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ACKNOWLEDGMENTS 

The University of California Pavement Research Center would like to acknowledge the cooperation by 

the Washington State Department of Transportation, which provided its entire PMS database to make this 

project possible.  

The Caltrans Division of Research and Innovation (DRI) Contract Manager was Michael Samadian, under 

the direction of Tom Hoover and Nick Burmas. The Pavement Standards Team Technical Lead was 

Shakir Shatnawi. 

The authors would also like to acknowledge the help of Shadi Anani and Tim Du Lac, graduate students 

at UC Berkeley who assisted with the preparation of this report, and the Caltrans Division of Maintenance 

Office of Pavement Preservation, under the direction of Shakir Shatnawi, and Office of Roadway 

Rehabilitation, under the direction of Susan Massey, who have provided continued guidance and 

assistance on this project. 

PROJECT OBJECTIVES 

This report was completed as part of Partnered Pavement Research Center (PPRC) Strategic Plan Element 

3.2.5, titled “Documentation of pavement performance data for pavement preservation strategies and 

evaluation of cost-effectiveness of such strategies.” The main objective of this project was to develop 

Empirical-Mechanistic (E-M) performance models using data from Washington State’s Pavement 

Management System (PMS) databases. This report presents results of the development of an alligator 

cracking progression model. 
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EXECUTIVE SUMMARY 

The work presented in this report was performed for the California Department of Transportation 

(Caltrans) by the University of California Pavement Research Center (UCPRC) as part of Partnered 

Pavement Research Center Strategic Plan Element 3.2.5 (PPRC SPE 3.2.5), titled “Documentation of 

pavement performance data for pavement preservation strategies and evaluation of cost-effectiveness of 

such strategies.” Work on PPRC SPE 3.2.5 was begun in 2006. The Pavement Standards Team (PST) 

technical lead for PPRC SPE 3.2.5 is the Division of Maintenance. 

An infrastructure management system (IMS) is a decision-support tools that aids public agencies in 

planning maintenance activities of their facilities. A complete IMS facilitates the following tasks: facility 

inspection and data collection, deterioration prediction through performance models, and selection of the 

maintenance, rehabilitation, and reconstruction (MR&R) policy over the planning horizon. A pavement 

management system (PMS) is an IMS used for pavement infrastructure. Pavement performance models 

are a core component of PMS. 

The main objective of this project was to develop Empirical-Mechanistic (E-M) pavement performance 

models for predicting the initiation and progression of alligator cracking in hot-mix asphalt (HMA) 

overlays on asphalt pavements, using data from the Washington State Department of Transportation 

(WSDOT). The research described in this report complements the work performed in PPRC SPE 4.5, 

which involved development of empirical-mechanistic pavement performance models using data from the 

Washington State PMS database, which was published in report UCPRC-RR-2005-5. Along with the 

cracking initiation model described in that report, the cracking progression model described herein 

completes the HMA pavement performance model suite. 

At the start of this work, models using pavement data from WSDOT and the Arizona Department of 

Transportation (ADOT) were attempted. The initial reasoning for using PMS data from those states is that 

they have measured pavement conditions consistently over a long period of time, and they have 

topographic features and climate similar to parts of California. Therefore, Caltrans could use models 

developed using data from those states to manage a subset of California’s pavement infrastructure until 

the department develops the database needed to support model development. However, the research team 

found that the ADOT data were inappropriate for developing the performance models needed in this 

project, so only WSDOT pavement data were used in model development. 
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Cracking progression is a continuous process that represents the change in the percentage of cracking 

with time, under certain structural, traffic, and climate conditions. The prediction of cracking progression 

is very important for pavement management agencies, since the extent of crack progression reflects the 

structural condition of a pavement section and triggers maintenance, rehabilitation, and reconstruction 

(MR&R) activities. The main focus of this research is the progression of fatigue cracking (commonly 

referred to as “alligator cracking”) rather than longitudinal cracking, since alligator cracking is an 

advanced stage of longitudinal cracking. Alligator cracking as defined in the WSDOT PMS is equivalent 

to the combination of Caltrans Type B and Type C Alligator Cracking. The extent of alligator cracking is 

defined in the same way in the WSDOT and Caltrans PMS data collection manuals, as the percent of the 

wheelpath in the section with alligator cracking. 

The following tasks were performed in order to develop the alligator cracking progression model: 

1. The WSDOT PMS databases were mined for the most relevant variables, including pavement 

section structure, traffic, surface condition, and resurfacing activities. These were augmented with 

environmental data obtained from external data sources. 

2. Appropriate functional forms were selected for the performance model, and relevant explanatory 

variables were included. 

3. Appropriate statistical modeling tools were used to correct for empirical data problems and 

estimate (calibrate) the parameters of the performance model. 

4. Classical statistical tests were performed on the model to confirm the statistical significance of 

the various parameters and to test the model as a whole. 

5. Predictions were performed using the performance model suite (crack initiation and progression) 

in order to confirm that it produced realistic results. The computations were implemented using 

microsimulation in order to capture the stochastic (i.e., random) nature of the overlay crack 

initiation process. 

Conclusions from this research can be summarized as follows: 

1. The developed performance model for cracking progression in HMA overlays on asphalt 

pavements is rich in relevant explanatory variables and produces good predictions. This 

overcomes several shortcomings that characterize current empirical cracking progression models. 

2. The following explanatory variables were found to be the most relevant predictors of the annual 

increment in alligator cracking for HMA overlays on HMA pavements: 

• The alligator cracking in the previous year 

• The existing alligator cracking prior to the application of the (last) overlay 
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• The thicknesses of asphalt-treated, portland cement-treated, and untreated aggregate 

bases 

• The thickness of the underlying HMA layers prior to application of the overlay 

• The thickness of the overlay 

• The two types of WSDOT conventional HMA materials, Type A [nearly identical 

specification as Caltrans Type A dense-graded asphalt concrete (DGAC)] and Type B 

(specification requiring somewhat better performance than Caltrans Type B DGAC, less 

than Caltrans Type A DGAC) 

• The annual traffic loading in ESALs 

• The annual precipitation 

• The average daily minimum temperature during the coldest month (December) and the 

average daily maximum temperature during the hottest month (July) 

The main recommendations contained in the report are: 

1. The developed HMA pavement performance model suite (the cracking initiation model 

described in report UCPRC-RR-2005-5 and the cracking progression model described in this 

report) should be tested on California PMS data. These data can either be collected as part of 

a pilot project or mined from data in the Caltrans PMS database after that database has been 

populated with information collected over consistently segmented sections. If the results of 

the tests are positive, then Caltrans can essentially use these models as temporary HMA 

pavement performance models. 

2. Once Caltrans has populated its PMS database with sufficiently extensive condition survey 

data, these developed HMA pavement models can be updated with the California data by 

using statistical fusion procedures, such as Bayesian updating. 

