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Executive Summary 

vehicles with similar origins and destinations are routed on what appears at the time as a minimum time 
route, the route may turn out to be non-optimal as a result of the increased traffic assigned to the route. The 
lack of coordination among different shippers and of information on the transport network make it difficult 
to predict changes in the transportation networks due to upcoming loads. In general, the current freight 
transportation system is full of inefficiencies leading to imbalances in traffic with respect to space and time, 
and these imbalances have significant individual and environmental costs. Information technologies, 
software and hardware technologies such as the integration of battery electric trucks (BEHTs) and 
techniques of truck platooning, offer a strong potential for dramatic improvements in balancing freight 
loads in multimodal networks. However, the electric trucks impose additional constraints due to the 
limitation of range and charging time of batteries; the different forms of truck platooning also require 
analysis with the combination of a coordinated routing system. 

In this project, the design and evaluation of a freight load balancing system are addressed by taking 
into account advances in theory, software and hardware technologies. The freight load balancing system is 
based on a co-simulation optimization approach that combines real time traffic simulators with a route 
optimization algorithm in a feedback configuration. The system takes into account the nonlinear impact of 

tes loads to time and space. The load 
balancing system is developed for two type of trucks, diesel and battery electric. Battery electric trucks are 
assumed to be those that qualify as a zero emission freight vehicle (ZEFV) under current California law 
and are part of demonstrations in drayage service. The use of mixed fleet of diesel and electric trucks 
introduces additional constraints and cost criteria to be considered, as BEHTs have a higher capital cost, 
shorter range, and longer refueling time than diesel trucks. The benefits of optimized load balancing with 
co-simulation for a mixed freight routing system are compared with alternative approaches of routing based 
on a co-simulator with no optimized load balancing over time and with optimized load balancing using 
historical traffic data instead of the data generated by the co-simulator. In both cases the proposed load 
balancing approach with co-simulation provides significant reduction in total cost. The effect of the 
percentage of electric trucks in the mixed fleet of vehicles on the total cost is also investigated. 

Due to the complexities of traffic road network and the need to apply the coordinated routing system 
on a large-scale network, a distributed version of the optimized load balancing co-simulation method is 
proposed. The performance of various partitioning techniques with respect to number of subnetworks, 
boundary nodes and demands under different penetration of electric trucks is experimented. 

Finally, the concept of truck platooning has been incorporated into the proposed mixed freight 
load balancing system. Truck platooning is defined as a string of vehicle driving along the same lane as if 
it was one long vehicle. Truck platooning seeks to reduce the energy consumption via the reduction of air 
drag force on the vehicles. The purpose of incorporating truck platooning into the system is to demonstrate 
its flexibility and capability to be integrated with future freight management concepts and technologies. 

Several scenarios from the Southern California area that incorporates the Los Angeles and Long 
Beach Ports as well as the Los Angeles Metropolitan area are used for evaluation. The main outcomes of 
these evaluations are listed as follows: 

The total energy cost without including charging cost decreases as the number of electric 
vehicles increases. However, this does not imply that for a specific route the use of electric 



                 
   

                 
                

                  
     

                
  

               
                

             
              

               
              
           

   
             

   
             

          

               
                 

                 
               

              
         

vehicle is less costly than that of a diesel vehicle due to the complex influence from the 
surrounding traffic flow. 
The total cost that also includes the charging cost tends to increase in general with increasing 
number of electric vehicles in the fleet. The assumption made is that the charging cost includes 
the labor cost of the driver waiting for the vehicle to charge. If charging is done off-duty this 
cost can be reduced considerably. 
As expected the emissions go down drastically as the number of electric vehicles increases in 
the fleet. 
The scalability issue can be solved by using a distributed load balancing method. 
For the Long Beach network, the distributed load balancing is tested based on different number 
of subnetworks, demands and boundary nodes. By increasing the number of boundary nodes, 
we can achieve better assignment with more computational time. By increasing the number of 
subnetworks, we can achieve a large amount of computational time with a relatively small loss 
on optimality. However, a proper decomposition is needed since if the network is decomposed 
too much, the interactions between subnetworks will compromise the computational time 
gained from decomposition. 
For Los Angeles Metropolitan network, similar relation between performance and number of 
subnetworks is revealed. 
The proposed method is compatible with different truck platooning techniques and presents 
advantages with respect to total cost by utilizing truck platooning. 

We have to emphasize that the research performed is a preliminary step toward a coordinated 
freight load balancing and by no means captures the full complexity of freight transport. Some of the 
assumptions made need to be validated with experiments and some of the scenarios tested are rather simple 
when compared with the complexity of freight operations. This research however sets the foundations of 
the concept of coordinated freight load balancing system by solving some challenging problems whose 
solutions point the directions for future research. 
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1. Introduction 
The efficient movement of goods is a critical factor for the sustainability and well-being of the world's 

population especially in urban areas. Worldwide container trade is growing at a annual rate, and the 
US growth rate is around . Current forecasts expect US commodity trade to approximately double by 
2030 [1]. With the rising volume of containers processed in ports, especially in some of the largest ports 
such as New York and Los Angeles, congestion and air pollution are significantly exacerbated. Containers 
in the ports are distributed through various of transportation mode, such as truck and rail freight. Despite 
the continued growth of rail freight, trucks continue to retain the largest market share. Of the nearly 20 
billion tons of freight moved in 2012, 13 billion moved by truck [2]. Dominance of truck increases as 
haulage distance decreases; for trips of less than 100 miles (about half of all freight haulage), the truck 
mode share is 84% [2]. Trucks dominate due to shipment size, trip length, and ubiquity of the road network, 
[3] [6]. Due to size and differences in vehicle dynamics, freight transport by trucks has a bigger impact on 
the road network especially in urban areas. For example, trucks have different dynamics than passenger 
vehicles, they are often restricted to outside highway lanes, take longer distances to stop, have smaller 
deceleration and acceleration values, and more importantly pollute more and consume more fuel. In 
addition, they affect traffic flow much more than passenger vehicles especially during turns, stop and go 
traffic, lower speeds in highways etc. According to [7], due to the increase of container movement, there 
will be significant increases in highway congestion around US ports, air cargo, and border crossing nodes 
in the future. Congestion results in enormous costs to shippers, carriers and the economy. According to [8], 
the total cost of truck congestion amounted to approximately billion in 2016 across the US national 
highway system with the delay of 1.2 billion hours. Freight transport is also a significant contributor of 

and other pollutants. Of the Greenhouse Gases (GHG) emissions coming from 
transportation related sources, freight movement (trucks, ships, trains, airplanes and pipelines) account for 

