




# Modal MAY 2023

Project Title:
Development of an Integrated
Unmanned Aerial Systems (UAS)
Validation Center

Task Number: 3757

Start Date: September 1, 2018

Completion Date: February 29, 2024

Task Manager: Nathan Loebs Transportation Engineer nathan.loebs@dot.ca.gov

# Development of Integrated Unmanned Aerial Systems (UAS) Validation Center

Develop the standards, protocols, and testing requirements that a given UAS must meet and demonstrate for a particular application.

### WHAT IS THE NEED?

Unmanned Aerial Systems (UAS) have the potential to drastically change how civil infrastructure is inspected, monitored, and managed. Deployment of UAS in areas such as bridge inspection and accident reconstruction will likely have far-reaching impacts and evolve over time, with new uses and users emerging as technology matures.

With new technology, limitations exist until new protocols are established and industry must move forward with an appropriate level of caution. For example, speculation regarding the ability of a UAS to replace a human bridge inspector is frequently observed in trade magazines, presentations, and in the literature. With no standard tests or regulations to verify such claims, agencies are left to rely upon vendor's promotional material when making decisions about UAS deployment.

# WHAT ARE WE DOING?

The following is the scope

- Identify areas that need UAS validation in the context of civil engineering infrastructure. Possibilities include bridge and traffic signal inspection, accident reconstruction, construction site monitoring, site assessment and inspection of railroad way.
- 2. Conduct stakeholder workshops, including owners, engineers, pilots, and academics, to identify performance criteria which UAS must meet for a variety of applications.



DRISI provides solutions and knowledge that improves California's transportation system



Development of Integrated Unmanned Aerial Systems (UAS) Validation Center



- 3. Develop methodologies to "test" whether the UAS meets specific criteria identified in Task 2 for given applications. The following specific research efforts are conducted in this task:
  - a. Development of pilot and UAS navigation testing and validation obstacle courses, communication with the airport tower, filing of the flight-plan, as well as the required written testing criteria for the pilot.
  - b. Development of camera and other sensor accuracy and precision requirements, such as lighting standards, contrast detection, color sensing capabilities, distance and volume measurement requirements, and image quality standards.
  - c. Development of test methods and test equipment to objectively, and consistently measure that a given UAS is providing sufficient lighting (i.e. do small light optic measurement devices need to be installed at strategic locations under the bridge). Other devices will need to be developed to ensure standard contrast testing, accuracy, precision standards, etc. that are required in the bullet item above so that they can be quantitatively and repeatedly evaluated.
  - d. Development of a test bed (e.g., full-scale bridge specimens, accident scenarios, etc.) in which navigation skills of the UAS are tested under specific conditions, such as a pre-defined wind speed.
  - e. Development of UAS performance criteria when communication or line-of-sight is lost.
- 4. Conduct stakeholder workshops to present results from Task 3 and refine as necessary.
- 5. Conduct a beta version roll-out of the validation criteria at Purdue University's Center for Aging Infrastructure (CAI) and the Steel Bridge Research, Inspection, Training, and Engineering Center (S-BRITE). This site allows testing on multiple full-scale bridge components, signal and luminaire structures and space for accident reconstruction and simulated construction sites related to transportation components.

- 6. Based on the results of Task 5, further revise the validation criteria and submit a final report with detailed UAS performance measures and guidance for specific applications.
- 7. Provide testing using the performance criteria developed and issue "certificates of performance" to UAS which satisfactorily meet the performance criteria testing for specific applications

# WHAT IS OUR GOAL?

This pooled-fund study proposes to develop the standards, protocols, and testing requirements that a given UAS must meet and demonstrate for a particular application. As an example, considerations regarding UAS deployment for bridge inspection may include (but are not limited to) the following:

- Safety in constrained locations where line of site is limited
- Imaging system performance in poorly lit environments
- Control of the UAS while flying between large steel girders
- Adequate resolution of the imaging system for detecting the damage of interest


The objectives of the study are two-fold:

- Development of the specific criteria a given UAS must meet for each particular application.
- Determining how to validate that a given UAS
  meets the required criteria. The current industry
  is unregulated with regard to establishing
  the required level of performance for UAS
  in civil engineering applications. The results
  of this study will be the development of the
  performance measures and validation criteria
  that agencies can use when making decisions
  about deployment of UAS in the context of civil
  engineering.

The contents of this document reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the California Department of Transportation, the State of California, or the Federal Highway Administration. This document does not constitute a standard, specification, or regulation. No part of this publication should be construed as an endorsement for a commercial product, manufacturer, contractor, or consultant. Any trade names or photos of commercial products appearing in this document are for clarity only.



Development of Integrated Unmanned Aerial Systems (UAS) Validation Center



# WHAT IS THE BENEFIT?

The California Department of Transportation (Caltrans) can potentially benefit from the outcome of this research by implementing the resulting recommendations and potential solution from this pooled fund study. The public may benefit from the implementation of the results of this research which have the potential to improve the effectiveness in leveraging UAS technologies.

### WHAT IS THE PROGRESS TO DATE?

Janaury 1, 2023 - March 31, 2023

- The development of a standardized "practical" test for the UAS certification process is completed. The practical test complements the chambers in the validation center by providing an assessment under field inspection conditions. The test was developed following the suggestions provided in the project update meeting and the feedback from bridge inspectors who tested the chambers. The test is ready to move to the next phase: beta testing.
- Finalized the video animations for the evaluation chamber and wind turbulence evaluation chamber. The videos contain 3D representations of the elements inside both chambers, a description of the tasks to be performed, and guidelines to follow during the test. In addition, the videos will contain captions and audio narration.
- Updated rubric methodology for the UAS
   Evaluation Chamber for bridge inspection
   and specifications for the evaluation chamber
   according to feedback provided by pilots and
   bridge inspectors.
- Revised images and dimensions used inside the UAS Evaluation Chamber to cover feedback from beta-testing and grading using the rubric developed for the test.
- The Research Team has scheduled two UAS pilots from Project partners to perform beta testing of the chambers and tests developed for the validation center. The pilots will visit the S-BRITE center in the next quarter.

- Developed a budget for building additional chambers from the UAS validation center at the Project Partners' location.
- The Research Team has contacted Project partners to coordinate future visits for betatesting during the next quarter and the potential to build additional chambers at the Project partners' location. More pilots will be scheduled in the next quarter.
- The Project partners have provided reference material from related projects their departments are conducting or have conducted in the past for consideration in the validation center and beta-testing.

The contents of this document reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the California Department of Transportation, the State of California, or the Federal Highway Administration. This document does not constitute a standard, specification, or regulation. No part of this publication should be construed as an endorsement for a commercial product, manufacturer, contractor, or consultant. Any trade names or photos of commercial products appearing in this document are for clarity only.