
• Employment 
density 
• recreational area 
access 
• residential 

• Employment 
density 
• Population 
density (1250 m) 
• House density 
(200 m) 
• Retail area (100 
m) 
• Industrial area 
(3000 m) 
• open space area 
(3000 m) 
• Percentage of 
steep areas (1 mi) 
• Percentage of 
water bodies (1, 
0.5, 0.25 mi) 
• Percentage of 
offices (0.25 mi) 

Transportation 
System 

• Number of lanes 
• curb-lane width 
• bike-lane width 
• separated path 
sharrows 
• speed limit 
• bicycle-trail access 
• AADT 
• Principal arterials 
(750 m) 
• Local roads (750 m) 
• Off-street trail 
(200, 2000 m) 
• On-street facility 
(100 m) 
• Intersection 
density (100 m) 
• Number of transit 
stops (1250 m) 

•Presence of bike 
lane (1, 0.25 mi) 

Socioeconomic 
Characteristics 

• Household 
income (2500 
m) 

• Percentage 
of white (1, 0.5, 
0.25 mi) 
• median age 
(0.5, 0.25 mi) 

Other 

• mean 
temperature 
• morning 
period 

• Precipitation 
• Temperature 

• Non-
winter/winter 
• Peak hour 
• Weekend 

Model 
Output 

Peak period 
bicyclist 
count 

Peak period 
bicycle 
volumes 

Total bicycle 
flows at 
intersections 
through a 
full year 

Model Type 

Negative 
binomial 
model 

Stepwise 
linear varying 
the spatial 
scale of 
independent 
(land use & 
transportation 
) variables 

Generalized 
linear mixed 
model 
(GLMM). 
Variables are 
tested for (1, 
0.5, 0.25 mi 
buffer 
separately. 

Chittenden Southwest 346 Multiple Signalized 4 -6 pm peak • Number of • Number of car Total active Geographicall 
County, Jiaotong comprehensive and period buildings (1000 ft) lanes (1000 ft) mode trip y weighted 
Vermont University 

(Yang et al. 
2017) 

sets of field 
data collected 
in Chittenden 
County. An 
assembly of 
walking and 
biking traffic 
counts 

unsignalized 
intersections 

• Percentage of 
educational 
buildings (1000 ft) 
• Distance to 
downtown 

• Number of transit 
stops (1000 ft) 

volume 
during pm 
peak hour on 
Tu, Wed, Th 
during 
summer 

regression 
model 
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Model 
Location 

20 MSAs 
across U.S. 

Blacksburg, 
VA 

Source 

Virginia 
Tech (Le et 
al. 2018) 

Virginia 
Tech (Lu et 
al. 2018) 

Locations 
Used for 
Model 
4593 

101 

Bicycle Count 
Description 

Data from 
various publicly 
available 
sources. 
Intersection 
counts with 
turning 
movements are 
separated into 
segment counts 
for each leg of 
the intersection 
Use automated 
count devices 
to collect 
counts of 
bicycle and 
then calculate 
annual average 
hourly traffic 
(AAHT) 

Type of 
Count Sites 

Street 
segment or 
intersection 

Count 
locations 
along road, 
off-street 
trials and 
bike lanes 

Count Period(s) 
Used for Model 

7 – 9 am and 16 
– 18 or 17- 19 
pm 

24 hours 

Land Use 

• Area of water and 
green space (200, 
300, 400, 500 m) 
• Number of jobs 
(200, 300 m) 
• Proximity to 
university or college 
campus 

Hour-specific: 
• Population 
density (100, 1250 
m) 
• Number of 
Residential/non-
residential 
addresses (500 m) 
• Industrial area 
(100 m) 

Spatiotemporal: 
• Population 
density (1250 m) 

Transportation 
System 

• Off-street facilities 
(bike trails, shared-
use paths) 
• Multimodal 
network density 
(100, 500, 3000 m) 
• Intersection 
density (400, 2500 
m) 

Hour-specific 
• Length of local 
roads (100 m) 
• Number of 
intersections 
(100 m) 
• Number of bus 
stop (100, 250, 1000 
m) 
• Length of sidewalks 
(750m) 
• Centrality (point) 
• Length of on-street 
facility (100, 250, 
500, 750, 1000 m) 
Spatiotemporal 
• Length of on-street 
facility (250 m) 
• Centrality 

Socioeconomic 
Characteristics 

Hour-specific: 
• Income (100, 
250, 750, 1750 
m) 

Other 

Spatiotemporal 
• Time of day 

Model 
Output 

Morning and 
afternoon 
peak-period 
bicycle 
traffic 
volumes 

Bicycle 
demand for 
each hour of 
the day 
(hour-
specific 
model); 
Demands in 
a 4-hour 
time interval 
(spatiotemp 
oral) 

Model Type 

Stepwise 
linear 

Stepwise 
linear 

Miami- University Strava tracking Road • Presence of • Length of local • Population Bike Linear 
Dade of Florida data segment bicycle park road • Household Kilometer 
County (Hochmair level activity • Presence of bay • Length of local income Traveled in a 
area, FL et al. 2019) count bridge 

• Distance to 
bay/ocean 

(Within a block 
group) 

road with bike lane 
• Length of collector 
road with paved 
shoulder 
• Length of bike trail 

(Within a block 
group) 

• African 
American 
• male 

(Within a block 
group) 

census block 
group 
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Model Source Locations Bicycle Count Type of Count Period(s) Land Use Transportation Socioeconomic Other Model Model Type 
Location Used for Description Count Sites Used for Model System Characteristics Output 

