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The Impacts of Automated Vehicles on Center City 
Parking Demand 

EXECUTIVE SUMMARY 
The potential for automated vehicles (AVs) to reduce parking in city centers has generated 
much excitement among urban planners (e.g., NACTO, 2017). AVs could drop-off (DO) and pick-
up (PU) passengers in areas where parking costs are high: personal AVs could return home or 
park in less expensive locations, and shared AVs could serve other passengers. Reduced on-
street and off-street parking present numerous opportunities for redevelopment that could 
make cities more livable, for example, by opening more street and sidewalk space for 
pedestrian and bicycle travel. However, reduced demand for parking would be accompanied by 
increased demand for on-street DO/PU spaces with related movements to enter and exit the 
flow of traffic. This change could be particularly challenging for traffic flows in downtown urban 
areas during peak hours, where high volumes of DOs and PUs are likely to occur. To our 
knowledge, only a limited amount of research has examined the travel effects of a shift from 
parking to DO/PU travel and the impact of changes in parking supply. 

Our study uses a microscopic road traffic model with local travel activity data to simulate 
personal AV parking scenarios in San 'Francisco's downtown central business district (CBD). In 
these scenarios, we vary (1) the demand for DO and PU stops versus parking, (2) the supply of 
on-street and off-street parking, and (3) the total demand for parking and DO/PU travel due to 
an increase in the cost of travel to the CBD. The results explore answers to the following 
questions. 

What are the impacts of increasing DO/PU demand relative to parking demand 
as AVs penetrate the vehicle market? 
For the CBD study area, the shift from parking trips to DO/PU trips significantly reduces traffic 
delay because of avoided parking search travel and more efficient use of parking spaces. While 
a parked vehicle typically occupies a space for 2 hours, a DO/PU vehicle occupies a space for 20 
seconds. At the CBD level, these traffic flow improvements are not off-set by increases in empty 
passenger VMT and vehicles exiting and entering the flow of traffic for DOs and PUs. However, 
on roads where the demand for parking and DO/PU spaces is relatively high, the opposite is 
true. Empty passenger VMT and increased vehicle movements do off-set the travel flow 
benefits from reduced parking search travel. Empty vehicle travel drives increases in VMT and 
CO2 emissions. However, in the early stages of DO/PU market penetration, reductions in 
parking search travel drive reductions in CO2 (Figure ES-1). 
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Figure ES-1. Scenario 1: Average (Avg.) daily VMT, empty VMT, and CO2 emissions. 

We also examined changes in parking revenue for this scenario. We found a significant 
reduction in parking revenues, which could potentially be off-set by charging more than double 
the average hourly parking rate for a DO/PU event. 

Can the conversion of on-street parking spaces to DO/PU spaces address 
impacts due to increased DO/PU demand? 
An improved match between DO/PU demand and DO/PU spaces can reduce traffic congestion, 
VMT, and CO2. However, the match must be specific to streets and time of day. An over-
allocation of DO/PU spaces can increase parking search and empty vehicle travel, which can 
increase VMT and CO2 emissions 

It may be possible to redress some negative traffic flow impacts from increasing shares of 
DO/PU traffic. However, our results show that the conversion of parking spaces to DO/PU 
spaces must be street specific and dynamic over-time to adjust to changes in AV market shares. 
Such adjustments would require continuous, detailed roadway monitoring and planning, which 
may be a challenging task for many US cities. 
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What are the impacts of concentrating the supply of off-street parking in fewer 
parking facilities? 
Our results show that increasing the concentration of off-street parking supply in fewer 
locations worsens CBD congestion. Increases in VMT are driven by empty vehicle travel and 
parking search travel, which, in addition to congestion, also increases CO2 emissions. Strategies 
are needed to implement optimally relocate off-street parking capacity. 

How might reduced traffic demand that may result from auto pricing policies 
impact the outcomes for scenarios that increase DO/PU demand, convert on-
street parking to DO/PU spaces, and increase the concentration of off-street 
parking supply? 
The 30% reduction in traffic demand in the CBD, which approximates the effects of a significant 
auto pricing policy, came close to eliminating congestion (as measured by vehicle speed and 
road occupancy). The change in VMT was relatively proportional to the change in traffic 
demand across all scenarios. However, the magnitude of congestion reduction CO2 emissions 
depended on the size of the congestion problem in the base case for each scenario. 
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Introduction 
The potential for automated vehicles (AVs) to reduce parking in central cities has generated 
much excitement among urban planners (e.g., NACTO, 2017). AVs could drop-off (DO) and pick-
up (PU) passengers in areas where parking costs are high: personal AVs could return home or 
park in less expensive locations, and shared AVs could serve other passengers. Reduced on-
street and off-street parking present numerous opportunities for redevelopment that could 
improve the livability of cities, for example, by opening more street and sidewalk space for 
pedestrian and bicycle travel. However, reduced demand for parking would be accompanied by 
increased demand for on-street DO/PU space with related movements to enter and exit the 
flow of traffic. This change could be particularly challenging for traffic flows in downtown urban 
areas during peak hours, where high volumes of DOs and PUs are likely to occur. To our 
knowledge, only a limited amount of research has examined the travel effects of a shift from 
parking to DO/PU travel and the impact of changes in parking supply. This study uses a 
microscopic road traffic model with local travel activity data to simulate AV parking scenarios in 
San Francisco's downtown central business district (CBD). In these scenarios, we vary (1) the 
demand for DO and PU travel versus parking, (2) the supply of on-street and off-street parking, 
and (3) the total demand for parking and DO/PU travel due to an increase in the cost to travel 
to the CBD. 