of the total; trucks are responsible for emitting of GHG from these freight sources [9]. According 
to a report from the European Union [10], about of the emissions are due to heavy-duty vehicles. 
In European Union the impact of trucks on CO2 emissions is also significant relative to that of other vehicle 
classes as according to [10] about 26% of the CO2 emissions are due to heavy duty vehicles in comparison 
to 61% for passenger vehicles, 12% for vans and 1% for two-wheelers. According to [10] while the 
emissions from other sectors have been dropping during the last 3 decades those due to freight road transport 
have been rising. The fuel cost accounts for about one third of the total cost of owning and operating a truck 
[11]. In the US the cost of operating a truck averaged $1.69 per mile, a 6% increase in 2017 according to a 
report released Oct. 2, 2018 by the American Transportation Research Institute (ATRI) [12]. Broken down 
hourly, the report said it cost $66.65 per hour to operate a truck in 2017, compared with $63.66 in 2016 and 
$58 in 2009 [12]. On a percentage basis, driver salaries, benefits and bonuses account for 43% of the cost 
of operating a truck, fuel is 22%, lease and truck payments make up 16%, and repairs and maintenance are 
10%. Other costs including vehicle insurance, permits, tolls and tires make up the remaining 9% [12]. These 
statistics suggest that the driver is the highest cost of operating a truck followed by the fuel cost and these 
statistics hold in the US as well as EU in general. 

The above statistics together with the efforts of cutting down emissions motivate a number of key 
technologies and set the trend for the future of the trucking industry. These technologies can be divided into 
two major parts: Hardware changes and Software/intelligence. Hardware changes include hybrid and 
electric propulsion systems, tires with reduced rolling resistance, vehicle design with improved 
aerodynamics etc. Software/intelligence includes intelligence on the vehicle level such as improved lateral 
and longitudinal control systems, optimized engine control actions, connectivity and use of intelligent 
transportation systems (ITS). 



               
                

                 
                
              

                  
                
                   

     

                
                

               
                 
                  

                 
                 

                  
                

                
                 

                  
             

                 
                 

             
               

                  
             

                 
                

               
                

               
               

                
             

             
                

              
                   

           
                 

  

                 
                    

ITS connects the vehicle with the infrastructure and addresses issues such as optimum routing in 
order to minimize travel times, energy consumption, reduce emissions and cut additional costs such as using 
less number of drivers as in the case of truck platoons. However, some of these technologies whether 
hardware or software are often interconnected. For example, the use of electric trucks brings up the 
constraint of available charging stations and charging times which will affect optimum routing decisions. 
The battery range and charging time as well as availability of charging stations where needed are some of 
the challenges of electric trucks [13]. Nevertheless the industry is moving ahead with companies like Volvo 
and Tesla producing electric trucks [14] for short-haul operations in urban areas where the need for cutting 
down pollution is much higher. 

Research on vehicle routing is very rich and many optimization tools have been developed over the 
years which will become very useful in addressing some of the issues mentioned above. The Vehicle 
Routing Problem (VRP) formulation was first introduced by Dantzig and Ramser [15], as a generalization 
of the Traveling Salesman Problem (TSP) presented by Flood [16]. Since then, there is a significant amount 
of research on this topic which can be divided into 4 main categories. First, in static and deterministic 
problems, all inputs are known beforehand and vehicle routes do not change once they are in execution. 
This classical problem has been extensively studied in the literature, and we refer the interested reader to 
the recent reviews of exact and approximate methods by Baldacci et al. [17], Cordeau et al. [18], Laporte 
[19], [20], and Toth and Vigo [21]. Second, static and stochastic problems are characterized by inputs 
partially known as random variables, which realizations are only revealed during the execution of the routes. 
Additionally, it is assumed that routes are selected a priori and only minor changes are allowed afterwards. 
Uncertainty may affect any of the input data like stochastic times where either service or travel times are 
modeled by random variables [22], [23]; and stochastic demands [24] [28]. Third dynamic and 
deterministic problems have part or all of the inputs as unknown and appear dynamically during the design 
or execution of the routes. For these problems, vehicle routes are redefined in an ongoing fashion, requiring 
technological support for real-time communication between the vehicles and the decision maker (e.g., 
mobile phones and global positioning systems). Fourth, dynamic and stochastic problems have part or all 
of their inputs unknown and appear dynamically during the execution of the routes, but in contrast with the 
latter category, exploitable stochastic knowledge is available on the dynamically revealed information. As 
before, the vehicle routes can be redefined in an ongoing fashion with the help of technological support. 
For a comprehensive review of both the deterministic and the stochastic dynamic VRP, we refer the 
interested reader to [24] [28]. Additional work on shortest route problems which cover the four categories 
mentioned can be found in [29] [37] which also include work on multimodal routing and planning. 

With respect to electric vehicle routing, Ambrose and Jaller [38] examined the result of electric 
drayage trucks at the Port of Los Angeles and assessed emissions reductions with increased electrification 
of port truck operations. Nan et al. presented a mathematical programming model and solution method for 
path-constrained traffic assignment problem for electric vehicles in congested networks [39]. Bahrami et 
al. proposed a complementarity equilibrium model for electric vehicles without violating driving range 
constraints [40]. Based on the assumption of large adoption of electric vehicles, Faridimehr et al. [41] 
proposed a two-stage stochastic programming model to determine the optimal network of charging stations 
for a community as well as the charging decision for each electric vehicle in this community. For a more 
detailed topic for electric vehicle traffic assignment, Yao et al. [42] 
consumption rate on different road types from the floating car data collected from the road networks in 
Beijing. 

Despite the amount of research in vehicle routing, there are many issues that need to be addressed 
and new techniques need to be developed in order to make full use of these emerging technologies in a way 



                 
               

                 
                 
                  

                   
               

               
                 

                  
                   
                 

                
  

                 
                   

               
               

               
                 

             
                  

                   
                   
                

                 
                 

                 
                 

          

                    
             

                   
                    

                  
                

                  
                 

               
                

               

               
                

              
                

that benefits the overall system and the environment. The complexity of the traffic network is immense due 
to the nonhomogeneous dynamics of different vehicle classes at the vehicle level to traffic nonlinear 
behavior at the traffic flow level. Mathematical models whether static, dynamic or stochastic used by most 
routing schemes cannot possibly capture the complexity of the real system in order to achieve the best 
possible outcomes especially due to the added constraints of the electric trucks. A true optimum route for a 
truck for example may end up been far away from the optimum generated from a model due to uncertainties 
not captured by the mathematical model that optimality is based on. The development of accurate 
mathematical models to describe traffic characteristics has always been a challenge and is becoming more 
of a challenge if electric trucks are included in traffic. The availability of fast computers and advanced 
software tools allows for the first time the development of traffic simulation models which can run in real 
time to provide the information and predicted states of the traffic network in order to choose routes that are 
more likely to be close to optimality than those based on simplified mathematical models. The challenge is 
how these simulation models can be integrated with optimization tools in order to generate more realistic 
outcomes. 