3. The ultimate objective of the development of such models is to use them within an integrated 

PMS. The models can provide predictions to support MR&R planning at both the project and 

network levels. Therefore, to fully reap the benefits of its investment in this research, Caltrans 

should continue its efforts at modernizing its PMS. 
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1 INTRODUCTION 

The work presented in this report was performed for the California Department of Transportation 

(Caltrans) by the University of California Pavement Research Center (UCPRC) as part of Partnered 

Pavement Research Center Strategic Plan Element 3.2.5 (PPRC SPE 3.2.5), titled “Documentation of 

pavement performance data for pavement preservation strategies and evaluation of cost-effectiveness of 

such strategies.” Work on PPRC SPE 3.2.5 was begun in 2006. The Pavement Standards Team (PST) 

technical lead for PPRC SPE 3.2.5 is the Division of Maintenance. 

An infrastructure management system (ISM) is a decision-support tool that aids public agencies in 

planning maintenance activities of their facilities. A complete IMS facilitates the following tasks: facility 

inspection and data collection, deterioration prediction through performance models, and Maintenance, 

Repair, and Reconstruction (MR&R) policy selection over the planning horizon. 

Several IMSs have been developed and applied to actual infrastructure networks. The Arizona Pavement 

Management System (PMS) was implemented in the 1980s with estimated savings of about $200 million 

in maintenance and rehabilitation costs in five years (1). Pontis, a system for maintenance optimization 

and improvement of a bridge network, has been used effectively for bridge improvement and maintenance 

planning in 40 states in the US (2). In California, $188 million of pavement rehabilitation contracts were 

awarded in the 2002–03 fiscal year (3). There is a potential for these expenses to be reduced if an IMS is 

developed and implemented. 

Performance models are a core component of a PMS. There are two types of empirical performance 

models used in a PMS: models based on field data, and those based on experimental data. Experimental 

data are likely to suffer from biases as they do not represent the true deterioration mechanisms of 

pavements. Data from actual in-service pavement sections subjected to the combined actions of highway 

traffic and environmental conditions are more representative of the actual deterioration process. However, 

models based on field data also have some limitations. The most common problems encountered in 

models developed from in-service pavement sections are caused by unobserved events, such as data 

censoring, the presence of serial correlation among contiguous sections, and biases caused by the use of 

endogenous variables as explanatory variables (4). These problems can be addressed using proper 

statistical techniques such as those that will be discussed in this research. 
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The main objective of this research is to develop Empirical-Mechanistic (E-M) models for initiation and 

progression of overlay cracking in asphalt pavements, using data from the Washington State Department 

of Transportation (WSDOT) PMS databases. Overlay cracking occurs due to a combination of different 

types of cracking such as: thermal cracking which is due to extreme cold temperatures, fatigue cracking 

which is caused by traffic stresses, and reflection cracking which is a form of fatigue cracking that results 

in the propagation of cracking from underlying asphalt layers upwards through the asphalt overlay under 

traffic and climate stresses. The literature contains very little research on the subject of overlay cracking.  

E-M models are deductive models where the functional form and specification (choice of explanatory 

variables) are based on physical considerations, and where the model parameters (coefficients) are 

calibrated by using empirical data and statistical estimation procedures. E-M models are discussed in 

detail in Appendix B. 

The research described in this report extends the work performed in PPRC SPE 4.5, which involved 

development of empirical-mechanistic pavement performance models using data from the Washington 

State PMS databases. That work included development of a model for crack initiation in asphalt overlays 

of asphalt pavements, in terms of Equivalent Single Axle Loads (ESALs) to Five Percent Cracking of any 

type in the wheelpaths, including the WSDOT PMS equivalents of alligator cracking Types A, B, and C 

as defined in the Caltrans PMS. That research was published in report UCPRC-RR-2005-5 (5). 

The remainder of this report is organized as follows: Chapter 2 presents an overview of the major 

components of a PMS. Chapter 3 discusses the development of a panel data overlay crack progression 

model. Panel data problems, such as incidental truncations, left censoring, and cross-sectional 

heterogeneity, are properly addressed and suitable statistical tools are applied. Chapter 4 presents the final 

conclusions resulting from this report, and discusses recommended future research to follow this work. 

Appendix A contains an explanation of the spreadsheet application of the models presented in this report. 

Appendix B contains a detailed literature review and discussion of performance models for pavement 

management systems. 
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2 THE ROLE OF PERFORMANCE MODELS IN PAVEMENT 
MANAGEMENT SYSTEMS 

This chapter presents an overview of the major components of pavement management systems and the 

role of pavement performance models. A detailed literature review of pavement performance models is 

presented in Appendix B. 

Since their introduction in the late 1960s and early 1970s, pavement management systems (PMSs) have 

evolved continuously in their scope, methodology, and application. PMSs were conceived in response to 

the shift from the deployment mode to the repair and maintain mode. At that time, the United States’ 

network of freeways and major highways was almost complete, and a major responsibility for highway 

agencies was to preserve the huge investment in the pavements. As resources available for pavement 

maintenance were becoming scarcer, the number of pavement miles in need of repair or rehabilitation was 

increasing because of damage caused by such factors as aging and heavier traffic. This situation created 

an increasing backlog of pavement maintenance needs, and pavement engineers and planners believed 

that a systems approach could provide answers leading to more cost effective use of available resources.  

The early systems used simple data-processing methods to evaluate and rank candidate pavement 

rehabilitation projects on the basis of such factors as current pavement condition and traffic. Forecasting 

of future pavement conditions was not considered, and no economic analysis of preventive versus 

deferred maintenance was performed. These were project-level systems that evaluated project priorities 

but did not formally address network-level planning issues such as the impact of limited budgets and 

desired performance goals for a complete roadway network. This is status of the current Caltrans PMS. 

The network perspective was formally incorporated in the systems developed in the early 1980s, and the 

first such system was developed for the Arizona Department of Transportation (ADOT) (6). Systems 

developed in the 1990s use integrated techniques of performance prediction, network and project-level 

optimization, multicomponent prioritization, and geographic information systems (GIS) (7, 8, 9, 10, 11). 

Early systems focused on developing a pavement rehabilitation program for a single planning year. 

Priorities for rehabilitation typically were based on such factors as current pavement distresses, pavement 

age, and auto and truck traffic levels. The current Caltrans PMS performs this function. 

The current generation of PMSs focuses on developing a multiyear program based on both current and 

projected pavement conditions. Candidate projects are identified for each year of a multiyear planning 
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horizon, annual budgets are estimated, and the annual network performance is projected for percentages 

of roadway miles in good and poor pavement conditions.  

In the future, it is likely that PMSs will provide integrated multiyear programs for multiple components of 

a roadway network (such as pavements and bridges). One can also envision PMS programs integrated 

with management systems for multimodal infrastructure facilities that include railroads, transit, airports, 

and harbors (12). 