Literature Review 
Few studies address the effects of increased DO and PU travel from the introduction of AVs. 
Two studies, however, indicate that the potential to reduce the amount of land developed for 
parking may be significant. Zhang and Guhathakurta (2017) simulate parking demand for a fleet 
of autonomous taxis in Atlanta (GA) and find that land devoted to parking could be reduced by 
4.5% once the fleet began to serve 5% of trips and could reduce 67% of parking lots in the CBD. 

Martinez et al. (2015) simulate a fleet of automated taxis (100% market penetration) with and 
without sharing (taxi with 1+ passenger) and transit, in Lisbon, Portugal, and find that the share 
of baseline parked vehicles is 89% to 94%. At 50% market penetration levels, supportive transit 
policies must be in place to significantly reduce the share of baseline parked vehicles (24% and 
21%, respectively, with and without sharing). 

Another study examines the relationship between the location and cost of parking facilities and 
personal AV empty-vehicle relocation travel (Correia et al., 2016). It provides insight into the 
potential magnitude of the parking-related AV travel problem. The authors use an agent-based 
model that represents mode choice and dynamically assigned route choice with parking and 
repositioning travel in Delft, Netherlands, which is a small city in South Holland. The model uses 
roadway and transit networks, mode choice coefficients, and generalized cost functions. The 
authors find that paid parking significantly increases empty vehicle relocation travel, VMT, and 
vehicle hours of delay and reduces car mode share and total vehicle parking time. Widespread 
increases in parking prices produced the largest increase in VMT and empty VMT (325% and 
87.4%, respectively) and the greatest decline in total vehicle parking time (8.7%). Congestion or 
vehicle hours of delay grew the most (824%) when there was a charge for parking everywhere 
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except for two peripheral lots. Overall, the share of repositioning travel ranges from 11% to 
65%; the rise in car mode share ranges from -26 to 31 percentage points; VMT grows from 17% 
to 325%; vehicle hours of delay increases from 20% to 699%; and total vehicle parking time 
ranges from -7% to 25%. 

Millard-Ball (2019) uses data from the San Francisco City and County Travel Demand Model and 
shows that AVs will encourage vehicle travel due to vehicles cruising and avoiding parking, 
ultimately increasing congestion and VMT. The study evaluates three strategies to avoid 
parking policies for AVs with 100% AV market penetration: allowing AVs (1) to park in 
peripheral areas where parking is free or low cost; (2) to drive home after dropping passengers 
off; and (3) to cruise on roads after dropping passengers off until they need picking up again. 
The author evaluates these alternatives with a ""pgrouting"" software package that calculates 
the direct distance between origin traffic analysis zones (TAZs) and destination TAZs and does 
not consider the effects of traffic congestion. The current study uses a microscopic traffic 
simulation model that considers congestion and evaluates the incremental shifts to 100% AV 
market penetration. 

Methodology 
Modeling 
We selected the microscopic road traffic model (Simulation of Urban MObility or SUMO) to 
simulate the traffic flow effects of the AV scenarios in this study. SUMO is an open-source, 
highly portable, multimodal, microscopic road traffic simulation package designed to handle 
large road networks (Behrisch et al., 2011). The SUMO model in this study uses local travel 
activity data from the San Francisco Bay Area MATsim (SFBA-MATsim) model (Horni et al., 
2016; Rodier et al., 2018; Jaller et al., 2019). The SFBA-MATSIM model was developed and 
calibrated with the official San Francisco Bay Area Metropolitan Transportation 'Commission's 
Activity-Based Travel Demand Model (MTC-ABM). 

The geographic focus of this study is the City of San Francisco's CBD (see Figure 1). We selected 
individual daily activity tours with at least one vehicle stop in San 'Francisco's CBD from the 
SFBA-MATsim model. Arrival and departure times for vehicle tour stops are in increments of 
seconds in the SFBA-MATsim model. We also converted transit trips to AV trips for the purpose 
of the simulation. From the SFBA-MATsim model, we identified about 900,000 travelers who 
made 1.8 million trips. One percent of these are internal to the study area, and the remainder 
had at least one stop in the study area. Total simulated vehicle trip volumes in the network 
were adjusted to match roadway supply (see discussion below), transit supply, and model year 
congestion levels. 