Along the pursuit for energy saving, researchers in the area of truck automation came up with the 
idea of platooning, where a string of vehicles drive along the same trajectory with only a short gap in 
between, since the emerging of automated driving for passenger vehicles from the 1950s [43]. Driving 
experiments on testing the performance of different form of truck platooning are conducted around the 
world [44] [50]. Gehring and Fritz [44]conducted experiments on a platoon of three heavy-duty trucks 
along the Brenner Pass through the Alps between Austria and Italy with a longitudinal control with vehicle 
to vehicle communication. Lu and Shladover [47], [51] applied Dedicated Short Range Communication 
(DSRC) radio sets with an automatic longitudinal control on a platoon of three Class 8 trucks and showed 
an average 4.3% energy saving from the lead truck, 10% from the second truck and 14% from the third 
truck. Kunze et al. [48] developed a platoon system of four heavy duty trucks, constituted with a lead truck 
driven by a human driver and three following trucks by automated driving system. Tsugawa [49] developed 
a automated control system with lateral control and longitudinal control for a platoon of three trucks and 
showed the saving on fuel consumption is 15% in simulation. However, based on the knowledge of authors, 
researches and analysis on the routing system that cover platooning techniques are still left to be fully 
studied. In one section of this report, we integrated the characteristics of truck platooning into the routing 
system for heavy-duty trucks and studied the impact of it. 

In our past work [37], [52] we considered the use of real time traffic simulators as part of a centralized 
coordinated multimodal freight load balancing, where we successfully showed the significance of traffic 
simulators in planning freight routes to achieve a good balance of freight loads across the road and rail 
network. In this project we extended the work of [37], [52] which was focused on diesel trucks to include 
electric trucks in mixed fleets with diesel trucks. Electric trucks will be entering the market due to efforts 
to reduce emissions and most companies will be operating mixed fleets of trucks. Therefore, routing mixed 
fleets of trucks in a coordinated manner that will have additional benefits to the environment and costs is 
an important research problem this project focused on. The idea of truck platooning was integrated into the 
system and experiments on the impacts from different platooning techniques were also examined. Also, as 
a solution for the computation complexity induced by the scalability of network, a distributed version of 
the dynamic routing system is proposed and tested as a section of this report. 

The report is organized as follows. Section 2 deals with the main project content. Respectively 
Section 2.1 presents the literatures of dynamic models for truck platoons. Section 2.2 presents the traffic 
simulator built for the real-time traffic prediction with a commercial transportation software. Section 2.3 
presents the formulation of the optimization models for the mixed freight load balancing system and the 



                
               

              
               

       

   
      

               
               

                
             
                  

               
       

         

      

 
 

  
 

     
  

   
   

  

   
  

  
  

 
 

 
  

 

     
 

   
   

  
  

   
  

   
   
  

   
 

  
    

 
 

  

     
  

   
  

   

  
   

  
       

  
   

  
   

   
   

   
 

   
   

     
  

   
   

     
  

   
    

   
 

   
    

optimization algorithm. Section 2.4 presents the key elements for the optimization algorithm as well as the 
emission model to assess the emission from the whole assignment procedure. Section 2.5 presents the 
partitioning techniques for distributed routing generation and in Section 2.6 we present the simulation 
results that demonstrate the consistency of performance. Finally, conclusions are presented in Section 3 and 
appendices can be found in section 4. 

2. Project Contents 
2.1 Dynamic models of truck platoons 
In this section, we performed an extensive literature review on characteristics of different types of 
commercial vehicles, fuel economy and refueling conditions of trucks that already in service. The studies 
reviewed are: Port of LA interim electric drayage report [53], Foothill bus comparative study [54], studies 
from California Air Resources Board (CARB) [55], Frito-Lay delivery truck comparative study [56], 
Smith Newton trucks [57], Navistar eStar [57] as well as a market survey developed by Giuliano et al 
[58]. The characteristics of different types of commercial vehicles, fuel economy and refueling time are 
presented in Table I, II and III. 

Table I: Characteristics of different types of commercial vehicles 

Truck Type Class Description Example Applications 

Light 
Commercial 
Vehicles (LCV) 

3 One- and two- axle, 
four-tire trucks 

Heavy duty pick-up, 
walk-in van, minibus, 
box truck 

Local pick-up and 
delivery; heavy 
duty pickup 
trucks, vans, 
minibuses 

Medium 
Commercial 
Vehicles (MCV) 

4 Two- and three- axle 
buses 

Large walk-in van, 
city delivery truck 

Parcel delivery, 
short distance 

5 Two-axle, six-tire, 
single-unit trucks 

Bucket truck, large 
walk-in van, city 
delivery truck 

6 Three-axle single-unit 
trucks 

Beverage truck, 
school bus, rack truck 

Heavy 7 Four or more axles Refuse, city transit Long haul 
Commercial 
Vehicles (HCV) 

single-unit trucks bus, medium semi-
tractor, tow truck 

truckload or less 
than truckload 
cargo (containers) 8 Four or fewer axle 

single-trailer trucks 
Cement mixer, heavy 
semi-tractor, dump 
truck, sleeper cab, 
fire truck, refrigerator 
van, tour bus 

9 Five-axle single-trailer 
trucks 

2 units: heavy semi-
tractor with trailer 

10 Six or more axle 
single-trailer trucks 

2 units: heavy semi-
tractor with trailer 

11 Five or fewer axle 
multi-trailer trucks 

3 units: heavy semi-
tractor with 2 trailers 

12 Six-axle multi-trailer 
trucks 

3 units: heavy semi-
tractor with 2 trailers 



     
  

   
    

 

               
  

       
 

        
     

 
    

   
     
     

      

     

       
     

      

     

     
     

      

    

      
    

      

    

         
   

       
     

   
     

    

       
      

     

    

     
    

     

     

        

 

             
 

 
 

     
 

   
 

  
  

    
  

 

 
   

 

    
  

 

13 Seven or more axle 
multi-trailer trucks 

3 units: heavy semi-
tractor with 2 trailers 

Table II: Fuel economy of ZEV, near-ZEV and diesel heavy- and medium-duty vehicles (DGE: diesel 
gallon equivalent) 

Demonstration project Class Fuel Vehicles Fuel economy 
(miles/DGE) 

Port of LA trucks 8 Electric 7 10.8 
Foothill bus comparative study 8 Electric 12 17.48 

CNG 8 4.51 
Transpower yard tractor, IKEA in-use, 
comparison drawn from CARB study 