Model 
Maricopa 
County, AZ 

Arizona 
State 
University 

44 Automated 
bicycle counts 
(annual average 

Signalized & 
non-
signalized 

Eight 
continuous 2-
week periods in 

• Distance to 
residential areas 
• Distance to green 

• Average segment 
speed limit on street 
segment 

• Percentage of 
white 
population 

• Average 
number of 
Strava riders 

Average 
annual daily 
bicyclist 

Linear 

(Roy et al. daily bicyclist intersections April, Map, Oct, spaces • Median (AADB) 
2019) AADB) and Nov. household 

completed by income 
Association of 
Governments 
(MAG) 

(Within census 
block group) 
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To conduct safety analysis of cycling, we need bicycle volume data, usually annual bicycle volumeas 
an exposure measure. However, from the previous section weknow that direct demand models usually 
give predictions about short term counts (e.g. hourly count). To get the total exposure across a year, 
short term counts must be converted to long term counts, which is usually done by using count 
expansion methods. Expansion factors are developed using long-term count data in the following 
approach: 

 Aggregate hourly counts to get daily total volumes and compute overall daily average 
 Calculate average daily volume for each day of the week and for each month of the year. Then 

obtain daily expansion factor by dividing each daily average by overall daily average and 
monthly expansion factor by dividing each monthly average by overall daily average. 

 Calculate average hourly totals for each hour of the day. Then divide each hourly average by the 
overall average to get hourly expansion factors. 

In addition to temporal factors, weather can also have a significant effect on bicycle volumes. Nosal et 
al. (2014) summarized four methods to estimate average annual daily bicycle volumes. The first two 
methods only account for temporal variation while the third and fourth methods try to also take 
weather variation into account. And it turns out that the weather and disaggregate models, which are 
capable of capturing weather variation, outperformed traditional methods. 

 Traditional Method. This method accounts for daily and seasonal variation. It converts 
observed short-term daily bicyclists at short-term site i on day j in year y, which falls on day of 
week d in month m into AADBT, using day-of-the week factor for day of week d and month 
factor for month m 

 Day-by-Month Method.Thismethodaccountfordaily andseasonalvariationwithin onefactor. 
It computed AADBT from short-term daily bicyclists at short-term site i on day j in year y, which 
falls on day of week d in month m directly using day-by-month factor for day of week d in month 
m. 

 Weather Model. The model tries to capture the effect of weather on bicycle volumes by using 
the expected cyclist count deviation. The short-term count is first adjusted on the basis of the 
predicted deviation from the 21-day moving average due to weather and then the adjusted 
count is converted into AADBT using moving average factor which reflects how 21-day average 
varies from the AADBT value. 

 Disaggregate Factor Method. This method is simpleand straightforward. An expansion factor is 
created for each day of the year. Both weather and temporal variation could be considered as 
long as the weather is the same at long-term and short-term sites. 

Since temporal pattern of traffic volumes could also vary in space, the Traffic Monitoring Guide (TMG) 
recommends to classify patterns into “factoring groups”. There are two approaches to group long-term 
count patterns, one is called land use classification, which is based on surrounding land use pattern. 
The other one is empirical clustering approach, which uses statistics to group sites with similar activity 
pattern. For example, Miranda-Moreno et al. (2013) classified sites into four categories: utilitarian, 
mixed utilitarian, mixed recreational and recreational sites, based on hour-of-day pattern on weekday 
and weekend, and day-of week pattern. 
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Empirical clustering approach could yield more accurate estimates but it’s not easy to map unobserved 
sites into factor groups. Proulx (2016) proposed a decomposition method for link characterization. 
Latent Dirichlet Allocation was used to get weights for each identified latent bicycle trip types on 
observed links and recognize the temporal patterns for each trip type. Then a fully spatio-directionally 
autoregressive fractional logit model is used to infer the proportion of each trip type on an unobserved 
link, based on which the overall temporal profile of trips on a given link is reconstructed. To bridge the 
gap between land use and empirical clustering approach, Medury et al. (2019) fitted a multinomial logit 
model to identify the relationship between empirical clusters and land use patterns. The model is then 
applied to match a location to certain factor group using land use data. 

In addition to the expansion factor approach, which needs long-term count data to calculate, a 
Seasonal Adjustment Regression Model (SARM) was developed by Roll & Proulx (2018) using only short 
duration counts from multiple years of data. Daily conditions like maximum daily temperature, total 
daily precipitation, minutes of daylight were used to predict annual bicycle traffic volumes. This 
approach does not require permanent counters but relies on a large set of short duration counts at each 
location where volumes aredesired. 

Potential Explanatory Variables 
Using the direct demand modeling approach, bicycle volumes are assumed to be a function of the 
characteristics at and around specific locations on the California State Highway System. These 
characteristics will be represented by a set of explanatory variables. Previous research suggests 
explanatory variables representing land use, transportation system, socioeconomic, and several other 
characteristics are associated with bicycle volumes. While there are many possible bicycle model 
inputs, some explanatory variables will be easier than others to gather statewide. For example, 
population density is provided by the U.S. Census Bureau’s American Community Survey at the block 
level for the entire country, so this information would be relatively easy to obtain for any location along 
the State Highway System. In contrast, there are no statewide databases of commercial property 
locations (this information has been gathered in previous studies through special requests to county 
tax assessors). Lists of potential explanatory variables and the assumed ease of collecting these 
variables are provided in Table 4-2, Table 4-3, and Table 4-4. Ease of collecting eachvariable is classified 
into the followingcategories: 

 Easy. Data are available statewide from an existing data source. The variable can be created 
through basic GISanalysis. 

 Moderate. Data are available for most or all of the state from existing data sources, but the data 
may be in different formats in different jurisdictions. The variable may require more 
sophisticated GIS analysis tocreate. 