The SUMO simulations assume that both on-street parking and DO/PU events will take place at 
the on-street at the curb (i.e., no vehicle can double park for even a short period). We add 
intermediate stops in SUMO to convert trips that end or begin with parking to DO/PU trips. The 
dwell time for DO/PU events at the curb is assumed to be 20 seconds. SUMO represents vehicle 
movements, including lane merging and exiting, necessary to park a vehicle or DO/PU 
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passengers. SUMO directs vehicles to available parking spaces closest to their destinations. 
However, if another vehicle has secured the nearest space, then SUMO will re-direct the vehicle 
to the next nearest parking space within the traffic analysis zone (see below) in which the 
destination is located. If at some point, vehicles occupy all on-street parking spaces in the traffic 
analysis zones, then vehicles that are trying to park and DO/PU a passenger will stop in the 
street and wait for an on-street parking space to open up. Note that this is an extremely rare 
occurrence in our model simulations, and future research should improve the representation of 
vehicle reactions to zero parking occupancy in a zone. This behavior will tend to cause traffic to 
backup and cause congestion. Similarly, SUMO will direct vehicles that seek off-street parking 
to the nearest off-street facility until the facility is filled, after which it will direct them to the 
next closest off-street parking facility. This process will continue until all the off-street parking 
facilities in the network are full. Once this occurs, vehicles will stop and start queuing in the 
street(s) that lead to off-street parking facilities, which will backup traffic and cause congestion. 

Travel activity patterns (and trips) are held constant in the scenarios despite changes in 
congestion. Thus, scenarios that increase congestion will not see reductions in the demand for 
travel, parking, and DOs/PUs in the CBD. Similarly, scenarios that reduce congestion will not 
increase the demand for travel, parking, and D.O./PUs in the CBD. 

The scenario simulations assume the use of personal automated vehicles (or personal AVs) as 
opposed to shared AVs. Personal vehicles are owned or leased by a household for personal or 
family use and not used by other travelers. As a result, after the vehicle drops-off the 
passenger, the vehicle will exit the study area to return home or service another family 
member. However, the empty-vehicle travel calculated for this study includes only the distance 
and time required to exit the study area. 

On-street parking location and DO/PU events in SUMO are determined by vehicle-specified 
"stops" that include a start position and an end position as link coordinates. For example, 
suppose we identify a 100-meter length of curb along a link and allocate the length from the 
50- to 100-meter marks for DOs/PUs. If there is no other vehicle in this zone along the curb, a 
vehicle needing curb space for a DO/PU will park at the 100-meter mark and, if the vehicle is 5 
meters long, it will occupy the space at the 95- to 100-meter mark. The maximum ""capacity" of 
the on-street parking is the link length divided by vehicle length. SUMO also allows for off-
street parking with its customized parking area definition to simulate garage parking or parking 
lots. The user specifies the vehicle start and end position, parking capacity, and parking space 
angle (see SUMO Documentation1 for more details). 

Network and Traffic Analysis Zones 
The SUMO simulations use transportation analysis zones (TAZ) that are consistent with the 
MTC-ABM and SFBA-MATsim 'models' zone system. In Figure 1(a), the different colors depict 
separate TAZs. The TAZs in the study area are among the smallest in the region and include 
census blocks. For this specific network, there are 45 TAZs in total. In Figure 1(b), we show the 

1 http://sumo.dlr.de/wiki/Simulation/ParkingArea 
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TAZ map for the entire San Francisco Bay Area from which we identified individuals and trips 
that traveled into, out of, and through the study area in Figure 1(a), as described above. 

We used the SUMO network editor to import OpenStreetMap for the San Francisco CBD 
roadway network. We edited the OpenStreetMap roadway network to exclude minor roads. 
Major roads in the CBD were included in the final network to increase the efficiency of SUMO 
simulations. 

(a) (b) 

Figure 1. (a) Study area: Central Business District for the City of Francisco. (b) Traffic Analysis 
Zones for MTC-ABM Model. 

Parking Supply Data 
The San Francisco Parking Census is the source of the parking supply data used in this study.2 

The San Francisco Municipal Transportation Agency (SFMTA) collected the parking supply data: 
97% through field surveys and 3% through remote resources. The on-street parking supply in 
the dataset includes metered on-street spaces, non-metered demarcated spaces (parking 
stalls), and non-metered un-demarcated spaces (unmarked curb length). For non-metered 
spots, we apply a standard 17 feet per parking space, which is the length needed by an average 
sedan to park between two vehicles. When a curb space was short and could support only one 
vehicle, we used 12 feet as the length of the parking spot. For any unmarked perpendicular 

2 http://sfpark.org/resources-overview/ 
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parking, we used a standard of 8 feet and 6 inches of curb space. We did not include controlled 
parking and restricted parking spaces in the data set. 

The data set included 1,351 on-street parking locations with a total capacity of 20,019 parking 
spots within the study area. For off-street parking, there are 356 locations with a total capacity 
of 65,404 parking spots. The spatial data were edited and processed using ArcGIS and the 
SUMO spatial analysis tool. 