8 Electric Not given 0.45 DGE/hr 

Diesel Not given 2.4 G/hr 

Transpower yard tractor, Port of LA in-use 
comparison drawn from CARB study 

8 Electric Not given 0.345 DGE/hr 

Diesel Not given 2.4 G/hr 

Altoona bus Commuter test cycle, 
comparison drawn from CARB study 

8 Electric Not given 26.0 

Diesel Not given 7.5 

Altoona bus CBD test cycle, comparison 
drawn from CARB study 

8 Electric Not given 18.3 

Diesel Not given 2.6 

Frito-Lay delivery truck comparative study 6 Electric 10 24.09 
Diesel 9 7.63 

Smith Newton trucks 6 Electric 259 24.9 
CalHEAT step van, comparison drawn 
from CARB study 

5 Electric Not given 56.2 

Diesel Not given 11.7 

SD Airport V6 shuttle can in use 
comparison drawn from CARB study 

3 Electric Not given 80.6 

Diesel Not given 17.9 

CalHEAT step van (in-use), comparison 
drawn from CARB study 

3 Electric Not given 76.8 

Diesel Not given 11.2 

Navistar eStar trucks 3 Electric 101 46.1 

Table III: Demonstration project Class Fuel Refueling time Refueling conditions Fuel capacity Range 
(miles) 

Demonstration 
project 

Class Fuel Refueling time Refueling 
conditions 

Fuel capacity Range 
(miles) 

Navistar eStar 3 Electric Average charge Predominantly 80kWh battery 100 (av. 
delivery vans duration 3.5 charged in the Daily use 

hours night/evening 20) 



  
  

 

  
 

  
  

 

 
   

 

    
  

 
        

   
  

  

 
 

    
  

 
 

  
 

    
  

  
 

  
 

  
 

 
   

 
  

 

  
 

  
 

 
 

  
 

      
  

 
  

 

 
  

  
   

  
 

 
 

    

    
 

      
 

  
  

 
 

    

    
 

     
   

 

     
  

 

    
 

       
   

  
 

  

    
 

       
  

  
   

  

 
           

    

  
 

       
 

 
  

 
          

         
 

                 
              

Smith Newton 
delivery vans 

6 Electric Average charge 
duration 6.4 
hours 

Predominantly 
charged in the 
night/evening 

80kWh battery 100 (av. 
Daily use 
25) 

Port of LA 8 Electric 4 hours with 
single 70 kW 
charger from 
20% charge 

Dedicated 
infrastructure 

Not given 70-100 at 
av. load 
(65,000 
lbs) 

Firto-Lay delivery 
truck 

6 Electric Average 6.1 
hours to 
recharge from 
42% (post-
loading) to 
100% 

Recharged at 
depot, 
recharging 
occurs in two 
steps 
(separated by 
loading) 

80 kWh 
battery 

Drove 32 
miles/day 
on 
average 
after full 
charge 

Foothill bus 8 Electric Reaching full 
charger with 
overhead 
charges <10 
mins 

On-route fast-
charge station 
at mid-way 
point in route. 
Bus charged 
through 
overhead 
charger 

88kWh battery Not given 

ZEBA bus 8 Fuel 
cell 

30 kg of in 6 
mins 

Central station 
with 
produced on-
site 

40 kg 235 

Sunline bus 8 Fuel 
cell 

Not given Fueled at least 
once daily at 
station 

50 kg & 11 
kWh battery 

270 

Coca Cola 8 Diesel 
hybrid 

Not given Not given 56 gallon 
diesel tank and 
1.8 kWh 
battery 

Not given 

Odyne trucks 6-8 Diesel 
hybrid 

Not given Not given 28.4 kWh 
battery (and 
diesel tank, 
size not given) 

Not given 

More acceleration behaviors are presented in Table IV from [59]. 
Table IIV: Acceleration behavior 

Type Sample 
Size 

Piecewise-constant average acceleration rates ( ) 0-500 ft. 
Average 
acceleration 
rate ( ) 

Heavy-
duty 

71 Mean S.D. 

2.12 1.97 2.04 1.91 1.91 1.94 1.86 1.93 0.42 

However, the statistics found are static and the trucks are working under various conditions so that its 
dynamic characteristics vary in different working conditions. In a summery, the characteristics of trucks 



               
                  

               
               

                
                

                  
                   

                
         

 
           

  
              

            
             

             
             

             
       

 
                 

 
             

      

      

      

 
                 

       
          

          

          
          

          
 

        
                   

             
               

               
            

                     
                   

                
                  

can be divided into two categories: constant and variant. The constant characteristics include length, shape, 
number of wheels, et al. The variant characteristics are the ones that change with working mode: such as 
air resistance force and energy consumption rate. To achieve an accurate estimation of the variant 
characteristics, we proposed a method that combines mapping the driving speed to working mode and 
mapping the working mode to energy consumption rate. Aa an important part of this procedure, the 
analytical model of typical diesel engines and electric engines need to be implemented and tested with 
driving cycles. Drive cycles are files that document the speed of a specific vehicle interval by interval under 
some driving mode. The analytic model [60] is used to describe the diesel engine and [61] to describe the 
electric engine of heavy-duty freight vehicles. In this project, we use the following typical drive cycles 
provided by National Renewable Energy Laboratory (NREL) [62]: 

California Air Resources Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) 
Composite Cycle 
CARB Heavy Heavy-Duty Diesel Truck (HHDDT) Creep Segment (a drive cycle with average 
speed 1.76 mph, average driving speed 3.00 mph, max speed 8.20 mph) 
CARB Heavy Heavy-Duty Diesel Truck (HHDDT) Cruise Segment (a drive cycle with 
average speed 39.86 mph, average driving speed 43.22 mph, max speed 59.30 mph) 
CARB Heavy Heavy-Duty Diesel Truck (HHDDT) Transient Segment (a drive cycle with 
average speed 15.36 mph, average driving speed 18.20 mph, max speed 47.50 mph) 
City Suburban Heavy Vehicle Cycle (CSHVC) 

By testing drive cycles with diesel and electric engines, we gained the results showed in Table V. 

Table V: Amount of energy consumed (kWh) by the diesel & electric engine 

Type 
Diesel 

suburban 
650.71 

transient 
277.50 

cruise 
2257.19 

creep 
15.14 

composite 
2558.53 

Electric 500.04 187.09 574.10 79.18 840.38 

Based on the above tests the % energy improvement produced by the electric engine when compared with 
the diesel on are summarized as follows: 

% Energy improvement by electric during suburban cycle: 23% 
% Energy improvement by electric during transient cycle: 32% 
% Energy improvement by electric during cruise cycle: 75% 
% Energy improvement by electric during creep cycle: -423% 
% Energy improvement by electric during composite cycle: 67% 

2.2 Traffic simulator for real time traffic predictions 
In this section, we selected a road network in Southern California that includes the twin ports and used a 
commercial software to develop traffic simulation models. The simulation software chosen is VISUM, 
which is a macroscopic traffic simulator. The advantage of the macroscopic traffic simulator over the 
microscopic one is that a macroscopic traffic simulator can efficiently generate the predicted traffic states, 
which is required for on-line large-scale applications where complexity makes microscopic simulations 
difficult if at all possible. The road network is shown in Fig 1. The network covers an area from the Los 
Angeles/Long Beach terminal port area from the south to I 105 freeway in the north. The numbers with 
circle represent the locations of service network nodes. The service network nodes are composed of O/D 
nodes as well as intersections of freeways and major arterial ways. The traffic simulator serves as a predictor 



                  
         

 

       

    
   

               
                

               
             

                 
                    

                   
               

        

 
                       

                    
                  

                  
                     

                   
                  

                

for the traffic status during the whole method procedure. The numbers in the circles are service nodes used 
in service network, which is introduced in the method. 