 Difficult. Data are not available from existing data sources. Field data collection or manual data 
collection from aerial or street-level imagery may be needed to create the variable. 
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Table 4-2. Potential Bicycle Volume Model Inputs and Ease of Data Collection: Land Use Variables 

Variable Study (buffer area used) Ease of Collection 
Population density within a 
given distance 

Minneapolis, MN (Hankey & Lindsey 
2016) (1250 m); Blacksburg, VA (Lu et al. 
2018) (100, 1250 m); Seattle, WA 
(Fagnant & Kockelman 2016) 

Easy (American Community 
Survey block data) 

Employment density within 
a given distance 

Montreal, QC (Strauss et al. 2013; 
Strauss & Miranda-Moreno 2013) (400 
m); Seattle, WA (Fagnant & Kockelman 
2016); Minneapolis, MN (Hankey & 
Lindsey 2016); 

Easy (Longitudinal 
Employer-Household 
Dynamics Origin-
Destination Employment 
Statistics block data) 

Number of jobs within a 
given distance 

20 MSAs across U.S. (Le et al. 2018) 
(200, 300 m) 

Easy (Longitudinal 
Employer-Household 
Dynamics Origin-
Destination Employment 
Statistics block data) 

Network distance to 
campus edge 

Alameda County, CA (Griswold et al. 
2011) 

Easy (California 
Department of Education 
GIS data) 

Presence of school within a 
given distance 

Montreal, QC (Strauss et al. 2013; 
Strauss & Miranda-Moreno 2013) (400 
m); 

Easy (California 
Department of Education 
GIS data) 

Percentage of educational 
buildings within a given 
distance 

Chittenden, Vermont (Yang et al. 2017) 
(1000 ft); 

Easy (California 
Department of Education 
GIS data) 

Area of commercial land 
use 

Montreal, QC (Strauss et al. 2013) (50 
m); 
Calgary, Canada (Tabeshian & Kattan 
2014) (0.1 mi); 

Moderate (County tax 
assessor parcel data; 
jurisdiction-specific) 

Number of commercial 
properties within a given 
distance 

Alameda County, CA (Griswold et al. 
2011) (0.1 mi) 

Moderate (County tax 
assessor parcel data; 
jurisdiction-specific) 

Area of institutional space 
within a given distance 

Calgary, Canada (Tabeshian & Kattan 
2014) (0.5 mi); 

Moderate (County tax 
assessor parcel data; 
jurisdiction-specific) 

Area of low-density 
residential space within a 
given distance 

Calgary, Canada (Tabeshian & Kattan 
2014) (0.1 mi); 

Moderate (County tax 
assessor parcel data; need 
to look to each jurisdiction) 

Number of residential 
addresses within a given 
distance 

Blacksburg, VA (Lu et al. 2018) (500 m); Moderate (County tax 
assessor parcel data; 
jurisdiction-specific) 

House density within a 
given distance 

Minneapolis, MN (Hankey & Lindsey 
2016) (200 m); 

Moderate (County tax 
assessor parcel data; 
jurisdiction-specific) 
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Variable Study (buffer area used) Ease of Collection 
Distance to residential 
areas 

Maricopa, AZ (Roy et al. 2019); Moderate (County tax 
assessor parcel data; 
jurisdiction-specific) 

Land mix within a given 
distance 

Montreal, QC (Strauss et al. 2013; 
Strauss & Miranda-Moreno 2013) (800 
m); 

Difficult (County tax 
assessor parcel data; 
jurisdiction-specific and 
also requires complex 
calculation) 

Area of retail land use 
within a given distance 

Minneapolis, MN (Hankey & Lindsey 
2016) (100 m) 

Moderate (County tax 
assessor parcel data; need 
to look to each jurisdiction) 

Area of industrial land use 
within a given distance 

Minneapolis, MN (Hankey & Lindsey 
2016) (3000 m); Blacksburg, VA (Lu et al. 
2018) (100 m); 

Moderate (County tax 
assessor parcel data; 
jurisdiction-specific) 

Area of open space within a 
given distance 

Minneapolis, MN (Hankey & Lindsey 
2016) (3000 m) 

Moderate (County tax 
assessor parcel data; 
jurisdiction-specific and 
also need to define “open 
space”) 

Percentage of water bodies 
within a given distance 

Seattle, WA (Chen et al. 2017) (0.25, 0.5, 
1 mi); 

Easy (US Census Bureau GIS 
data) 

Area of water and green 
space within agiven 
distance 

20 MSAs across U.S. (Le et al. 2018) 
(200, 300, 400, 500 m) 

Easy (US Census Bureau GIS 
data) 

Distance to green spaces Maricopa, AZ (Roy et al. 2019) Easy (US Census Bureau GIS 
data) 

Distance to bay/ocean Miami-Dade, FL (Hochmair et al. 2019) Easy (US Census Bureau GIS 
data) 

Percentage of steep areas 
within a given distance 

Seattle, WA (Chen et al. 2017) (1 mi) Easy (US Geological Survey 
National Elevation Dataset) 

Percentage of offices within 
a given distance 

Seattle, WA (Chen et al. 2017) (0.25 mi) Moderate (County tax 
assessor parcel data; 
jurisdiction-specific) 

Number of buildings within 
a given distance 

Chittenden, Vermont (Yang et al. 2017) 
(1000 ft) 

Distance to downtown Chittenden, Vermont (Yang et al. 2017) Moderate (US Census 
Bureau GIS data; need to 
define CBD location(s) 
within each region) 

Presence of bicycle park 
within a block group 

Miami-Dade, FL (Hochmair et al. 2019) 

Presence of bay bridge Miami-Dade, FL (Hochmair et al. 2019) 

Recreational area access Seattle, WA(Fagnant& Kockelman 
2016); 
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Table 4-3. Potential Bicycle Volume Model Inputs and Ease of Data Collection: Transportation System 
Variables 