Parking Revenue 
The substitution of DO/PU events for parking will tend to reduce parking revenues. To 
understand the magnitude of the reduction, we calculate net parking revenues for the 
scenarios simulated in this study. Parking costs are assumed to be $1.00 per 15 minutes for on-
street parking and $4.00 per hour for off-street parking. Total scenario parking revenue is 
calculated by summing the costs of each on- and off-street parking event. 

Emissions Impact Modeling 
We calculate how each of the different AV scenarios will affect CO2 emissions within the study 
area. We use the default emission model3 defined in SUMO to evaluate vehicle emissions CO2 
(kilograms). CO2 emissions are a common proxy for greenhouse gas emissions. The model uses 
the fitted variables from HBEFA3 (Handbook emission factors for road transport version 3) in 
the following function: 

𝑐0 + 𝑐1𝑣𝑎 + 𝑐2𝑣𝑎2 + 𝑐3𝑣 + 𝑐4𝑣2 + 𝑐5𝑣3, 

where v is the vehicle speed, and a is the acceleration/deceleration rate. For the details of how 
SUMO implemented this model, please refer to SUMO documentation.4 

Scenarios 
Four sets of scenarios are simulated with SUMO and evaluated for traffic flow, VMT, and CO2 

emission effects in San Francisco CBD with personal AVs. Simulation of shared AVs (for pooled 
or individual rides) AVs was not possible with a model set that could evaluate microscopic 
traffic impacts of changes in parking demand in an actual CBD. Future research should examine 
the effects of similar scenarios with shared AVs. However, at this point, it is not clear whether 
shared and/or personal automated vehicles will dominate future vehicle markets. The 
following describes the scenario sets and their simulation in SUMO (see also Table 1 below): 

● Scenario Set 1: What are the impacts of DO/PU demand relative to parking demand as
AVs penetrate the vehicles market? We simulate a base case scenario in which 100% of
simulated trips park and gradually increase the share of DO/PU trips in 10% increments
until 100% of trips end by dropping-off passengers and begin with picking-up

3 https://sumo.dlr.de/docs/Models/Emissions/HBEFA3-based.html; https://www.hbefa.net/e/index.html 
4 https://sumo.dlr.de/wiki/Models/Emissions 
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passengers. Travel activity (i.e., the number of trips by time-of-day and origin and 
destination locations) is held constant. Vehicle trips with purposes that involve long 
stays (greater than 2 hours) in the study area park in off-street parking facilities closest 
to their destination at the time of arrival. Vehicles with shorter stays (less than 2 hours) 
are allocated to on-street parking closest to their destination at the time of arrival. 

●      Scenario Set 2: Can the conversion of on-street parking spaces to DO/PU spaces meet 
the increasing DO/PU demand caused by a shift to AVs? In this scenario set, on the supply 
side, we incrementally convert on-street parking to DO/PU spaces, as represented in our 
study area parking inventory, while holding travel activity constant. We use 80% demand for 
parking and 20% for DO/PU. The locations for converted parking to DO/PU areas are 
randomly selected within the study area.
●      Scenario Set 3: What are the impacts of concentrating the supply of off-street parking 
in fewer parking facilities? AV technology, as described in our literature review above, is 
expected to increase the capacity of existing off-street parking facilities. Scenario set 3 uses 
the 50% DO/PU traffic scenario from scenario set 1 without any dedicated DO/PU spaces. 
We randomly select parking spaces from off-street parking facilities to relocate to other off-
street parking facilities. The relocated shares increase from 10% to 90% in the scenario set. 
Total off-street parking supply and demand remain constant across the scenarios.
●      Scenario Set 4: How might plausible reductions in traffic demand in the study areas 
from auto pricing policies impact the outcomes for scenario sets 1 to 3, above? A 30%
random reduction in traffic is simulated with the (a) 100% on-street parking, and 0%DO/PU 
traffic shares in scenario set 1; (b) 50% on-street parking and 50% DO/PU traffic shares (i.e., 
demand) with a 50% shift from on-street parking spaces to DO/PU spaces (i.e., supply) from 
scenario set 2; and (c) 50% on-street parking and 50% D.O./pick up traffic shares with a 30% 
increase in the concentration of off-street parking from scenario set 3.
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Table 1. Summary of Study Scenarios 

Scenario Set 1 Scenario Set 2 Scenario Set 3 Scenario Set 4 

Description AVs shift demand Convert parking Off-street parking Pricing policies 
from parking to 
DO/PU. 

spaces to DO/PU 
spaces to match 

is concentrated in 
fewer facilities. 

reduce CBD traffic. 

need. 

On-Street Parking 100% to 0% (10% 80% 50% Applied to 
Demand increments) scenario sets 1, 2, 

and 3. 
DO/PU Demand 0% to 100% (10% 20% 50% 

increments) 

Off-Street Parking 
Demand 

Constant Constant Constant 

On-Street Parking Constant 100% to 0% (10% Constant 
Supply increments) 

DO/PU Supply Constant 0% to 100% (10% 
increments) 

Constant 

Off-Street Parking 
Supply 

Constant Constant Reallocate initial 
distribution to 
fewer locations: 
10% to 90% (10% 
increments) 

Traffic Activity Constant Constant Constant 30% reduction 

Results 
Traffic Flow Results 
Scenario Set 1: What are the traffic flow impacts of increasing DO/PU demand relative 
to parking demand as AVs penetrate the vehicles market? 