The following sections of this chapter briefly summarize the major components of a pavement 

management system: 

• Data collection and management 

• Pavement performance prediction 

• Economic analysis and life cycle cost analysis 

• Optimization 

The relationship of each of these components in the development of a PMS with all of these capabilities is 

summarized in Figure 1. The figure shows the PMS as a pyramid. The first requirement for the PMS is 

adequate data collection and management, particularly the ability to access each of the data elements 

shown in the first level of the PMS and to relate them to each other in terms of time and location. The 

next level, which requires implementation of the first level, is the development of pavement performance 

models, such as the model described in the next chapter of this report. Once pavement performance 

prediction models are developed, better economic and life-cycle cost analysis can be performed. The final 

step is optimization of life-cycle cost for the network, and development of optimal maintenance and 

rehabilitation strategy selection and timing policies. 
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Figure 1:  Conceptual relation of elements of modern PMS. 

2.1 Data Collection and Management 

The development of a sound PMS is conditional on the collection and management of a detailed and 

complete database. Early PMSs relied on subjective ratings of pavement condition; quantitative data on 

pavement distresses generally were not collected. Today, relational database software systems provide 

efficient methods for linking, sorting, analyzing, and organizing data. Equipment-based measurements of 

the severity and extent of different pavement distresses are now common practice for conducting 

pavement condition surveys for many important variables needed. Many agencies use a GIS to store 

location-referenced spatial data. This practice allows the user to connect multiple data items (such as 

pavement condition, design and construction data, traffic, and accident history) to specific links or nodes 

of a roadway network. 

In the near future, greater automation of pavement condition surveys is expected. Equipment and software 

that use the concepts of artificial intelligence and digital imaging are likely to be available to collect data 

on most pavement distresses, including different types of cracking. The Global Positioning System (GPS) 

will be increasingly used to provide location referencing to elements of infrastructure facilities, thus 

allowing greater and more efficient use of GIS. Another future direction for database applications is 

Internet or intranet access to data and results. Such access will facilitate the use of the data and analysis 

results by a variety of user groups and agency policy makers and management. (12) 
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Recommendations for database elements for the Caltrans PMS needed to support pavement performance 

prediction models have been made in two other UCPRC reports for Caltrans (5, 13). Reports by Cambria 

(14, 15) identified the status of current Caltrans data collection and accessibility with respect to the needs 

for a modern PMS. The Cambria Systems reports considered the information provided in the UCPRC 

reports. 

2.2 Pavement Performance Prediction 

The prediction of pavement performance is the most essential element in a modern PMS, and reliable 

pavement performance prediction models are crucial for identifying the least-cost rehabilitation strategies 

that maintain desired levels of pavement performance. 

Early systems did not have a predictive element, and they evaluated only current pavement conditions. 

Relatively simple prediction models were later introduced that often considered age as the only predictive 

variable. These models generally were based on engineering judgment to estimate the expected design life 

of different rehabilitation actions. This is the status of the current Caltrans PMS. 

More modern systems use a variety of performance models. Some are based on empirical analysis of 

pavement condition survey data in which the potential predictive variables include traffic loading, 

climatic conditions, pavement structural properties, and history of pavement condition. Other models use 

mechanistic principles in which the pavement structure is modeled as a multilayered system subjected to 

traffic loading, the structural response of the pavement is calculated, and a damage accumulation model is 

developed to predict the time or cumulative traffic to reach a structural failure criterion (16). Different 

types of performance models are discussed in detail in Appendix B. 
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2.3 Economic Analysis and Life-Cycle Cost Analysis 

The economic analysis element involves quantifying the various components of cost for alternative 

rehabilitation strategies so that the least-cost strategy can be identified. Early systems used only the initial 

construction costs of rehabilitation actions. Candidate projects were ranked on the basis of some simple 

measure (such as a weighted index of current distresses, for example a Pavement Condition Index [PCI]), 

and projects were selected by moving through this list until the entire construction budget was used. User 

costs were not analyzed, and life-cycle costs were not calculated. This is often referred to as a “worst 

first” method of prioritization in which the worst pavements get first priority, often with some weighting 

for economic importance, such as the Maintenance Service Level criteria included in the current Caltrans 

PMS prioritization matrix. 

More modern systems analyze both agency costs and user costs. All future costs are converted to their 

present-worth costs and summed to obtain the total life-cycle cost of each alternative strategy. A likely 

future enhancement is the development of better user cost models and methods of calculating factors that 

cause user cost, such as construction-related traffic delay and safety, and vehicle operating costs. 

(Inclusion of better methods of calculating traffic delay for use in life-cycle cost analysis is part of the 

recent life-cycle cost analysis manual developed for Caltrans as part of PPRC SPE 4.15). 

The current vehicle operating cost models are based on data from pavement studies conducted in 

developing countries. The range of pavement roughness in these studies is much larger than that reflected 

in the U.S. highway network. Additional data on user costs on U.S. highways will continue to be 

collected. Two types of user cost data will be compiled. One type of data relates to the impact of 

pavement roughness on speed profiles and vehicle operating and maintenance costs. The other type of 

data relates to the impact of traffic congestion and detours caused by construction activities. These data 

will be used to develop user cost models that are more representative of conditions on U.S. highways 

(12). 

At the current time, highway agencies are increasingly moving toward the use of life-cycle concepts in 

planning and budgeting for their pavement investments. In fact, life-cycle concepts have been advocated 

or used widely within and outside the maintenance arena to study treatment effectiveness or to identify 

specific types and/or timings of pavement rehabilitation or reconstruction (17, 18, 19, 20, 21, 22). In a 

study that developed decision trees for selecting specific pavement preservation strategies, effectiveness 

was measured on the basis of extra service life and the equivalent annual cost of the strategy (23). In 

Indiana, past life-cycle cost analysis (LCCA) based studies of maintenance cost effectiveness were carried 
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out by Mouaket et al. (24) and Al-Mansour and Sinha (25). Using various problem formulations, a 

number of researchers have sought to identify the optimal frequency of pavement interventions or 

identification of specific treatment actions over construction life cycle or rehabilitation life cycle (26, 27, 

28, 29, 30, 31, 32, 33, 34). These studies have focused on reconstruction life cycles and/or sought to 

determine the specific types and timings of specific rehabilitation (resurfacing) treatments over such 

periods.  

Pavement management agencies are also grappling with the integration of maintenance programs into 

their existing pavement management systems. Consistent with such issues is the practice of pavement 

preservation which involves application of maintenance prior to the onset of significant deterioration. 

Pavement preservation, which is also referred to as “preventive maintenance” in the literature and is 

deservedly getting attention among highway pavement managers, potentially increases average pavement 

performance and service life, and shows much promise in reducing long-term costs of highway facilities 

(35, 36, 37, 38). However, a pertinent issue is the extent to which pavement preservation extends the 

pavement service life. Related to this issue is the balancing act associated with pavement preservation 

application between sustained performance on the one hand and increased maintenance costs on the other 

(39). 

The dilemma facing pavement network managers is as follows:  if pavement preservation is applied too 

infrequently, user costs and reactive maintenance costs increase and overall life-cycle costs can be very 

high. On the other hand, if pavement preservation is applied too frequently, it is uneconomical because 

the excessive expenditure outweighs the additional benefits of extended pavement life and increased 

average pavement condition, and each preventive maintenance activity may incur construction-related 

user delay costs.  