Variable Study (buffer area used) Ease of Collection 
Connected node ratio 
within a given distance 

Alameda County (Griswold et al. 2011) 
(0.5 mi) 

Presence of bicycle 
markings 

Alameda County (Griswold et al. 2011) Difficult (Pedestrian and 
bicycle facility inventories 
do not exist statewide) 

Presence of bicycle lane 
within a given distance 

Montreal, QC (Strauss & Miranda-
Moreno 2013) (15 m); Seattle, WA (1) 
(0.25, 1 mi) 

Difficult (Pedestrian and 
bicycle facility inventories 
do not exist statewide) 

Presence of cycle track 
within a given distance 

Montreal, QC (Strauss & Miranda-
Moreno 2013) (15 m) 

Difficult (Pedestrian and 
bicycle facility inventories 
do not exist statewide) 

Length of bicycle facilities 
within a given distance 

Montreal, QC (Strauss & Miranda-
Moreno 2013) (800 m) 

Difficult (Pedestrian and 
bicycle facility inventories 
do not exist statewide) 

Number of bus stops within 
a given distance 

Montreal, QC (Strauss & Miranda-
Moreno 2013) (150 m); Calgary, Canada 
(Tabeshian & Kattan 2014) (0.25 mi); 
Blacksburg, VA (8) (100, 250, 1000 m); 

Moderate (Metropolitan 
Planning Organization or 
Regional Transit Authority; 
jurisdiction-specific) 

Number of metro stations 
within a given distance 

Montreal, QC (Strauss et al. 2013) (150 
m) 

Number of transit stops 
within a given distance 

Minneapolis, MN (Hankey & Lindsey 
2016) (1250 m); Chittenden, Vermont 
(Yang et al. 2017) (1000 ft) 

Moderate (Metropolitan 
Planning Organization or 
Regional Transit Authority; 
jurisdiction-specific) 

Number of street lanes 
reaching the intersection in 
all directions 

Calgary, Canada (Tabeshian & Kattan 
2014) 
Chittenden, Vermont (Yang et al. 2017) 
(1000 ft) 

Moderate (Caltrans TASAS 
data; needs to be 
connected from segments 
to intersections and may 
not be available for all 
roads) 

Length of principal arterials Minneapolis, MN (Hankey & Lindsey Moderate (US Census GIS 
within a given distance 2016) (750 m) data or Caltrans TASAS 

data; need reliable 
classification of arterial 
roadways) 
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Variable Study (buffer area used) Ease of Collection 
Length of local roads within 
a given distance 

Blacksburg, VA (Lu et al. 2018) (100 m); 
Minneapolis, MN (Hankey & Lindsey 
2016) (750 m) 

Moderate (US Census GIS 
data or Caltrans TASAS 
data; need reliable 
classification of arterial 
roadways) 

Length of sidewalks within 
a given distance 

Blacksburg, VA (Lu et al. 2018) (750 m); 
Miami-Dade, FL (Hochmair et al. 2019) 
(within block group) 

Difficult (Pedestrian and 
bicycle facility inventories 
do not exist statewide) 

Length of local roads with 
bike lane within a given 
distance 

Miami-Dade,FL (Hochmair etal. 2019) 
(within block group) 

Difficult (Pedestrian and 
bicycle facility inventories 
do not exist statewide) 

Length of collector road 
with paved shoulder within 
a block group 

Miami-Dade,FL (Hochmair etal. 2019) 
(within block group) 

Moderate (US Census GIS 
data or Caltrans TASAS 
data; need reliable 
classification of arterial 
roadways) 

Length of on-street facility 
within a given distance 

Minneapolis, MN (Hankey & Lindsey 
2016) (100 m); Blacksburg, VA (8) (100, 
250, 500, 750, 1000 m) 

Length of off-street trail 
within a given distance 

Minneapolis, MN (Hankey & Lindsey 
2016) (200, 2000 m); 20 MSAs across 
U.S. (Le et al. 2018); Miami-Dade, FL 
(Hochmair et al. 2019) (within block 
group) 

Difficult (Pedestrian and 
bicycle facility inventories 
do not exist statewide) 

Bike-lane width Seattle, WA(Fagnant& Kockelman 
2016) 

Difficult (Pedestrian and 
bicycle facility inventories 
do not exist statewide) 

Curb-lane width Seattle, WA(Fagnant& Kockelman 
2016) 

Presence of separated path 
sharrows 

Seattle, WA(Fagnant& Kockelman 
2016) 

Speed limit Seattle, WA (Fagnant & Kockelman 
2016); Maricopa, AZ (Roy et al. 2019) 

Moderate (Caltrans TASAS 
data; needs to be 
connected from segments 
to intersections and may 
not be available for all 
roads) 

Bicycle-trail access Seattle, WA(Fagnant& Kockelman 
2016) 

Difficult (Pedestrian and 
bicycle facility inventories 
do not exist statewide) 

Multimodal network 
density within a given 
distance 

20 MSAs across U.S. (Le et al. 2018) 
(100, 500, 3000 m) 

Intersection density within 
a given distance 

20 MSAs across U.S. (Le et al. 2018) 
(400, 2500 m) 

Easy (US Census GIS data or 
Caltrans GIS data) 
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Variable Study (buffer area used) Ease of Collection 
Number of intersections 
within a given distance 

Blacksburg, VA (Lu et al. 2018) (100 m) Easy (US Census GIS data or 
Caltrans GIS data) 

Centrality Blacksburg, VA (Lu et al. 2018) (100 m); 
Presence of parking 
entrance 

Montreal, QC (Strauss & Miranda-
Moreno 2013) 

Link-level recreational 
volume 

Miami-Dade County area, FL (Hochmair 
et al. 2019); Maricopa County, AZ (Roy 
et al. 2019) 