Figure 2 shows the average speeds by time of day in meters per second (m/s) for the CBD as the 
share of DO/PU traffic increases from 0% to 100% in 10% increments. The fastest travel speed 
(or free-flow) simulated for this area is 8 m/s (∼18 mile per hour [mph]). From 6 am to 7 am, 
when travel activity is light, the change in the share of vehicles parking and dropping-
off/picking-up has almost no effect on travel speeds. As travel activity increases and decreases 
throughout the day, speeds go as low as 1 m/s (or about 2 mph) during the mid-day period in 
the 0% scenario (all vehicles park) and increase rapidly to free-flow speeds (8 m/s or 18 mph) 
when DO/PU trips substitute for 40% to 50% of parking trips. In sum, on average for the CBD, 
the shift to DO/PU trips from parking trips improves traffic flow because of reduced parking 
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search time and more efficient use of parking spaces (i.e., instead of parking in a space for two 
hours, vehicles pull-over for 20 seconds for a DO/PU). These traffic flow improvements are not 
off-set by increases in empty passenger VMT and vehicles exiting and entering the flow of 
traffic to drop-off and pick-up passengers. 

Figure 2. Average CBD speed (m/s) by the time of day, as the share of drop-off/pick-up 
demand substitutes for parking demand from 0% to 100% in 10% increments (Scenario Set 1). 

However, when we consider the roadway link-level results for the same scenario, the findings 
are very different. Links refer to a road segment. On roads where demand for parking spaces is 
high, empty passenger VMT and vehicles moving in and out of lanes for DO/PU travel do off-set 
the travel flow benefits from reduced parking search travel. Figure 3 shows the change in 
roadway link-level occupancy for the CBD network with increasing shares of DO/PU trips with 
0%, 50%, and 100% DO/PU traffic. Low vehicle to roadway vehicle occupancies are light green 
and represent "free-flow" vehicle speeds, as described above, and high vehicle occupancies are 
red (approaching 1.0) and represent congested conditions and very low vehicle speeds. 
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Figure 3. Average daily roadway link-level occupancy results for scenario set 1 (0%, 50%, and 100% shift from parking traffic to drop-
off/pick-up traffic). X- and y-axis values indicate meters [m] from an arbitrarily located reference point. 
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Scenario Set 2: Can the conversion of on-street parking spaces to DO/PU spaces 
address traffic flow impacts due to increasing shares of DO/PU demand? 

Figure 4 shows the percentage change in average CBD speeds by hour of the day for different 
scenarios with an increasing reallocation of parking spaces to DO/PU spaces, from 20% to 100% 
(in 20% increments for clarity of presentation). The results show that the 20% shift (blue curve) 
from parking spaces to PU/DO areas, compared to higher percentages shifts (> 20% to 100%), 
generally is associated with the highest average speeds in the CBD. 

Figure 4 also shows the variability of performance across the scenarios by the time of day. 
Conversions locations (i.e., parking to DO/PU) were not selected based on high-levels of parking 
occupancy and DO/PU traffic. Instead, we randomly chose the locations, and this explains the 
variability. 

Figure 4. Percentage change in average CBD speed at different times of the day if different 
percentages of on-street parking spaces (20–100%) are reallocated to drop-off/pick-up 
spaces. 

The need to optimize the transition of parking to DO-PU areas is illustrated further by Figure 5 
below, which depicts road level occupancy rates at 20%, 60%, and 100% conversion levels. A 
visual inspection shows no real difference in congestion at the average daily roadway link level. 
In sum, these results show that the conversion of parking spaces to DO/PU zones must be 
dynamic over-time as AV market shares increase and based on continuous, detailed roadway 
monitoring and planning, which may be a challenging task for many US cities. 
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Figure 5. Average daily roadway link-level occupancy results for scenario set 2 (20%, 60%, and 100% of on-street parking spaces 
converted to drop-off/pick-up spaces). 
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Scenario Set 3: What are the traffic flow impacts of concentrating the supply of off-
street parking in fewer parking facilities? 

Figure 6 below depicts average CBD speeds (m/s) by the hour of the day as the distribution of 
off-street parking supply is concentrated in fewer, randomly selected, off-street facilities. Note 
Figure 6 shows results in 20 percentage point increments for clarity of presentation. The results 
indicate that a large concentration of off-street parking supply will significantly reduce average 
CBD network speeds throughout most of the day The magnitude of the relocation does not 
have a consistent direct or indirect relationship with the average CBD speed: for example, a 
40% reallocation (green curve) leads to higher average CBD speeds than do lower (20%) and 
higher (60% and 80%) percent reallocations. This lack of a consistent quantitative relationship 
may be a result of the random locations selected in the model for concentrating off-street 
parking facilities. 

Figure 6. Average CBD speed (m/s) by the hour of the day with the distribution of off-street 
parking supply concentrated in randomly located, fewer off-street facilities (Scenario Set 3). 