In a conceptual illustration that illustrates such a trade-off, Mamlouk and Zaniewski (38) implied that 

increasing pavement preservation effort (represented as frequency of pavement preservation treatments or 

reciprocal of pavement preservation treatment intervals) leads to increasing cost-effectiveness up to a 

point after which it leads to decreasing cost effectiveness. Agencies seek the level of pavement 

preservation expenditure that corresponds to maximum cost effectiveness for each pavement class. Such 

knowledge is useful for network-level pavement management, and preservation needs assessment and 

budgeting. Long-term effectiveness of pavement maintenance has generally been measured in terms of 

the monetary cost reduction associated with enhanced vehicle operation on an improved pavement, 

extension in pavement life, or increase in average pavement condition.  
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2.4 Optimization 

The optimization element of a PMS involves using mathematical methods to identify the optimal 

pavement rehabilitation policies. These methods can be used to maximize some measure of benefit 

subject to meeting budgetary and other applicable policy constraints or to minimize the total cost subject 

to meeting specified performance goals and policy constraints. 

Early systems were based on simple priority ranking methods and formal optimization models had not yet 

been developed. In the 1980s, some use of optimization models was initiated, and the initial focus was on 

project-level decision-making. The first network-level optimization model was employed in the PMS 

developed for the Arizona Department of Transportation (ADOT) (6, 40). For this system, a Markov 

Decision Process was used to model pavement decision-making, and a large-scale linear program 

algorithm was used to obtain the optimal pavement rehabilitation policies. After the successful application 

of the Arizona system, several other systems were developed by using the same or similar techniques of 

network optimization, such as the PMS developed for the Kansas Department of Transportation (41). 

Still, the use of formal optimization models, particularly at the network level, is rather limited at this time. 

The two basic formulations for the optimization models are top-down and bottom-up. The top-down 

formulation provides a simultaneous analysis of an entire roadway network. The first step is to aggregate 

pavements having similar structure, traffic loading, and environment into mutually exclusive and 

collectively exhaustive homogeneous groups. Individual road segments are not represented in the 

optimization; instead, the units of analysis are the fractions of the groups in specific condition states. As a 

result, much of the segment-specific information (history of construction, rehabilitation, and maintenance; 

materials; structural details) is lost. 

The user specifies network performance goals and available maintenance, rehabilitation, and 

reconstruction (MR&R) budgets. The objective of the optimization model is to find the optimal network 

MR&R polices that maximize benefits or minimize costs subject to meeting budgetary and policy 

constraints. These optimal network policies then guide the selection of actual projects for rehabilitation 

(6). 

The main advantage of the top-down approach is that it allows the user to properly address the trade-off 

between rehabilitation and pavement preservation. That is, should a fixed budget be allocated to 

rehabilitation of a small number of segments or to pavement preservation of a larger number of segments? 
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The main disadvantage of the top-down approach is that it does not specify optimal activities for 

individual segments: the mapping of optimal network policies to facility activities is left to district 

managers. On the other hand, this gives engineers latitude in using their judgment, which is needed to 

compensate for the loss of pavement-segment information in the aggregation step. 

The bottom-up approach can be formulated in several ways. The most logical formulation consists of the 

following steps: first, select a small set of optimal (or close-to optimal) sequences of MR&R activities for 

each facility, covering the desired planning horizon. Then, for a fixed budget, select the combination of 

sequences (one for each facility) that meets the budget constraint while optimizing a network-wide 

objective (42). 

The main advantage of the bottom-up approach is that it preserves the identity of individual roadway 

segments, with all its information (structure, materials, history of construction, MR&R and traffic 

loading, environment). The main disadvantage of the bottom-up approach is that it lends itself to setting 

performance goals for individual projects rather than for the entire network. 
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3 DEVELOPMENT OF A PROGRESSION MODEL FOR ALLIGATOR 
CRACKING 

3.1 Introduction 

This chapter presents the development of the progression model for alligator cracking of asphalt concrete 

overlays using the Washington State Department of Transportation Pavement Management System 

(WSDOT PMS) database. The progression of alligator cracking is a continuous process and represents the 

change in the percentage of the wheelpath cracked with time under certain structural, traffic, and climate 

conditions. Crack progression occurs due to the combination of the following conditions: the widening 

and propagation of those cracks that have already initiated, the initiation of new cracks, and the 

propagation of cracks from past layers up to the surface of the new overlay (known as reflection 

cracking).  

The prediction of crack progression is very important for pavement management agencies since the extent 

of crack progression reflects the structural condition of a pavement section and triggers maintenance and 

rehabilitation activities. The primary focus of this research is on the progression of alligator cracking 

rather than longitudinal cracking since the former is an advanced stage of the latter.  

Obtaining sound empirical progression models with reasonable prediction capabilities, and estimated with 

a rich and relevant set of explanatory variables, has been a challenge for pavement engineers. In fact, the 

development of proper progression models requires having a data set constructed from detailed and 

accurate condition surveys. Given the nature of condition surveys, which are highly subjective, obtaining 

such data has always been a major obstacle. While the development of duration models, as discussed in 

Appendix B, requires advanced and sophisticated econometric techniques in comparison to progression 

models, the former is less demanding in terms of the quality of the condition surveys. This results from 

the fact that duration models represent the life of pavement overlays to a certain cracking threshold, 

which only requires measurement of the time when this cracking threshold is crossed, in contrast to 

progression models that require continuous measurements of the development of cracking of the overlay 

in terms of percent of wheelpaths cracked. 

In the following sections of this chapter it will be shown that developing sound empirical progression 

models is possible using relatively accurate condition surveys and applying proper econometric 

techniques. First, the methodology used to develop a sound empirical progression model will be shown. 
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Second, the model that was developed using data from the WSDOT condition surveys will be presented. 

Finally, the model will be used to make predictions of the progression of alligator cracking in time. 

3.2 Methodology 

Pavement crack initiation and crack progression represent two different physical phenomena and need to 

be modeled separately. Crack initiation is a stochastic process that signals the beginning of cracking in 

pavement sections, while crack progression is a continuous process that occurs due to the propagation and 

widening of those cracks that have initiated, as well as to the initiation of further cracks. Thus the 

occurrence of crack progression is conditional on the occurrence of crack initiation, and needs to be 

modeled separately. In addition, having separate models for crack initiation and crack progression is more 

appropriate from a statistical point in view. In fact, prior to the initiation of cracking, pavement sections 

have zero cracking, resulting in a spike of zero values in a histogram of crack percentage for the sample. 

These structural zero values will have a dominant effect on the estimated parameters of the progression 

model. The progression model will thus predict poorly, especially for those sections where cracking 

progresses significantly beyond the initiation threshold.  

An initiation model that describes the condition of pavement sections prior to the occurrence of cracking 

will account for the zero values, while the progression model is estimated for only those sections that 

have passed the crack initiation threshold, which results in better predictions. This modeling approach 

however introduces the problem of incidental truncation that will be discussed in more detail later in this 

chapter.  