Easy (Strava Metro) 

Table 4-4. Potential Bicycle Volume Model Inputs and Ease of Data Collection: Socioeconomic and 
Other Variables 

Variable Study (buffer area used) Ease of Collection 
Household income within a 
given distance 

Montreal, QC (Strauss & Miranda-
Moreno 2013) (50 m); Minneapolis, MN 
(Hankey & Lindsey 2016) (2500 m); 
Blacksburg, VA (Lu et al. 2018) (100, 250, 
750, 1750 m); Miami-Dade, FL 
(Hochmair et al. 2019) (block group); 
Maricopa, AZ (Roy et al. 2019) (block 
group) 

Easy (American Community 
Survey block data) 

Percent of white within a 
given distance 

Seattle, WA (Chen et al. 2017) (0.25, 0.5, 
1 mi); Maricopa, AZ (Roy et al. 2019) 
(block group) 

Easy (American Community 
Survey block data) 

Median age within a given 
distance 

Seattle, WA (Chen et al. 2017) (0.25, 0.5 
mi) 

Easy (American Community 
Survey block data) 

Average slope within a 
given distance 

Alameda County, CA (Griswold et al. 
2011) (0.5 mi.) 

Easy (US GeologicalSurvey 
NationalElevation Dataset) 

Humidity Montreal, QC (Strauss & Miranda-
Moreno 2013) 

Easy (National Oceanic and 
Atmospheric 
Administration weather 
data) 

Presence of precipitation Montreal, QC (Strauss & Miranda-
Moreno 2013); Minneapolis, MN 
(Hankey & Lindsey 2016) 

Easy (National Oceanic and 
Atmospheric 
Administration weather 
data) 

Temperature Seattle, WA (Fagnant & Kockelman 
2016); Minneapolis, MN (Hankey & 
Lindsey 2016) 

Easy (National Oceanic and 
Atmospheric 
Administration weather 
data) 

Morning period Seattle, WA (Fagnant & Kockelman 
2016) 

Non-winter/winter Seattle, WA (Chen et al. 2017) 
Peak hour Seattle, WA (Chen et al. 2017) 
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Variable 
Weekend 

Study (buffer area used) 
Seattle, WA (Chen et al. 2017) 

Ease of Collection 

Time of day Blacksburg, VA (Lu et al. 2018) 

Proposed Modeling Approach 
Overall, our understanding is that this project will develop a link-level bicycle volume model based on 
count data. The focus is on estimating volumes for the state highway system, but count data from local 
roads will also likely be incorporated in the model estimation, given limited count data availability from 
state highway locations. 

Some of the key challenges we see in developing a model of this scale include: 

 The applicability of various datasets will depend heavily on roadway context (urban/suburban/ 
rural). 

 Both travel along the highways and travel across highways (especially freeways) should ideally 
be accounted for. 

 Utilitarian trips may be more related to surrounding land uses/destinations, whereas 
recreational trips probably are more complicated and could be a combination of local 
destinations, attractiveness of route, and proximity to population centers. These recreational 
trips are expected to make up a greater share of trips on rural highways, but there is limited 
documentation of the patterns in these areas. 

Overall model form: Poisson Mixture Model 
One approach to consider is to formulate the model as a Poisson Mixture Model, where volume on link 
l is: 

𝑣𝑙~𝜋𝑟𝑒𝑐𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑟𝑒𝑐) + (1 − 𝜋𝑟𝑒𝑐)𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑢𝑡𝑖𝑙) 
𝑙 𝑙 

Where 

𝑣𝑙 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑛 𝑙𝑖𝑛𝑘 l 
𝜋𝑟𝑒𝑐 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑖𝑛𝑔 𝑑𝑟𝑎𝑤𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 recreational 𝑔𝑟𝑜𝑢𝑝 

𝜆𝑟𝑒𝑐 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑟𝑎𝑡𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑙𝑖𝑛𝑘 l 𝑓𝑜𝑟 𝑟𝑒𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑟𝑖𝑝𝑠 𝑙 

𝜆𝑢𝑡𝑖𝑙 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑟𝑎𝑡𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑙𝑖𝑛𝑘 l 𝑓𝑜𝑟 𝑢𝑡𝑖𝑙𝑖𝑡𝑎𝑟𝑖𝑎𝑛 𝑡𝑟𝑖𝑝𝑠 𝑙 

Mixture models like this are suited to situations where an observation is hypothesized to be drawn from 
one of multiple subpopulations, but each observation’s membership in those subpopulations is not 
observed. This formulation could be useful because it allows us to separately formulate different 
relationships for these two types of trips—i.e., to have a utilitarian component and a recreational 
component within the same model. Karlis (2005) provides a method for estimating Poisson mixture 
models: https://www.casact.org/library/astin/vol35no1/3.pdf. 

Recreational Trip Component 
For recreational trips, we could consider a model of the form: 

𝑣𝑟𝑒𝑐~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑟𝑒𝑐) 
𝑙 𝑙 

log(𝜆𝑟𝑒𝑐) =fn(distance to nearest population center, density of population, other factors) 𝑙 
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Essentially, the rate parameter for these trips would be modeled as a function of proximity to 
population centers. This could be augmented with the bicycle commute mode share of the region and 
possibly other factors that might indicate the propensity for biking in the region and the 
suitability/popularity of a given route. Alternatively, if recreation-focused crowdsourced data were 
available (e.g., Strava Metro), these trips could be modeled with that data. 

Utilitarian Trip Component 
For utilitarian trips, there are multiple approaches that could be taken. One idea relies on working with 
O-D data, such as from the CA statewide travel demand model. In this formulation, the goal would be 
to relate the potential trips associated with each O-D pair to the links they might use. 