Figure 7 shows increasing congestion at the roadway link-level as off-street parking supply is 
concentrated in fewer locations at 20%, 40%, and 80% relocation levels. We can see signs of 
significant queuing to enter off-street parking facilities in the 80% scenario. 

In sum, these results suggest that an increased concentration of off-street parking supply in few 
locations can significantly impact congestion levels in the CBD, which indicates the need to 
examine optimal relocation strategies for off-street parking. 
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Figure 7. Average daily roadway link-level occupancy results for scenario set 3 (conversion of 0%, 40%, and 80% of on-street parking 
spaces to drop-off/pick-up spaces). 
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Scenario Set 4: How might plausible reductions in traffic demand in the study areas 
from auto pricing policies impact the outcomes for scenario sets 1 to 3, above? 

Figure 8 shows the percentage change in average hourly CBD vehicle speeds when traffic is 
reduced by 30% in scenario sets 1, 2, and 3. There are relatively large changes in average hourly 
CBD speeds during the peak periods in both scenario set 1 and 2, but improvements are more 
modest in scenario set 3. Similarly, the average roadway link-level occupancy maps in Figure 9 
show more pronounced decreases in occupancy in scenarios 1 and 2 and somewhat less 
pronounced decreases in scenario set 3. Less traffic in scenario sets 1 and 2 reduce on-street 
parking search travel and lane entering and exiting movement by DO/PU travel. In scenario set 
3, vehicles travel farther to access off-street parking, but queuing to enter facilities appears less 
severe, with the reduction in overall traffic. 

Figure 8. Percentage change in average hourly CBD vehicle speeds if traffic is reduced by 30% 
in scenarios 1, 2, and 3. 
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        Scenario Set 1 30% traffic reduction in Scenario Set 1 
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     Scenario Set 2 30% traffic reduction in Scenario Set 2 
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Scenario Set 3 30% traffic reduction in Scenario Set 3 

Figure 9. Average daily link-level road occupancy when traffic is reduced by 30 in scenario sets 1,2, and 3. 
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VMT and Emission Results 
As discussed above, traffic caused by increased DO/PU demand will potentially increase VMT. In 
this section, we show the impact of AVs using on-street curb space on the overall VMT under 
different scenarios. We look at the average VMT and average empty VMT within the study area. 

Scenario Set 1: What are the VMT and emissions impacts of increased DO/PU demand 
relative to parking demand as AVs penetrate the vehicle market? 

Figure 10 shows the average VMT and empty VMT in the network for different percentages of 
DO/PU traffic. The average VMT and empty VMT is very close to a linear relationship with the 
percentage of DO/PU traffic. As the percentage of DO/PU traffic increases, the average VMT 
and empty VMT also increase. When the DO/PU percentage increases from 0% to 100%, the 
average VMT increases monotonically by approximately 70%. Empty VMT has a very similar 
pattern. Empty VMT drives the increase in VMT as AVs drop-off and pick-up passengers. A small 
part of empty VMT is from extra "parking search" trips caused by higher levels of congestion. 
The contribution of empty VMT to the average VMT increases as the percentage of DO/PU 
traffic increases. In the extreme case, when there is 100% DO/PU traffic, the empty VMT is 
approximately 50% of the average VMT. 

Figure 10 also provides a visual plot of average CO2 emissions versus different percentages of 
DO/PU traffic. CO2 emissions first decrease as DO/PU traffic increases from 0% to 40%, which 
likely corresponds to the initial increase in the AV share of the vehicle market. When the DO/PU 
share of traffic by AVs surpasses 40%—and the parking share of traffic by conventional vehicles 
correspondingly decreases—overall VMT, congestion and, therefore, CO2 emissions begin to 
increase. During this initial phase from 0–40%, since the percentage of conventional vehicles 
that require parking is high, the demand for parking is also high. Congestion and emissions 
primarily result from conventional vehicles cruising for parking and/or waiting for parking. The 
transition from conventional vehicles to AVs improves the shortage in parking resources: AVs 
that do not need parking spaces replace conventional vehicles that require on-street or off-
street parking spaces. Vehicles in the network, hence, spend less time circulating on the road 
searching for parking spaces. Therefore, congestion and emissions are reduced. After some 
critical point (40% in this study), the situation becomes worse as the percentage of DO/PU 
traffic increases, if everything else is unchanged (e.g., total parking supply, road network, and 
total travel demand). In this late phase of AV adoption ( > 40%), the benefits of AVs (or DO/PU 
vs. parking) in terms of reducing parking demand are off-set by the extra VMT and emissions 
created by AVs. AVs create empty VMT after dropping off passengers or when traveling from 
home to a PU location. This empty VMT inevitably creates additional congestion and emissions 
in the network. 
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Figure 10. Scenario 1: Average (Avg.) daily VMT, empty VMT, and CO2 emissions. 

Scenario Set 2: Can the conversion of on-street parking spaces to DO/PU spaces 
address VMT and emissions impacts due to increased DO/PU demand? 