Figure 1: Road network configured in Visum 

2.3 Optimum truck routing 
2.3.1 Optimization model 
In this subsection, we developed the optimization models for the centrally coordinated mixed freight routing 
system where different shippers send their demand to a central coordinator. We also developed a co-
simulation optimization approach to solve the problem, which can be described as follows: a central 
coordinator receives from individual users their origin/destination (O/D) demand and information about the 
mixed fleet of diesel and electric trucks and generates routes that minimize an overall system cost. The 
impact of the loads on each link is taken into account to achieve a load balance across the road network. 
The dynamic and predicted link cost information is generated by a traffic simulator that is part of the overall 
co-simulation optimization approach. The predicted link costs such as travel time is important in calculating 
battery life in the case of electric trucks. 

Formulation 
Consider the road network to be a directed graph , where is the set of all links and 

. 

is the set 
of all nodes. Among all the nodes, a subset of them are origin nodes, denoted as , i.e. . Another 
subset of nodes are destination nodes, denoted as , i.e. . For a certain pair of origin and 
destination nodes , , the demand volume is . All the truck types are included in a set 

To represent the distribution of trucks, we use as the number of available trucks of type at node 
. To cope with the temporal dimension, we discretize the time horizon into time intervals and use 

as the set of all the time intervals. The following notation is used in the formulation to follow: 

: The set of routes for trucks of type from to , ; 



                     

     
                   

             

          

 

 

 

 

                    
                  

                       

 

                     

                   
                 

                   
                
                  

                     
                     

                   
                 

    

               
                   
                  

                  
                

                   
                   

  

                
             

: The number of trucks of type from to , , using route in route set 
with a departure time ; 

: The average service cost per container fulfilled by a truck of type from to , 
, using route in route set with a departure time ; 

Given the above notation we formulate the problem as follows: 

Equation (1) is the objective function, which aims to minimize the sum of the service cost of all the freight 
loads which are assumed to be containers. is the unit service cost of transporting a container with 
a truck of type using route from to at time given . The cost is given by: 

where is the cost of the consumed energy, is the travel time and is the value of time. 
The energy and travel time cost depend on the dynamics of the traffic network. The dynamics of the traffic 
network can be expressed as nonlinear dynamic functions of all decision variables, denoted as , and will 
be discussed in the following parts. In our case, the energy cost depends on the dynamics of the traffic 
network. More specifically, we formulate the energy cost coefficient of each truck type as a polynomial 
function of the speed of the road link, where the parameters of the function are estimated using regression 
over a set of testing data. Here we assume one truck can only load one container, so the total number of 
trucks for an O/D pair is equal to the demand of the O/D pair, as shown in equation (2). Equation (3) 
represents the constraints on availability of a certain type of truck at each node. Equation (3) can also be 
used to formulate the distribution of available mixed freight vehicles over the road network at the beginning 
of the time horizon. 

The dynamics of a traffic network are highly nonlinear and exhibit the following temporal-spatial relations: 
traffic flow dynamics in a link and between links. The dynamics in a link describe how the traffic flow 
moves from the upstream end of a link to the downstream end, while the dynamics between links describe 
how the traffic flow propagates across the traffic network. In most of the literature of vehicle routing, the 
complex dynamics of the traffic network are overly simplified and the dynamics between links are ignored. 
As a result, the calculated optimum routes may not be optimum in a realistic situation. In our approach, we 
introduce the following changes that makes it more likely for a theoretical optimum to be closer to one in 
practice: 

Instead of using a simplified mathematical model to account for the complex traffic dynamics, we 
use a traffic simulation model in a co-simulation optimization approach. The simulation model 



                
   

                
       

                 
              

                 
                
       

         
         
        
         

               

                   
                 

           
             

                   
                 

               
          

 

                 
                

 

 

 

              

                   

provides a far more accurate description of the traffic dynamical characteristics to be used by the 
optimum route generator. 
To efficiently apply the simulation model, we construct a service network layer as a connection 
between the optimizer and the simulation model. 
To speed up the iterative algorithm process, we propose a way to intelligently choose the direction 
and step size at each iteration based on the knowledge of the marginal cost. 

To understand our method, we first discuss the configuration of the service network and the changes it 
brings to the above formulation. To differentiate the notation between the service network and the road 
traffic network, we use the following terminologies: 

Road network link: edge in the road network 
Path: a sequence of concatenated road network links 
Service segment: edge in the service network 
Route: a sequence of concatenated service segments 

A service network can be configured based on a traffic network in the following steps: 

Collect a subset of nodes in the traffic network including all O/D nodes as well as the nodes 
necessary for the routing of freight vehicles to form the service node set . These necessary nodes 
can be port terminals, truck depots, charging stations and so on. 
Construct a set of segments connecting nodes in . 

The service network can be seen as an abstracted upper layer of the traffic network. With the inclusion of 
the service network, the relations between routes and links can be divided into two parts: relations between 
routes and service segments and relations between service segments and traffic network links. The relations 
between routes and service segments can be shown as follows: 

where and when the truck of type uses route with departure time 
passing through segment at time , otherwise, . As for the relations between the service 
segment  and  traffic  network  links,  we  denote  as   the  travel  time  on  path   if  a  truck  departs  from  the  
origin  of  segment   at  time  .  Assume  links  constituting  path   to  be  ,  where   is  the  
total  number  of  links  on  path  .  We  define   as  the  entering  time  at  link   of  a  truck  with  a  departure  
time   from  the  origin  of  that  path.  With   to  be  the  travel  time  of  link   at  time  ,  we  now  write  the  
travel  time  of  a  path  as  follows:  

where . To make the notation simpler, we let to denote the 

travel time of link on path with the path departure time being . Given the service segment 



                   
   

 

                   
                

                         

                       

                     
                   

                  
                

              
                   

               
             

 

 

   
                  

                   
                  
             

               
                

               
            

                
               
                

                     
                 
                 

                    
                