The goal of formulating the utilitarian model in this way is to subvert some of the following issues with 
previous work in thisarea: 

 Bicycle route choice models are difficult to estimate, subject to data limitations, and can be 
overly deterministic in predicting the route that a given cyclist will take, ignoring heterogeneity 
in preferences betweencyclists. 

 Some direct-demand models have related bicycle traffic volumes to land uses immediately 
surroundingtheobservationlocation. However, travelhappensalongthecorridorbetween the 
origin and destination, not simply in the immediate surroundings of the origin and destination. 

Pilot Model Development 
Figure 4-1 describes the workflow for direct demand modeling, including development of dependent 
and independent variables, model estimation, and model application. 

Figure 4-1. Direct demand modeling process 
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Dependent Variable 
The dependent variable for the bicycle exposure model will be the annual bidirectional link- or 
segment-level flow. Because agencies cannot afford to conduct long-term counts, either manually or 
using automated counting technology, we began the process to create annual count estimates by 
expanding short-term crossing counts using expansion factors. 

This approach required that we compile large amounts of short-term count data, as the dependent 
variable for the model, and long-term count data to create the expansion factors. The count data 
processing involved two main tasks. First, we used the long-term count data to develop expansion 
factors, and second, we applied the expansion factors to the short-term counts to create the annual 
volume estimates. 

Count Data Compilation 
Each Caltrans district has a budget for collecting video-based count data through Miovision, and these 
data, collected at several hundred locations, formed the basis of the short-term bicycle count data. 
Among the 428 studies with bicycle count data, durations ranged from 1 hour to 96 hours. Count 
durations longer than 12 hours were generally multiple daytime counts, such as 7AM to 7PM on 
consecutive days. 

To acquire more data, Caltrans Local Assistance emailed a count data request to a list of previous 
applicants for Active Transportation Program (ATP) grant funding as they had done for a previous 
pedestrian study. A number of agencies shared their pedestrian and bicycle count data sets. Table 4-5 
describes the short-term bicycle count studies that we received in these outreach efforts. Most counts 
from local agencies were conducted during morning and afternoon 2-hour peaks and some also 
included midday peak. 

Table 4-5. Count studies by Caltrans district and location type 

District Intersection Segment 
1 25 6 
2 14 0 
3 193 4 
4 272 0 
5 258 97 
6 517 0 
7 1294 2 
8 1 0 
9 103 0 

10 1 0 
11 80 0 
12 80 250 

Because we intend to model bicycle segment flow, we translated the intersection turn movement 
counts to approach counts. Figure 4-2 shows an example of the turning movements that we sum to 
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estimate the volumes on the north approach. We applied a corresponding method for the rest of the 
approaches. To match the correct segment approach to each intersection point in GIS, we wrote a 
Python script that calculated the bearing of each segment and associated it with the nearest direction 
according to the thresholds in Figure 4-3. 

Figure 4-2. Intersection turning movements with north approach counts in blue 

Figure 4-3. Bearings matched with each direction for assignment of direction to segment approaches 

The next step in the dependent variable development will be to expand the short-term segment counts 
to annual counts using expansion factor groups. Given the limited research available on the connection 
between activity patterns and land use, we will likely use simple factor groups based on urban and rural 
locations. The urban factor group will demonstrate utilitarian activity patterns and the rural group will 
demonstrate recreational ride patterns. 
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Independent Variables 
The complete list of independent, or explanatory, variables is shown in Table 4-6. For variables that 
pertain to an area around a segment, such as population, the value was calculated at three different 
buffer distances–half-mile, quarter-mile, and tenth-mile. The scale of these variables is described as 
“buffer” in the scale column of Table 4-6. We used density instead of total for some of the buffer 
variables for consistency due to the variable length of street segments, and thus, the variable areas of 
the segment buffers. Other variables are related to the specific attributes of the segment location and 
are described as “segment” in Table 4-6. Explanation for how we calculated each variable is described 
below. 

Table 4-6. Explanatory (independent) Variables 

Description Scale Data Source Status 
Demographics 
Population density Buffer U.S. Census ACS Complete 
Household density Buffer U.S. Census ACS Complete 
Population that is white alone density Buffer U.S. Census ACS Complete 
Density of bicycle commuters Buffer U.S. Census ACS Complete 
Density of households with no vehicle Buffer U.S. Census ACS Complete 
Density of college degree holders Buffer U.S. Census ACS Complete 
Percent of population that is white alone Buffer U.S. Census ACS Complete 
Bicycle commute mode share Buffer U.S. Census ACS Complete 
Percent of households with no vehicle Buffer U.S. Census ACS Complete 
Percent of population with a college 
degree 

Buffer U.S. Census ACS Complete 

Infrastructure 
Bicycle facility Segment ATAIP and manual Partially 

complete 
Functional classification Segment CRS Complete 
Speed limit Segment CRS Complete 
Adjacent intersection has a signal Segment Open Street Map Planned 
Network Connectivity 
Number of meters of streets per area Buffer U.S. Census TIGER Planned 
Street segments density Buffer U.S. Census TIGER Planned 
Employment/Land Use 
Employment square footage of foot traffic 
land uses 

Buffer ESRI Business Analyst Planned 

Number of employees Buffer ESRI Business Analyst Complete 
Other 
Strava segment volumes Segment Strava Metro planned 
Distance to University Segment ESRI Business Analyst Complete 
Slope Segment Mapquest API Complete 
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Population and demographics 
Weused U.S.Census AmericanCommunitySurvey datatodevelop the demographicvariables. The five-
year dataset, collected from 2012 to 2016, provides sample-based estimates at the block group level; 
block groups are smaller than tracts but larger than blocks. The spatial resolution worked well for our 
tenth, quarter-mile, and half-mile buffer distances. 

We collected demographic data on race, education, households, and commute mode. For each 
attribute, we calculated both the density and the percent of the block group population. 