The dependent variable in the previously developed crack initiation model (5) was the distribution of the 

time (or number of accumulated Equivalent Single Axle Loads [ESALs]) to a cracking threshold 

(combination of any longitudinal or alligator cracking in five percent of the wheelpaths). Longitudinal 

cracking as defined in the WSDOT PMS is equivalent to Type A alligator cracking in the Caltrans PMS. 

Alligator cracking as defined in the WSDOT PMS is equivalent to the combination of Caltrans Type B 

and Type C alligator cracking. The extent of alligator cracking is defined in the same way in the WSDOT 

and Caltrans PMS data collection manuals, as the percent of the wheelpath in the section with alligator 

cracking. 

Calculating the value of the dependent variable required recording the year when cracking occurred 

(complete observations) or the last year of the condition survey (censored observations) for every 

pavement section. The resulting sample was thus a cross-sectional data set.  
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For crack progression, the dependent variable is the change in the percentage of alligator cracking over 

the years for every section where cracking has already initiated. Thus for every section that has cracked, 

observations are needed of the yearly change in alligator cracking percentage from the time that initiation 

has started, to the time of the last survey. The data for the progression model therefore have a panel 

structure.  

A panel, or longitudinal, data set is one that follows a given sample of individuals over time, and thus 

provides multiple observations on each individual in the sample. Panel data sets possess several major 

advantages over conventional cross-sectional or time-series data sets. Panel data usually give the 

researcher a large number of data points, increasing the degrees of freedom and reducing the collinearity 

among explanatory variables, hence improving the efficiency of econometric estimates. More 

importantly, longitudinal data allow a researcher to analyze a number of important questions, such as the 

progression of cracking in time for different pavement sections, that cannot be addressed properly using 

cross-sectional or time-series data sets.  

Compared with cross-sectional or time-series data, panel data raise new specification issues that need to 

be considered during the analysis. The most important of these is heterogeneity bias. Heterogeneity refers 

to the differences across cross-sectional units that may not be appropriately reflected in the available 

explanatory variables. If heterogeneity across cross-sectional units is not accounted for in the model, 

estimated parameters are biased because they capture part of the heterogeneity. In fact, cross-sectional 

heterogeneity is the central focus of panel data analysis. More details on panel data models and their 

specifications are discussed in Section 3.3.1.  

Incidental truncation, or selection bias, arises in the estimation of empirical crack progression models due 

to the fact that crack progression is observed only after crack initiation has occurred. In other words, 

crack progression is only observed in weaker sections that have already failed according to the crack 

initiation criteria. The sample selection problem will result in an over representation of the weak sections 

in the sample, and the estimated parameters will have a downward bias. This requires the introduction of 

a correction term in the panel regression model to correct for this bias as suggested by Heckman (43), and 

will be further discussed in Section 3.3.2. The Probit model used to estimate the correction term for the 

incidental truncation is presented in Section 3.3.2.  
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It should be expected that overlay cracking increases with time and the change of the percentage of 

cracking is positive, unless some maintenance activity was performed. Several observations were found in 

the WSDOT data where the change in the percentage of cracking is negative, which suggests either a non-

recorded routine maintenance or more likely a measurement error. Given that the dependent variable is 

the change of crack progression with no routine maintenance or measurement errors, left censoring (at 

zero) has been imposed on the observations with negative change in the percentage of alligator cracking. 

Regression data with censored observations are estimated using the Tobit model, which is discussed in 

Section 3.3.4. 

Section 3.3 presents a review of the statistical approach used. Section 3.4 presents the development of the 

progression model. In Section 3.5 the correction term for the incidental truncation is estimated, and in 

Section 3.6 the final progression model is presented and the results are discussed. 

3.3 Statistical Review 

3.3.1 Panel Data Models 

A panel, or longitudinal, data set is one that follows a given sample of individuals over time, and thus 

provides multiple observations on each individual in the sample. 

There are several possible specifications for panel data depending on the nature of the data analyzed. 

Models can be fixed-effect or random-effect models depending on the specification of the term that 

accounts for cross-sectional heterogeneity.  

A panel data regression is written as: 

yit = β'x it + uit ,  i = 1,…,n; t = 1,…,T (1) 

where  i refers to the cross-sectional units or individuals,  
t refers to the time periods,  
β is a vector of parameters to be estimated,  

  xit is a vector of explanatory variables, and  
 the disturbance term.  uit 

When differences across units can be captured as differences in the constant term, a dummy variable is 

introduced to allow for the effects of omitted variables that are specific to individual cross-sectional units 

but stay constant over time. This type of model is known as a fixed-effects model or Least Squares 

Dummy Variables (LSDV) model since it can be estimated using Ordinary Least Squares (OLS) 
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techniques by multiplying the constant term by dummy variables indicating the ith unit. These models can 

be written as: 

y = α + β'x + u = D α + β'x + u i = 1,…,n; t = 1,…,T (2) it i it it i it it 

where  α i is a scalar constant representing those variables peculiar to the ith individual and 
constant in time, and  

Di  is a dummy variable indicating the ith individual. 

The fixed effects specification suffers from an obvious shortcoming in that it requires the estimation of 

many parameters (mainly the dummy variables) with the associated loss of the degrees of freedom. This 

can be avoided by introducing the random effects model. Unlike the fixed effect model where inference is 

conditional on the particular cross-sectional units sampled, the random-effects model is an appropriate 

specification if n cross-sectional units are randomly drawn from a large population. This is reflected in the 

formulation of the disturbance term 

u = u + v ,  i = 1,…,n; t = 1,…,T (3) it i it 

where  ui is the random disturbance characterizing the ith observation and is constant in time, 
and  are random disturbances. vit 

By rewriting Equation (1) using Equation (3), the random-effects model is given by: 

y = β'x + u + v ,  i = 1,…,n; t = 1,…,T (4) it it i it 

The parameters β of the random effects are estimated using the Generalized Least Squares (GLS) 

technique. 
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3.3.2 Selection Bias (Incidental Truncation) 

The incidental truncation problem, or selection bias, can be explained mathematically, in the following 

manner. 

Suppose that y and z have a bivariate distribution with correlation ρ. Of interest is the distribution of y 

given that z exceeds a particular value. In this case, y is observed and represents the yearly change in the 

percentage of alligator cracking, while z is not observed (latent) and represents what can be defined as the 

propensity to crack. If y and z are positively correlated, it should be expected that the truncation of z 

should push the distribution of y to the right, resulting in overestimation of cracking. The truncated joint 

density of y and z is given by:  

f ( y, z) f ( y, z z > a) = (5) 
Pr ob(z > a) 

where a is the point at which the truncation of z occurs.  