              
              

volume and the path set of segment , the vehicle dispatching problem in the traffic network can be 
expressed as follows: 

where stands for the total cost of the assignment with mixed freight vehicles, which is a combined value 
of energy consumption cost and travel time cost. is the energy consumption coefficient for trucks of 
type passing through path of segment , at time is the travel time of the path in segment that 
departs at time , is the number of trucks of type assigned to pass through path of segment at 
time and is the value of time as mentioned before. The total cost is represented by summing over the 
energy consumption cost and travel time cost of all the segments with respect to time and the objective is 
to find out an assignment for the mixed freight vehicles with minimum total cost. The constraints are defined 
by equations (6)-(9) generated from the service network as well as the complex dynamics from the 
simulated traffic network. In our method, the nonlinear dynamical functions for traffic networks are 
replaced by the real time traffic flow simulation model that generates the states of the network to be used 
in the optimization problem. Aside from equations (6)-(9), the following equations are used to represent 
the relation between variables from the service network and the simulated traffic network: 

2.3.2 Optimization algorithm 
In this subsection, we discuss the optimization algorithm used to solve this problem. Figure 2 gives a general 
overview of the method. The service graph optimization plays a central role; in practice, it can be a central 
coordinator whose aim is to assign trucks to fulfill demands at minimal system cost. The inputs to the 
optimization are demands, truck types and their distribution, emission model and other predetermined 
parameters. Demands represent the number of containers to be transferred from origin to destination nodes. 
The truck types include the physical (weight, length, frontal area, et al.), dynamic (max speed, acceleration, 
et al.) and energy consumption (the amount of energy consumed based on the dynamic states) 
characteristics. Based on the energy consumption characteristics of diesel/electric trucks, the cost 
coefficients on each segment of both types of trucks are calculated under different traffic conditions. An 
emission model from National Renewal Energy Laboratory (NREL) is used to calculate the emissions. A 
real-time traffic simulator is used to capture the dynamical characteristics of traffic and provide traffic status 
such as travel times along the links and routes as well as estimates of the energy cost of diesel and electric 
trucks depending on the simulated traffic flow. The information from the simulator is used by the service 
graph optimization component to update the marginal cost of each service segment, which is used to update 
the route cost. Based on the simulated route cost, the route collection for each O/D pair is updated as well. 
Then given the updated route collection, the assignment of diesel/electric trucks for each O/D pair is 
updated by solving an integer combinatorial programming problem using a properly selected efficient step 
size. The new assignment is then generated and passed to the next iteration. 



 

      

                
                 
              

               
                

                   
                       

                  
                     
                    

               
       

                  
              

               
                  
             

               
                  

          
                  

 
                  

                   
 

Figure 2: Framework of proposed method 

The traffic simulator uses two types of inputs: background traffic flow and assignment traffic flow. The 
background traffic flow is obtained from various sources, such as PeMS [63] and Google Maps [64]. The 
assignment traffic flow is generated by the optimizer. The co-simulation optimization procedure iterates in 
a feedback loop that involves the traffic simulator and service graph optimization. Through this procedure, 
the states of assignment traffic flow and road network feedback are sequentially updated until both states 
converge. The difficulty in this procedure is to calculate the marginal cost of each route, which is equal to 
the change in the total cost as a result of adding one unit of demand on that route. Since the total cost 
of equation (10) is complex, the marginal cost with respect to a route cannot be calculated directly. One 
way to calculate the marginal cost is to use Monte Carlo to simulate the impact of one unit of demand on 
each route at each time. However, it is impractical to enumerate all routes due to the fact that the number 
of possible routes grows exponentially with respect to the service network size. Our proposed approach 
bypasses this issue and works as follows: 

1. Initialize cost coefficients based on the physical features such as speed limit for each segment and 
iteration number . Initialize the diesel/electric route collections for each O/D pair based on 
the segment cost calculated with the cost coefficients. Establish the initial route flow vector 
by assigning the portion of demands in the origin node to electric trucks with the portion of demand 
to be equal to the portion of electric trucks in the mixed fleet. 

2. If , check if the objective function value of the current iteration converges, i.e., 
; is set to be a small number. If it converges, then stop the procedure and return 

with route flow vector; otherwise, continue to the next step. 
3. Input the route flow vector into the traffic simulator and obtain the marginal cost of each 

segment. 
4. Update the marginal cost of each segment as well as diesel/electric routes for each O/D pair and 

check whether there is a new minimal marginal cost route. If there is, then add it into the route 
collection. 



                 
  

 

 

 

                      

                   

                
                    

                  
                   

  

     
   

                
          

 

 

                     
                    

                  
               

   

 

                   

                 

5. Solve the following optimization problem for each origin node to obtain a feasible route flow 
vector . 

where is the marginal cost of route from to with a truck of type departing at time 
. The marginal cost of a route is the sum of the marginal costs of the segments along it. 

6.  Set  the  route  flow  vector  for  the  next  iteration  as   where   
is  the  step  size  at  the  th  iteration,  and  go  back  to  step  2.  The  step  size  at  the  th  iteration  is  
selected  as  in  [37].  

In the optimization algorithm, marginal cost of each segment serves as an important role, in pointing 
out the direction as well as the step size for the next iteration for the optimization algorithm. In the next 
subsection, we will present the calculation of marginal cost, which in essence tells us the evaluation of the 
routes. Also, an emission model used for the test of emissions from the procedure is introduced in the next 
subsection. 

2.4 Evaluation of optimum routes 
2.4.1 Marginal cost 

The marginal cost represents the change in the total cost if one unit of demand/container is 
changed on the path. It can be formulated as following: 

where the first two terms are the cost of the path and the third term describes the travel time cost change 
due to the impact on the link travel time based on the dynamics of the traffic system. The fourth term 
accounts for the change of energy cost associated with the changes in link volume and can be calculated 
approximately using the traffic network states from the simulator. According to the derivative chain rule 
and equation (7): 

where is the traffic volume of the link on path with the path departure time being 

The term represents the travel time change in link at time caused by changing 
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the link volume by one unit. One of the most commonly used relationships between link volume and travel 
time is the Bureau of Public Roads (BPR) function [65]. 

where is the link travel time, is the link free-flow travel time, is the vehicle volume on link and 
is the road link capacity. and are parameters for the model and can be estimated through 

historical traffic data. Then the link travel time derivative based on equation (18) can be written as 

follows: 

After the derivation, the final form of marginal cost is: 

Since the first and second terms are decomposable with respect to the links, the marginal costs of the paths 
belonging to the same segment will be placed in equilibrium by running a dynamic assignment algorithm. 
Then the marginal cost for a segment is approximated by its marginal cost of path . The 
calculation of the marginal cost of a segment requires the knowledge of the propagation of other segments 

 the basic traffic network statu

well as the aggregated segment-level information ( , , ) from the simulator. With the 
marginal cost of each segment updated, route collections are updated by checking whether there are new 
lower marginal cost routes. Then the route flow vector is updated to move along the descent direction 
with the step size described in the previous subsection with the knowledge of the updated marginal cost. 
The algorithm stops when no more improvement on the total cost can be gained. 