Our analysis required us to take the Census data and analyze it spatially, near the count locations. We 
used the Census GIS shapefile and joined the columns in Table 4-7 to it. 

Table 4-7. Census variables used in analysis 
Variable Census Description 

B02001e1 Race: Total: Total population -- (Estimate) 
B02001e2 Race: White alone: Total population -- (Estimate) 
B08301e1 Means of Transportation to Work: Total: Workers 16 years and over -- (Estimate) 
B08301e19 Means of Transportation to Work: Walked: Workers 16 years and over -- (Estimate) 
B08301e10 MeansofTransportationtoWork:Public transportation(excludingtaxicab): Workers 

16 years and over -- (Estimate) (includes bus, streetcar, subway, railroad, and 
ferryboat) 

B11001e1 Household Type (Including living alone): Total: Households -- (Estimate) 
B15003e1 Educational Attainment for the Population 25 Years and Over: Total: Population --

(Estimate) 
B15003e22 Educational Attainment for the Population 25 Years and Over: Bachelor’s degree --

(Estimate) 
B25044e1 Tenure by Vehicles Available: Total: Occupied housing units -- (Estimate) 
B25044e3 Tenure by Vehicles Available: Owner occupied: No vehicle available: Occupied 

housing units -- (Estimate) 
B25044e10 Tenure by Vehicles Available: Renter occupied: No vehicle available: Occupied 

housing units -- (Estimate) 

We wrote a Python script using the ArcPy library and an R script using the tidycensus package to process 
the variables. For each buffer distance, the Pythonscript clipped the block groups by the appropriate 
buffer, calculated the area of the clipped block groups, and then divided that area by the total area of 
the original block groups to determine the percentage of block groups that fall within the buffer. The 
calculations for the different types of variables in R were as follows: 

 For the density variables, like population density, the percentage was used to scale down the 
total block group population to an area-based estimate of the population that falls within the 
clipped block group. Summing the population estimates of the block groups by buffer and 
dividing by the area of buffer, produced estimates of the population density falling within 
each buffer. 
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 For the percentage variables, like percent of population that is white alone, we followed the 
steps described above for both the numerator variable, white-alone population, and the 
denominator variable, total population. The final variable was the ratio of the two. 

Table 4-8 below lists the input variables used to make the calculations for each demographic variable. 

Table 4-8. Input variables used for calculation for each Census variable 

Variable Name Numerator Variable Denominator Variable 
Population B02001e1 Buffer area 
Number of households B11001e1 Buffer area 
Population that is white alone B02001e2 Buffer area 
Number of walk commuters B080301e19 Buffer area 
Number of transit commuters B08301e10 Buffer area 
Number of households with no vehicle B25044e3 + B25044e10 Buffer area 
Number of college degree holders B15003e22 Buffer area 
Percent of population that is white alone B02001e2 B02001e1 
Walk commute mode share B08301e19 B08301e1 
Transit commute mode share B08301e10 B08301e1 
Percent of households with no vehicle B25044e3 + B25044e10 B25044e1 
Percent of population with a college degree B15003e22 B15003e1 

Employment 
We selected two employment metrics: employment density and square footage density of traffic-
generating commercial uses. The first metric attempts to capture the contribution to pedestrian 
exposure from people working near the relevant intersections. The second measure will capture the 
scale of businesses that generate walking trips by attracting customers. The data source for both 
metrics is ESRI Business Analyst software. ESRI sourced the data from Infogroup. The dataset mapped 
every business in the United States, complete with the number of employees that work there and the 
approximate size, in square feet, of the business. To determine the employment density near relevant 
segments, we conducted a GIS analysis that selected all businesses within our chosen buffer distance, 
summed the number of employees in those businesses, and divided it by the area of the buffer. We did 
not discriminate based on the type of business. 

We will use the same dataset for business square footage density, but we will filter the businesses by 
type. Warehouses, for example, do not generate significant foot traffic outside of their employees, and 
that foot traffic is captured in the metric above. Each of the businesses in the ESRI Business Analyst 
dataset has a corresponding North American Industry Classification System (NAICS) code that 
categorizes the business by type. For our analysis, we will only consider businesses from the following 
categories: 

 44-45: Retail Trade 
 522: Banks 
 54: Professional, Scientific, and Technical Services 
 62: Health Care and Social Assistance 
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 71: Arts, Entertainment, and Recreation 
 72: Accommodation and FoodServices 
 812: Personal and LaundryServices 
 813: Religious, Grantmaking, Civic, Professional, and Similar Organizations 

The ESRI Business Analyst data do not provide exact square foot measurements for each business, but 
instead categorizes them into one of four ranges: 

 A: 1 - 2,499 squarefeet 
 B: 2,500 - 9,999 squarefeet 
 C: 10,000 - 39,999 squarefeet 
 D: 40,000 square feet andabove 

We will use the middle of each of the A-C ranges and the lowest value for range D when summing the 
total amount of square feet within the buffer distance. Therefore, we will apply the value 1,250 for A, 
6,250 for B, 25,000 for C, and 40,000 for D. We will sum all of the square footages for the businesses 
within the buffers and divide it by the area of the buffer for our metric. 

Infrastructure 
Bicycle facility information is available at state highway locations through data collected by Caltrans as 
part of the Active Transportation Asset Inventory Program. This information will need to be manually 
collected at off-network locations. We will generate several variable options, including dummy 
variables or scaled variables, to represent this information for testing in the model. We plan a similar 
approach for functional classification and speed limit which are already available statewide from the 
California Road System dataset. We can gather signalization information from Open Street Map data. 

Network Connectivity 
Weplan to develop network connectivity measures that count the numberof meters of streets perarea 
within the buffer and the density of street segments, the count of street segments within the buffer 
divided by the area of the buffer). 