Let the equation that determines the latent variable z be 

zi = γ'w i + μ i (6) 

And let the equation for yearly change in percentage of alligator cracking be 

y = β'x + u (7) it it it 

where  is the dependent variable of interest (change in the percentage of alligator cracking),  yit 

zi  is the latent variable (representing the propensity of a pavement section to crack),  
β and γ are vectors of parameters to be estimated,  

  wi and xit are vectors of explanatory variables,  and  uit 

μ i  are error terms.  

is only observed for those sections that have cracked. Since zi represents the propensity to crack, then yit 

a section i has cracked only if zi exceeds a certain threshold a. Without loss of generality let a = 0 , then 

 is observed only when zi > 0. yit 

Define σ u  and σ μ as the standard deviation of uit  and μ i  respectively. If μ i  and uit are assumed to 

have a bivariate normal distribution with zero means and correlation ρ , then: 

E[ yit │ yit is observed] = E[ yit z > 0]= β'x it + β λ (α ) (8) i λ i μ 
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So 

y z > 0 = β'x + β λ (α ) +η (9) it i it λ i μ it 

where  
− γ'w i αμ = (10) 
σ μ 

and  

φ (γ'w i /σ μ ) λi (αμ ) = (11) 
Φ(γ'w i /σμ ) 

where φ(.) is the standard normal distribution, and Φ(.) is the standard cumulative normal 
distribution, and η it  is a random error term. 

Thus, the panel data model with incidental truncation occurring on the distribution of the cross-sectional 

observations is given by Equation (9). The parameters β, βλ, γ, and λi of the sample selection model are 

estimated using the two-step Heckman’s procedure: 

In the first step, the Probit Equation (11) is estimated by maximum likelihood to obtain estimates of γ. 

Binary Probit models are further explained in Section 3.3.3. Then for each observation in the selected 

sample the following is computed: 

∧ φ(γ 
∧ 
'w i ) λi = ∧ (12) 

Φ(γ'w i ) 

∧ ∧ 
where λi and γ  are the estimated values of λi and γ respectively. 

In the second step of Heckman’s procedure, the parameters β and βλ of Equation (9) are estimated by 
∧ 

regressing the dependent variable yit on λi and the vector of explanatory variables x it . 
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3.3.3 Binary Probit Model 

A binary choice model is a model that considers two discrete outcomes in contrast to multinomial models 

that consider three or more discrete outcomes. The distinction between binary models and multinomial 

models is important since the derivation between the two can vary significantly, especially for the Probit 

models. Probit models arise when the disturbance terms ε in the equation: 

Pn (i) = P(βi x in − β I x In ≥ ε In − ε in ) ∀ I ≠ i are assumed to be normally distributed. An attractive 

feature of normally distributed variates is that the addition or subtraction of two normal variates also 

produces a normally distributed variate.  

Of interest for this project is the probability that the latent variable z of Equation (6) is positive. 

Therefore, Cr can be defined as an indicator that section i has cracked or not, and the binary outcomes can 

be defined as 0 and 1, where Cr = 1 indicates that the section has cracked and Cr = 0 indicates that the 

section did not crack. Then 

Cr = 0 If z ≤ 0 (13) 

Cr = 1   If z > 0 (14) 

Under the above assumptions, Equation (4) can be rewritten to give the following Probit model: 

Pi (Cr = 1) = Φ(γ′w i ) (15) 

and 

Pi (Cr = 0) = 1−Φ(γ′w i ) (16) 

where Pi (Cr = 1)  is the probability of choosing the outcome Cr = 1 over the outcome Cr = 0 . 

The parameter vector γ is estimated using the maximum likelihood method. Let δ in be defined as a 

dummy variable that takes the value 1 if the observed discrete outcome for observation n is 1 (Cr = 1) and 

zero otherwise. The likelihood function is thus given by: 
δ −δ i i L =∏[Φ(γ′w i )] [1−Φ(γ′w i )]

1 (17) 
i 
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The log likelihood function is given by 

LL = ∑[δ i LNΦ(γ′w i ) + (1−δ i )LN (1−Φ(γ′w i ))] (18) 
i 

where LN is the natural log function. 

3.3.4 Censored Panel Data and Tobit Models 

The regression model for a censored dependent variable with a normal distribution is referred to as the 

Tobit model. Let *  be a latent variable with an uncensored normal distribution where: yit 

* ' ' yit = β x it + βλλi (αμ ) +η it = β x it + βλλi (αμ ) +η i +θ it , i = 1,…,n; t = 1,…,T (19) 

where  

η =η +θ (20) it i it 

η i  is the random disturbance characterizing the ith observation and is constant in time, and  
θ it are random disturbances. Equation (19) is similar to Equation (4) and indicates that 

Equation (19) is a random effects panel data model. 

And let 

yit = 0 if yit 
* ≤ 0 , (21) 

yit = yit 
*  if yit 

* > 0 (22) 

where  β is a vector of parameters to be estimated,  
xit is a vector of explanatory variables, and  
βλ is the coefficient of the incidental truncation term λi (αμ ) .  

The parameters β and βλ are estimated using the maximum likelihood technique where, under the 

assumption that η i is randomly distributed with density function g(η) , the likelihood function of the 

censored data takes the form (44): 
N ⎡ ⎤ (23) L = ∏∫ ⎢∏ F (−β'x it − βλλi (αμ ) −η i )∏ f ( yit −η i − β′ x it − βλλi (αμ ))⎥g(η i )dη i 

i=1 ⎣ t∈ci t∈ci ⎦ 

where  c = {t y = 0} , ci denotes its complement,  i it 

f (.) denotes the density function of θ it and  

F (a) = 
a

f (θ )dθ . ∫−∞ 
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Once the parameters β and βλ of Equation (23) are estimated, then the expected value of the latent variable 

function is given by 

E[ yit 
* x it ] = β'x it (24) 

Note that the term β λ (α ) is only included to obtain unbiased estimates of β. Once β are estimated, λ i μ 

the term βλλi (αμ )  is not used for prediction purposes. Equation (24) can be used for predicting yit  for a 

sample of observations that is selected and known to be uncensored. However, for an observation 

randomly drawn from the population, which may or may not be censored, the expected value of the 

dependent variable of interest  is yit 

⎛ β x it ⎞ ' E[ yit x it ] = Φ⎜⎜ 
' 

⎟⎟(β x it + σψ it ) (25) 
σ ⎝ ⎠ 

where  

φ(β'x it /σ ) 
ψ it = (26) 

Φ(β'x it /σ ) 

and  σ is the standard deviation of the error terms ν it ,  
φ(.) is the standard normal distribution, and 
Φ(.) is the standard cumulative normal distribution. 