In this scenario, the relationship between the percentage of dedicated DO/PU space and total 
VMT is not a simple linear correlation. When the percentage of the former increases from 0% to 
35% (from the fitted curve in Figure 11), there is a decrease in average VMT and empty VMT. At 
this range, decreases in travel time and distance needed for vehicles to find DO/PU spaces drive 
the reduction in VMT. When the dedicated DO/PU percentage increases from 35% to 90%, 
average VMT and empty VMT increases. The rise in VMT after 35%, especially the huge spike at 
90%, is primarily because more dedicated DO/PU locations lead to fewer on-street parking 
spaces, which increases the time and distance needed to locate an available parking space. 
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(a) 

(b) 

Figure 11. Scenario 2: (a) Average (Avg.) daily VMT and CO2 emission. (b) Average daily empty 
VMT". ("polyfit" indicates polynomial curve fitting) 
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In Figure 11(a), we can see a positive relationship between average daily CO2 emissions and the 
number of dedicated DO/PU spaces increase. As we convert more on-street parking spaces to 
dedicated DO/PU traffic spaces, more cruising for parking is required to find parking. Besides 
the extra cruising travel, DO/PU traffic creates traffic backups and congestion near the 
dedicated DO/PU locations. Therefore, more DO/PU dedicated space could further increase CO2 

emissions from vehicles that get stuck in traffic congestion. 

Scenario Set 3: What are the VMT and emissions impacts of concentrating the supply 
of off-street parking in fewer parking facilities? 

In this scenario, we concentrate the supply of off-street parking in fewer parking facilities. 
Figure 12 shows how average daily VMT, empty VMT, and CO2 emissions respond to this 
reallocation of off-street parking. Overall, the metrics increase when off-street parking supply 
becomes more and more concentrated because vehicles need to travel longer distances to get 
to parking facilities. Also, the relatively concentrated off-street parking supply attracts vehicles 
to those parking facilities, which inevitably creates "hot spots" in the road network. These "hot 
spots" have dense traffic. Thus, such concentration of off-street parking will create severe 
traffic congestion near the parking facilities and contribute to more emissions (shown as the 
solid green line in Figure 12(a)). 
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(a) 

(b) 

Figure 12. Scenario 3: (a) Average (Avg.) daily VMT and average CO2 emission. (b) average 
daily empty VMT. 
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Scenario Set 4: How might plausible reductions in traffic demand from auto pricing 
policies impact the VMT and CO2 emissions results for scenario sets 1 to 3, above? 

In this scenario, we compare different test cases against base cases (see the descriptions in 
Table 1). The traffic demand in the test cases is reduced by 30% compared to the base cases. 
Figure 13 shows that in all cases (a–c), the total and average VMT and empty VMT all decrease 
with reduced traffic demand. In case (a), total VMT decreases by 33%. In cases (b) and (c), total 
VMT and empty VMT are each reduced by about 30%. The amount of reduced VMT 
approximately matches the amount of reduced traffic demand. Average VMT, on the other 
hand, does not change significantly across base cases and test cases because the percent 
reduction of total VMT and traffic demand is approximately the same. 

CO2 emissions also change in the test cases compared to the base cases (See Figure 14). In case 
(a), total CO2 emissions are reduced by 72%, while average CO2 emissions are reduced by 60%. 
In case (b), total CO2 emissions are reduced by 32%, while the average CO2 emissions are only 
reduced by 3%. In case (c), total CO2 emissions are reduced by 31%, and the average CO2 

emissions are almost unchanged with a 1.7% reduction. Traffic in the base case (a) is heavily 
congested. The 30% reduction in traffic demand reduces total emission (less travel) and 
congestion. Vehicles spend less time in congestion and produce less average CO2 emissions. 
However, traffic in the base case (b) and base case (c) is not as heavy as the base case (a). The 
effects of reducing traffic demand on traffic are not as significant. Therefore, the average 
emission reduction in these two cases is almost unchanged. 
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(a) 

(b) 

Figure 13. Scenario 4: Percentage change in (a) daily total and (b) average (Avg.) VMT and 
empty VMT. 
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Figure 14. Scenario 4: Daily total CO2 emission and average CO2 emission. 

Parking Revenue 
The shift from paid parking in San 'Francisco's CBD to free DO /PU traffic could have a 
significant impact on parking revenues. In this section, we use the results from scenario set 1 to 
explore the effects on parking revenue and possible alternatives to recoup revenue losses. 

In the scenario set 1, total parking revenue drops quickly as the percentage of DO/PU traffic 
rises, as shown in Figure 15(a). The trend is similar for on-street parking revenue and off-street 
parking revenue. Parking revenue is zero when all traffic ends with DOs and PUs. 