Strava Segment Volumes 
Strava Metro aggregates and de-identifies trip data by segment tocreate segment-level bicycle volume 
estimates. SafeTREC’s application for access to these data is pending with Strava. Inclusion of these 
data will enhance the recreational portion of the model. 

Distance to University 
This variable is based on the ESRI Business Analyst data category NAICS code 61131013. We calculated 
the distance to the nearest entity with this category. 

Slope 
The slope is the average slope between the beginning and end points of each street segment. We 
gathered the elevation from the beginning and end points of each segment, and calculated the 
difference divided by the length of the segment. 
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Next Steps 
Completion of the model will occur in the next phase of the study. This task will include expansion of 
the short-term segment counts to annual segment flows to be used as the dependent variables, 
gathering additional data and processing for additional explanatory variables, exposure model 
estimation, and application of the exposure model to state highway segments (and cross streets where 
possible). 
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Chapter 5. Conclusion 
This reportaimed tocreateacomprehensivepicture ofbicyclesafety inCalifornia,as wellas tocontinue 
and support the efforts for implementing the Bicycle Safety Monitoring Program in California. Each 
chapter in this report describes an activity that contributes to the overall strategy to enhance bicycle 
safety in California. A concise summary, important insights, and some recommendations for each 
chapter are provided below: 

Chapter 2 – Bicycle Safety Monitoring Report Tool described the bicycle crash corridor methodology 
which has been incorporated into the set of tools previously developed for pedestrian hotspot 
identification. 

Key insights: 

 The new Bicycle Safety Monitoring Report Tool takes into consideration the unique differences 
between pedestrian and bicyclistcollisions. 

 The bicycle crash corridor methodology utilizes the Density Based Spatial Clustering of 
Application with Noise (DBSCAN) algorithm for identification of corridors. 

 Attributes for corridor prioritization include corridor length, total number of crashes, and 
crashes per mile. 

Recommendations: 

 Develop a methodology to incorporate bicycle exposure into the BSMR Tool to select and 
prioritize crash hotspots andcorridors. 

Chapter3–SystemicSafetyTool forBicyclesdescribedthecoreelementsofthesystemiccrashanalysis 
and the resources used to establish the bicycle crash matrix structure as well as the development of the 
prototype Excel tool. 

Key insights: 

 Existing Caltrans databases include most, but not all, of the minimum required elements for 
application of the systemicapproach. 

 The final structure of the systemic intersection matrix included crash dynamics of violation 
category, party at fault, and collision type and infrastructure features of traffic control type, 
mainline left turn channelization, and cross-street left turn channelization. 

 The final structure of the systemic highway matrix included crash dynamics of violation 
category, party at fault, and collision type and infrastructure features of median presence, 
median barrier type, number of lanes, and vehicular traffic volume. 

 Athreshold of 99th percentile is indicated as reasonablecriterion forselectingsystemic hotspots. 

Chapter 4 – Bicycle Exposure Modeling Approach described the process towards developing a state-
scale pedestrian exposure model for the California State Highway System (SHS). The report explains 
the data that were collected, the processing and analysis of those data, and the modeling approach 
planned for the nextphase. 

Key insights: 
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 Localagencies have data that are beneficial for largerscalemodeling projects. Theproject team 
was able to utilize such counts for the purpose of this project. 

 The differences between bicyclist and pedestrian travel make a direct demand modeling 
approach more complex. 

 The team developed Poisson mixture model approach that will account for both recreational 
and utilitarian bicycle trips. 

 There are data processingchallenges when working ona statewidescale. Futuremodelingwork 
will be more efficiently completed with a GIS-based dataset containing Caltrans infrastructure 
data. 

Recommendations: 

 As the quality of big data sources for bicycle trips improves, these data may be used to improve 
the quality of bicycle exposure predictions using data fusion techniques. 

 Systematic collection of bicycle count data, including a statewide network of permanent 
bicycle counters, would reduce the error in bicycle count expansion methods improve accuracy 
of the dependent variable for modeling purposes. 
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Appendix 1. New variable categorizations for systemic approach 
Table 0-1. Violation categories for bicycle crashes (2013-2017) 

Violation Category Violation Code 
Bike equipment 21201 
Control violation 21451, 21453, 21456, 21460, 21461, 22450, 22453 
Entering from minor facility 21663, 21804 
Failure to yield 21800, 21802, 21803, 21950, 21952, 22106 
Following too closely 21703 
Unsafe door opening 22517 
Unsafe driving, overtaking and passing 21202, 21650, 21658, 21750, 21755, 21760 
Unsafe speed 22350, 22400 
Unsafe turning 21717, 21801, 22100, 22101, 22102, 22103, 22107 
Under the influence 21200, 23152 

Table 0-2. Categories for party at fault 

Party at fault Statewide type of party at fault 
Bicycle L 
Pedestrian N 
Vehicle A, B, C, D, E, F, G, H, I, J, K, M, O 

Table 0-3. Categories for traffic control 

Signalization 
presence 

Traffic control category Traffic control types 

Unsignalized No control A 
Signalized Two-way stop signs B, C 
Signalized Four-way stop signs D, E, F, G 
Signalized Yield signs H, I 
Signalized Traffic signal J, K, L, M, N, P 
Other Other Z, other 

Table 0-4. Categories for median barrier type 

Median barrier type Median barrier code 
No physical barrier Z 
Raised median A, B, C, D, E, F, G, H, I, J, K, L, M, N, P, Q, R, S, X 
Other Y, other 

Table 0-5. Categories for median presence 

Median presence Median type code 
Divided B, D, E, F, G, H, I, J, K, L, M, N, P, Q, R, S, T, U, V, Z 
Undivided A, C 
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