3.4 Data Description 

3.4.1 Sample Selection for the Progression Model 

The propagation, or progression, of overlay cracking starts only after crack initiation has occurred in the 

overlay. This is why crack progression models are used for prediction purposes only after an initiation 

model has predicted a failure in a pavement section. Thus, in order to have consistency between the crack 

initiation and the crack progression models, the pavement sections used for the estimation of the 

progression model should be selected from the sample of pavement sections used for the estimation of the 

initiation model. Optimally, one would want to select all the pavement sections used for the estimation of 

the initiation model to estimate the progression model; however since some pavement sections did not fail 

according to the crack initiation criteria (5 Percent of the Wheelpath Cracked for this study), they can not 

be included in the sample used for the estimation of alligator cracking progression, resulting in the 

problem of incidental truncation discussed in Section 3.3.2. 
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The sample used for the estimation of the progression model was selected from the Washington State 

PMS database. The sample used for the estimation of the crack initiation model consists of 7,162 

pavement sections, of which 5,441 are complete observations, i.e., where cracking has initiated in the 

overlay, and the rest are right censored, i.e., crack initiation has not occurred by the year of the last 

condition survey. Given that alligator crack progression is conditional on crack initiation, only the 

pavement sections treated as complete observations for the initiation model should be selected, and 

alligator crack progression should be observed for each of those sections from the year that cracking 

initiated to the last year of the condition survey. The selected sample thus consists of 5,441 pavement 

sections observed from Year 1 to Year 12 for each different section, and constitutes a panel data set with 

36,194 observations. Table 1 below shows the summary statistics of the sample.  

Table 1: Summary Statistics of the Sample 

Total number of observations 36,194 

Number of pavement sections 5,441 

Minimum number of observations (years) per section 1 

Average number of observations (years) per section 6.7 

Maximum number of observations (years) per section 12 

3.4.2 Description of Relevant Variables  

Some additional variables relevant to the progression model were created and are described below: 

• Yit: Percentage of the wheelpaths with alligator cracking in pavement section i at time t, 

where t is the number of years since the last overlay was built. The progression model predicts the 

change in the percentage of alligator cracking in a pavement section i as a function of time. 

Alligator cracking is defined as the equivalent of Type B and Type C (combined extent of the two 

types) in the Caltrans PMS.  

• Yi(t-1): Percentage of alligator cracking in pavement section i at time (t-1).This variable 

captures the effect of conditions in the previous year on the change of the percentage of alligator 

cracking in a pavement section i at year t.  

• ∆it: Represents the yearly change in the percentage of alligator cracking for pavement section 

i between time t and (t-1) and is given by: 

Δ it = Yit − Yi(t−1) (27) 
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Since the progression of alligator cracking is the dependent variable, in terms of the percentage of the 

wheelpaths with alligator cracking, ∆it could have been chosen as the dependent variable for the 

progression model. However, there are several incidences in the data where Yit is smaller than Yi(t-1), 

resulting in a decrease of the percentage of alligator cracking and a negative ∆it. A negative ∆it can be 

explained by the occurrence of a nonrecorded routine maintenance activity, or a measurement error. The 

desired model is for the change of crack progression with no routine maintenance or measurement errors. 

Therefore left censoring was imposed on the observations with negative change in the percentage of 

alligator cracking, and the following variable was created: 

• Cens_∆it: which is the progression model dependent variable and represents the left-censored 

yearly change in the percentage of alligator cracking for pavement section i between time t and (t-

1). It is defined as: 

Cens _ Δ it = Δ it If Δ it ≥ 0 (28) 

Cens _Δ it = 0 If Δ it < 0 (29) 

Note that ∆it and Cens_∆ it correspond to, respectively, yit 
*  and yit  discussed in Section 3.3.4.  

• E_Allii: Existing alligator cracking before rehabilitation. This variable represents the last 

measured cracking before the last rehabilitation activity was performed. It represents the 

distress level of the pavement before the overlay. This is an important variable in modeling 

overlay cracking because overlay cracking is partly due to reflection cracking, which occurs 

when there are cracks in the previous pavement surface layer and they propagate through the 

overlay. 

• ULTi: Sum of the thickness of the underlying asphalt concrete pavement layers (in ft.).  

• Untrthicki: The thickness of the nontreated base (in ft.) 

• Actbthicki: The thickness of asphalt concrete-treated base (in ft.) 

• Pctbthicki: The thickness of portland cement-treated base (in ft.) 

• Trafficit: Traffic in ESALs for pavement section i at time t. This variable reflects the yearly 

traffic loading in ESALs. Trafficit is the number of ESALs at section i at year t0+t, where t0 is 

the year the overlay was built and t the number of years since the overlay was built. Trafficit 

varies across different pavement sections, and usually increases with time for any given 

section i. 
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• Mintempcit: Average monthly minimum temperature of the coldest month (December) in oC. 

Mintempcit is the average minimum temperature of the coldest month for section i in year 

t0+t. Thus Mintempcit varies across pavement sections and over time for the same pavement 

section. The increase in the percentage of alligator cracking between times (t-1) and t is 

dependent on the climate conditions at time t, while past climate conditions affect this 

increase through the lagged variable Yi(t-1) as will be discussed in Section 3.6.  

• Precipit: Annual precipitation (in mm): the annual precipitation for section i in year t0+t.  

• Pr_aa, Pr_ba: The probability of choosing overlay material types AA or BA  respectively. 

These represent WSDOT asphalt concrete mix Types A and B, respectively. WSDOT Type A 

mix is similar to Caltrans Type A mix. WSDOT Type B mix has quality requirements that are 

between those of Caltrans Type A and Type B mixes. 

• Newoverlay1: Instrumented overlay thickness (in ft.). This variable reflects the thickness of 

the new overlay constructed on top of the existing pavement. 

• Overlayaai: The product of Newoverlay1 and Pr_aa. Reflects the structural strength of the 

overlay through the interaction between the choice of material type AA and the thickness of 

the overlay. This variable changes across pavement sections and is time independent. 

• Overlaybai: The product of Newoverlay1 and Pr_ba. Reflects the structural strength of the 

overlay through the interaction between the choice of material type BA and the thickness of 

the overlay. This variable changes across pavement sections and is time independent. 

• λi: The correction term for incidental truncation. This variable corrects for the selection bias. 

A theoretical discussion of λi was presented in Section 3.3.2; Section 3.5 presents the 

estimation of this correction term. 

An important detail in the WSDOT traffic data was the lane distribution of ESALs. The lane distribution 

factor was not included in the original model and this omission resulted in an underestimation of ESALs 

in the design lane that carries most of the traffic. However, both the revised crack initiation and crack 

progression models were updated using the correct distribution factor. 
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3.5 Estimation of the Incidental Truncation Correction Term 

As discussed in Section 3.4.1, the sections that have crack initiation were used to estimate the progression 

model. This introduces a selection bias that needs to be corrected for, by using Heckman’s procedure, 

which was presented in Section 3.3.2. The first step of Heckman’s procedure using a Probit model 

(discussed is Section 3.3.3) to estimate the parameters γ of Equation (18) using the maximum likelihood 

method is presented in this section of the report. Once γ are estimated, Equation (12) is used to 

compute λ̂ 
i . 