   
                

        

  
               

                  
                  

                  
             

               
              

               
               

                
                  
                

                 
                

             

 

          

             
                

      

2.4.2 Emission models 
The emissions from the whole assignment and routing procedure are estimated using the EPA 

model MOVES and include [66]. 

2.5 Scalability 
The computational complexity of the method comes from two aspects: the number of iterations and 

the computation in each step. In each step, each route in the route collection is examined. The iteration 
number is also related to the combinations of dividing demands onto the routes in each route collection. So 
with the increasing of road network, the routes found for each pair of O/D are increased exponentially and 
the computation power allocated increases exponentially as well. To deal with the computational 
complexity induced by the expansion of road network, we introduced a distributed version of our co-
simulation load balancing optimization approach. In the distributed version, the road network is divided 
into several subnetworks. For each subnetwork, a service subnetwork is constituted as in the original 
method. Then we join all the service subnetwork (joining service subnetwork) according to the boundary 
service nodes into one network and constitute a service network for it. The interactions between service 
network and joining service subnetwork are similar as in the service network and road network. Then the 
demands are first assigned based on the optimization in the service network onto each service subnetwork. 
From each service subnetwork, the demand is assigned onto the road level. Opposite of the direction of 
demand, the updates of traffic status are performed from the road subnetwork to service subnetwork, then 
to the service network. The structure of it is shown in Fig 3. 

Figure 3: Structure of distributed load balancing co-simulation optimization method 

The performance of different partitioning settings of the distributed load balancing co-simulation method 
will be presented in the numerical subsection including the number of demands, the number of boundary 
nodes and the number of subnetworks. 



   
             

                  
                  

                
                     

                 
                 

               
                 

                   
                

                 
                   

                
                   

          
            

             
             

                  
               

                   
               

                     
              

                  
                    

                    
                  

             
                

         

2.6 Numerical results 
This section presents the evaluation of the proposed approach using a regional transportation 

network which covers the Los Angeles/Long Beach terminal port area from the south to I 105 freeway in 
the north and a large road network covers approximately the area of Los Angeles Metropolitan Area. Lane 
characteristics such as length, capacity, speed limit et al. are incorporated in the network. The freight 
vehicles from and to the terminal port area account for a large amount of traffic around the area and has a 
great impact on the environment. The background traffic is expressed as the number of trips between nodes 
that are origins and destinations. The historical freeway traffic flow data are obtained from PeMS [63] and 
Google Maps [64]. The raw traffic data are processed (formatted/truncated/aggregated) to fit the format of 
the traffic simulator. The traffic conditions used in the numerical evaluation are: off-peak (2am to 6am), 
medium (12pm to 4pm), peak (7am to 11am). We assume that each truck can only load one container and 
the demand is considered to be fulfilled by a single-direction route. The service network nodes are 
composed of O/D nodes as well as intersections of freeways and major arterial ways. The service nodes 
also play roles of charging stations. To make sure the routes of electric trucks are feasible, we assume every 
charging station has enough capacity for charging and electric trucks always get charged the amount of 
electricity they consumed on the previous segment along the route. The length of each interval is 30 minutes. 

2.6.1 On mixed freight load balancing co-simulation optimization method performance 
To show the benefits of applying load balancing co-simulation optimization assignment, we 

compared the proposed approach against a mixed freight assignment system without optimized load 
balancing or co-simulation. The non-optimized-load-balancing system assumes that for each pair of O/Ds, 
given the cost of each route between the O/D, a diesel/electric truck always chooses the minimal cost route. 
The non-co-simulation cases assume that the dynamics of traffic status are updated with historical average 
traffic data, not with the traffic simulator. In the comparison, we will show that in these two cases, the 
missing of optimized load balancing or co-simulation data will have inaccurate information of the traffic 
status for the decision of the assignment so that at the end the assignment quality is worse than the one with 
optimized load balancing and co-simulation. Because in the case of optimized load balancing co-simulation 
system, the changes of traffic flow characteristics on a certain route as well as the reactions of background 
traffic will be reflected in the marginal cost so that the freight vehicles assigned on this route may be shifted 
to another route with lower marginal cost. In this way, the total cost of the assignment of mixed freight can 
be reduced. The comparison is shown in Figure 4. The system with load balancing achieves the lowest total 
cost. The average savings by applying optimized load balancing with co -simulation versus non-optimized-
load-balancing but co-simulation is and around for the case of optimized load balancing based 
on historical data rather than the dynamic co-simulator. 



 

           

               
              

                      
                  

                    
                   

                 
      

 

       

Figure 4: Comparison with cases without optimized load balancing or co-simulation 

We next test the system under different scenarios of various percentages of electric vehicles. The 
experimental scenarios are constructed in the following manner: under each traffic condition (light, medium, 
heavy), the percentage of electric vehicles in the fleet is varied from 0 % to 100 % in increments of 10 %. 
The results include total costs in US dollars of the assignment (with and without charging time cost), the 
weight in unit of gram of several emissions (CO, NOX, CO2, PM25) as well as fuel consumed in unit of 
kg. The emissions are calculated by the modified EPA model MOVES [66] with speed as input and 
emissions in units of g/mile as output. The results under light, medium and heavy traffic conditions are 
shown in Figure 5, 6, 7. 

Figure 5: Results under light traffic condition 



 

      

 

       

         

                
                  

                 
                 

                 

Figure 6: Results under medium condition 

Figure 7: Results under heavy traffic condition 

The above results lead to the following conclusions: 

The total energy cost without including charging cost decreases as the number of electric vehicles 
increases. However, this does not imply that for a specific route the use of electric vehicle is less 
costly than that of a diesel vehicle due to the complex influence from the surrounding traffic flow. 
The total cost that also includes the charging cost tends to increase in general with increasing 
number of electric vehicles in the fleet. The assumption made is that the charging cost includes the 



                   
   

                 
 

        
             
              

             

              
          

            

       

       

       

 

                  
                  

                    
                 
                    

                 
                

                  
            

          

                    
    

            

 

        

           

       

           

       

labor cost of the driver waiting for the vehicle to charge. If charging is done off-duty this cost can 
be reduced considerably. 
As expected the emissions go down drastically as the number of electric vehicles increases in the 
fleet. 

2.6.2 On distributed optimized load balancing co-simulation method 
In this subsection, we examine different aspects that affect the performance of distributed 

optimized load balancing co-simulation methods. We use two different road networks: the Long Beach 
network and the Los Angeles Metropolitan area network which is much larger. 

For the Long Beach network, we first examine the performance under different number of 
subnetworks. The results are shown in Table V. 