To compensate for this potential parking revenue loss, we explore the possibility of 
implementing a DO/PU fee for any vehicle that uses the DO/PU zones. Figure 15(b) shows what 
would happen if we impose a $2.00 fee on every DO/PU vehicle within the study area. Note 
that we assume travelers will not change their travel behavior due to the new DO/PU fee. 
However, our analysis could over or underestimate revenue because the demand for trip ends 
in the study is based on existing parking costs in the CBD. We see that by collecting a $2.00 
DO/PU fee the total ""parking revenue"" increases to approximately $36,000 in the 100% 
DO/PU case, which is only a quarter of that collected in the base case scenario (0% DO/PU). 
Figure 15(c) shows the DO/PU fees that would be required to obtain the same amount of 
revenues as the base case under a different percentage of DO/PU traffic. We estimated that the 
DO/PU fee needs to increase to approximately $10.00 per DO/PU trip in the extreme case. 
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(a) No DO fee. (b) $2.00 DO fee. 

(c) DO fee needed in different scenarios to collect the same amount of revenue as base case (0%). 

Figure 15. Parking revenue scenarios. 
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Conclusions 
In this study, we used a microscopic road traffic model with local travel activity data to simulate 
vehicle travel in San 'Francisco's downtown central business district to explore traffic flow, 
VMT, and CO2 effects of personal AV scenarios. In these scenarios, we vary (1) the demand for 
DO and PU travel versus parking, (2) the supply of on-street and off-street parking, and (3) the 
change in demand for parking and DO/PU travel due to a significant change in the cost of travel. 
The results explore answers to the following questions. 

What are the impacts of increasing DO/PU demand relative to parking demand 
as AVs penetrate the vehicle market? 
For the CBD study area, the shift from parking trips to DO/PU trips significantly reduces traffic 
delay because of avoided parking search travel and more efficient use of parking spaces. While 
a parked vehicle typically occupies a space for 2 hours, a DO/PU vehicle occupies a space for 20 
seconds. At the CBD level, these traffic flow improvements are not off-set by increases in empty 
passenger VMT and vehicles exiting and entering the flow of traffic for DOs and PUs. However, 
on roads where the demand for parking and DO/PU spaces is relatively high, the opposite is 
true. Empty passenger VMT and increased vehicle movements do off-set the travel flow 
benefits from reduced parking search travel. Empty vehicle travel drive increases in VMT and 
CO2 emissions. 

We also examined changes in parking revenue for this scenario. We found a significant 
reduction in parking revenues, which could potentially be off-set by charging more than double 
the average hourly parking rate for a DO/PU event. 

Can the conversion of on-street parking spaces to DO/PU spaces address 
impacts due to increased DO/PU demand? 
An improved match between DO/PU demand and DO/PU spaces can reduce traffic congestion, 
VMT, and CO2. However, the match must be specific to streets and time of day. An over-
allocation of DO/PU spaces can increase parking search and empty vehicle travel, which can 
increase VMT and CO2 emissions 

It may be possible to redress some negative traffic flow impacts from increasing shares of 
DO/PU traffic. However, our results show that the conversion of parking spaces to DO/PU 
spaces must be street specific and dynamic over-time to adjust to changes in AV market shares. 
Such adjustments would require continuous, detailed roadway monitoring and planning, which 
may be a challenging task for many US cities. 

What are the impacts of concentrating the supply of off-street parking in fewer 
parking facilities? 
Our results show that increasing the concentration of off-street parking supply in fewer 
locations worsens CBD congestion. Increases in VMT are driven by empty vehicle travel and 
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parking search travel, which, in addition to congestion, also increases CO2 emissions. Strategies 
are needed to implement optimally relocate off-street parking capacity. 

How might reduced traffic demand that may result from auto pricing policies 
impact the outcomes for scenarios that increase DO/PU demand, convert on-
street parking to DO/PU spaces, and increase the concentration of off-street 
parking supply? 
The 30% reduction in traffic demand in the CBD, which approximates the effects of a significant 
auto pricing policy, came close to eliminating congestion (as measured by vehicle speed and 
road occupancy). The change in VMT was relatively proportional to the change in traffic 
demand across all scenarios. However, the magnitude of congestion reduction CO2 emissions 
depended on the size of the congestion problem in the base case for each scenario. 
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Data Management 
Products of Research 
The simulation model in this study was developed and calibrated with the official San Francisco 
Bay Area Metropolitan Transportation 'Commission's Activity-Based Travel Demand Model 
(MTC-ABM). The geographic focus of this study is the central business district (CBD) in the City 
of San Francisco. We selected individual daily activity tours with at least one vehicle stop in San 
Francisco CBD from 5 am to 12 pm (an average weekday) from the SFBA-MATsim model. 

The parking supply data was collected from SFpark website and processed into a SUMO-
compatible format. 

Data Format and Content 
The dataset is presented in XML format which is the default format used by the simulation tool 
SUMO. 

Data Access and Sharing 
The dataset for the simulation model is available at https://doi.org/10.25338/B8DG7P 

Reuse and Redistribution 
The simulation models can be cited, provided that an attribution is given to this work and the 
dataset. The dataset should be cited as: 

Chai, Huajun; Rodier, Caroline (2020), AVs and Central Business District Parking, UC Davis, 
Dataset, https://doi.org/10.25338/B8DG7P 
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