Table V: Results on number of subnetworks for distributed Long Beach network 

# of Subnetworks 0 2 3 4 

Total Cost ( ) 1.053 1.091 1.147 

Computation Time (second) 

where s. The first raw in the table shows the number of subnetworks. The case 0 corresponds 
to the centralized load balancing approach that produces a total cost C1. When we divide the network into 
2 and use the distributed approach the total cost increases by a factor of 1.053 which is about 5% whereas 
the computational time is reduced significantly by about 26%. When the number of subnetworks is 3 the 
cost is increased by about 9.1% whereas the computational time is reduced by about 35%. In the case of 4 
subnetworks the cost is increased by 14.7% and the computational time is reduced by 18%. The results 
indicate that the benefits in computational time reduction is much higher than the additional cost increase 
as long as the number of subnetworks is not too high. Large number of subnetworks will increase the 
computational time associated with the interactions between assignment flows between subnetworks which 
may outweigh the computational time saved by the decomposition. 

We now proceed to check if the same conclusion can be made if we change the number of demands. Table 
VI presents the results. 

Table VI: Results on number of demands for distributed Long Beach network 

Demands # of Subnetworks 0 2 3 4 

# of demands = 3514 Total Cost 

Computation Time (second) 

# of demands = 7028 Total Cost 

Computation Time (second) 



           

       

 

 
                

        

             
           

             

     

     

       

     

  
 

   

              
              

              
                  
         

            

       

          

  
 

   

          

  
 

   

                 
                

         

             
              

          

# of demands = 14056 Total Cost 1.073 

Computation Time (second) 0.862 

where 
. With doubling and quadrupling the demand, we can see similar pattern with respect to optimality 

and computation time for the Long Beach network. 

We then check the performance of distributed optimized load balancing co-simulation method under 
different number of boundary nodes. Table VII shows the results. 

Table VII: Results on number of boundary nodes for distributed Long Beach network 

# of demands = 3514 

# of subnetworks = 2 

# of Boundary Nodes 5 6 7 

Total Cost 1.024 1.012 

Computation Time 
(second) 

where . We observe that with the increase of the number of boundary nodes, 
we gain benefits on total cost (better assignment), while lose some computation time. 

For the Los Angeles Metropolitan network, we check if the performance under different number 
of subnetworks is similar to that in Long Beach network and if the pattern remains under different number 
of demands. The results are shown in Table VIII. 

Table VIII: Results on number of subnetworks for distributed LA Metropolitan network 

Demands # of Subnetworks 3 4 5 

# of demands = 13600 Total Cost 1.096 1.1 

Computation Time 
(second) 

# of demands = 27200 Total Cost 

Computation Time 
(second) 

The results share the similarities with those from Long Beach network, which is by dividing networks 
more, we gain much more benefits on the computation time than loss on the assignment optimality. 

In a summary, the conclusions for this subsection are: 

The scalability issue can be solved by using distributed load balancing method. 
The distributed optimized load balancing co-simulation method is tested and validated under two 
networks: Long Beach network and large Los Angeles metropolitan network. 



                
              

             
                 

               
          

 
             

   

        
               

                 
                 

                  
                  
                   
                   
                    

                   
                

                   
                    

       

  
              

              
                
                 
              

              
                 

                
                 

                
               

              
                

                
                 

                
               

                 
                   

                   
              

For Long Beach network, the distributed load balancing is tested based on different number of 
subnetworks, demands and boundary nodes. By increasing the number of boundary nodes, we can 
achieve better assignment with more computational time. By increasing the number of subnetworks, 
we can achieve a large reduction in computational time with a relatively small loss on the optimality. 
However, a proper decomposition is needed since if the network is decomposed too much, the 
interactions between subnetworks will compromise the computational time gained from 
decomposition. 
For the large metropolitan network, similar relation between performance and number of 
subnetworks is revealed. 

2.6.3 On incorporated platooning optimized load balancing co-simulation 
By assuming that platoons of trucks are allowed in the assignment decision, we introduce different 

functions of energy savings as well as merging and splitting time into the origin optimized load balancing 
co-simulation method. The first case is stated in [67], where the following truck will save 21% energy 
consumption relative to the truck it follows and we assume the emerging and splitting time for each truck 
are both 2 minutes. The test is performed in Long Beach network with 3 subnetworks and 3514 demands. 
The results show that by allowing platooning, the total cost can further be reduced by 6.4%. The second 
case is from [51], where the energy consumption savings are 4.3%, 10%, 14% for the first, second and third 
truck in the platoon. The merging time is 25 seconds and the splitting time is 35 seconds. Under the same 
network setting, it achieves 5.3% total cost saving. From the observation, we can see that part of the savings 
on energy consumption from the introduction of truck platoons is compromised by the merging and 
splitting time. However, if platoons are used for long distance routes, the time spent on emerging and 
splitting may be very small relative to the overall travel time along the route and the advantage of energy 
savings can be maximized under such condition. 

3. Conclusions 
In this project, we have proposed a mixed fleet freight centrally coordinated dynamic routing 

system based on a multi-layer co-simulation optimization method to achieve freight load balance across 
the road network. The interactions with background traffic have been considered in the problem and as 
well as inclusions of electric trucks with their penetration varying from 0% to 100%. The electric trucks 
have additional constraints that include limited range, longer refueling (charging) times and in addition 
the depletion rate of the battery life depends on traffic conditions. These characteristics introduce 
additional constraints that need to be taken into account in finding optimum routes that lead to freight 
load balance across the road network. We have solved the problem by using a multi-layer optimization 
method; one layer for the traffic simulator to accurately predict the states of the transportation system and 
another layer of service network to generate the optimum routes. We also proposed a distributed variation 
of the method to address the computational complexity induced by the expansion of road network. 
Different techniques of truck platooning are incorporated with the method and tested. Realistic traffic 
networks including the Los Angeles/Long Beach network that includes the two ports and the larger Los 
Angeles Metropolitan network have been used to evaluate the approach and the impact of electric trucks 
in a mixed fleet. The system shows savings over one without optimized load balancing and 
savings over one without co-simulation. Another result reveals that although the use of electric trucks can 
notably reduce the emissions, the charging time cost makes the operational cost of electric trucks 
comparable or higher than diesel trucks. It is assumed that charging is done during working hours and 
includes the driver cost. One way to make the operational cost of electric trucks lower than those of diesel 
trucks is to schedule charging during driver off hours or during times that the driver is idle for job 
purposes. The results on the performance of distributed optimized load balancing co-simulation reveal the 



trade-offs between computation time and assignment optimality with respect to the  number of 
subnetworks, boundary nodes and demands. The use of truck platoons may have benefits whose level 
depends on the distance travelled by the platoons as merging and exiting the platoon may take away some 
of the benefits. 
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