Define the latent variable explaining the propensity to crack zi of Equation (6) as:  

zi = γ0 + γ1Actbthick + γ2Pctbthick + γ3Untrthick + γ4ULT + γ5Pr_aa + γ6Pr_ba + γ7Cum_ESAL + 

γ8FTprep + γ9Newoverlay1 (30) 

Then the Probit model of Equation (15) is specified as follows: 

Pr(Cr=1) = Φ(γ0 + γ1Actbthick + γ2Pctbthick + γ3Untrthick + γ4ULT + γ5Pr_aa + γ6Pr_ba + 

γ7Cum_ESAL + γ8FTprep + γ9Newoverlay1 ) (31) 

Where γ0 to γ9 are parameters to be estimated, and Actbthick, Pctbthick, Untrthick, ULT, Pr_aa, Pr_ba, 

Cum_ESAL, FTprep, and Newoverlay1 are explanatory variables for the crack initiation model. The 

definitions of these explanatory variables were presented in report UCPRC-RR-2005-5 (5).  

The same sample that was used for the estimation of the initiation model was used to estimate the Probit 

model of Equation (31). Table 2 presents the results of the Probit model estimation. 

All the explanatory variables of Table 2 are significant to the 10% significance level. Greater thicknesses 

of the structural variables reduce the probability of crack initiation. The structural variables are the 

thicknesses of the asphalt concrete-treated base, the portland cement-treated base, the untreated base, the 

thickness of previous asphalt concrete layers, and the thickness of the overlay. Overlay thickness has by 

far the largest effect in reducing the probability of cracking, as one would expect. A treated base results in 

a lower probability of cracking than an untreated base of the same thickness. An asphalt concrete-treated 

base has a larger effect than a portland cement-treated base. Material type AA also appears more effective 

than material type BA in reducing the probability of cracking. Table 2 also shows that the greater the 
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cumulative ESALs, and the harsher the climate conditions (higher FTprep, which is the product of freeze-

thaw cycles and annual rainfall), the larger the probability of cracking for a pavement section. 

When analyzing the results of the Probit model above, one has to be careful about interpreting the 

meaning of the probability of cracking for a pavement section defined in this section, and to differentiate 

that from the probability of cracking initiation. The probability of cracking defined in this section 

represents a binary output that a pavement section has cracked or not at a given time (or at a given 

Cumulative ESALs). Thus the specification of the Probit model does not account for the history of a 

pavement section prior to failure, and does not benefit from the additional information that the pavement 

sections in the considered sample did not fail in previous years.  

The duration model takes into account this additional information through the definition of the hazard rate 

as the probability that a section i fails at a certain time t (or Cumulative ESALs) given it has survived until 

t. Moreover, the Probit model is a point estimate of the probability of failure of a section i at a time t, 

while the duration model estimates the distribution of the probability of failure of a section i versus time. 

This is why duration models are richer, and more appropriate to use for predicting the life, or time to 

failure, of a pavement section i, while the Probit model above is used mainly for estimating the correction 

term for the incidental truncation, rather than for predicting the life of overlays. The use of a Probit model 

instead of a duration model in Heckman’s procedure results from the normality assumption on the 

distribution of the error terms of zi and yit in Equations (6) and (7). 

The estimated parameters γ of the Probit model in Equation (35) are then used to compute the incidental 

truncation correction term λi . This completes the first step of Heckman’s procedure. The second step 

consists of introducing λi as an explanatory variable during the estimation of yit and is performed in 

Section 3.6. 
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Table 2: Results of the Probit Model for Probability that a Section Cracks, Pr(Cr=1) 

Pr(Cr=1) 

Variable Coefficient t-statistics 

Constant 6.64E+00 9.55 

Actbthick (thickness of asphalt-treated base, ft) 
-1.60E+00 -6.49 

Pctbthick (thickness of portland cement-treated 
base, ft) -7.95E-01 -6.26 

Untrthick (thickness of untreated base, ft) -5.44E-01 -11.28 

ULT (thickness of underlying asphalt concrete, 
ft) -9.00E-01 -10.96 

Pr_aa (Type A asphalt concrete used) -4.25E+00 -5.26 

Pr_ba (Type B asphalt concrete used) -9.99E-01 -1.87 

Cum_ESAL (cumulative Equivalent Single 
Axle Loads) 2.47E-06 29.28 

FTprep (product of annual freeze-thaw cycles 
and annual precipitation) 1.22E-05 4.64 

Newoverlay1 (thickness of overlay, ft) -4.02E+01 -15.95 

Goodness of Fit Measures 

Number of Observations Likelihood Ratio Pseudo R2   

7,162 1,149.5 0.153 
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3.6 The Crack Progression Model 

3.6.1 Model Specification 

In order to estimate the crack progression model, a sample of 36,194 observations, described in Section 

3.4.1, was used. A panel data Tobit model was selected, and the dependent variable, Cens_∆it described in 

Section 3.4.2, was regressed on explanatory variables, using the following model specification: 

Cens_∆it= β0 + β1Yi(t-1)+ β2E_Allii  + β3 actbthicki + β4 pctbthicki + β5 untrthicki+ β6ULTi + 

β7Overlayaai + β8Overlaybai + β9Trafficit+ β10Precipit + β11Mintempcit + βλλi (32) 

The variables Yi(t-1), Overlayaai, Overlaybai, Trafficit, Precipit, Mintempcit, and λi were defined in Section 

3.4.2. The subscript i indicates that an explanatory variable changes across pavement sections, and the 

subscript t [and (t-1)] indicates that an explanatory variable changes in time. If both subscripts i and t are 

present, then the explanatory variable changes both across pavement sections and in time.  

3.6.2 Expectations of the Model Results 

The expected effects of the explanatory variables on the progression of alligator cracking are described in 

this section. It is important to define the expected effects of the explanatory variables prior to regression 

to apply appropriate engineering judgment to the statistical modeling results.  

A major limitation of the Washington State PMS data is that alligator cracking rarely exceeds 10 percent, 

because WSDOT essentially follows a pavement preservation approach and a new overlay is usually put 

in place before cracking exceeds 10 percent of the wheelpath with alligator cracking. Thus the model 

parameters reflect a network and its performance data in which overlays are placed before there is less 

than 10 percent alligator cracking in the wheelpath, and the overlays are overlaid again before they have 

more than 10 percent of the wheelpath with alligator cracking. The overwhelming majority of the 

overlays are also what would be defined by Caltrans as “maintenance overlays” with typical thicknesses 

of about 0.15 ft (45 mm). For thin overlays on cracked pavements it would be expected that reflection 

cracking would be the mechanism of failure in the overlay, with the cracks in the existing pavement 

reflecting up through the overlay. However, because the extent of existing cracking is very low, it would 

be expected that the extent of reflection cracking in the overlay would asymptote to the extent of existing 

cracking in underlying pavement, always less than 10 percent. This would be true for the WSDOT data 

set. After some period of time with the reflection cracking mechanism completed and cracking remaining 

at the asymptote of the previous existing cracking extent, it would be expected that bottom-up fatigue 
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cracking would propagate through the underlying existing asphalt layers and through the overlay, 

resulting in an acceleration of cracking extent from that time on.  

If Caltrans is not using a similar pavement preservation strategy as WSDOT, and is instead placing 

overlays only at greater extents of alligator cracking, then the model parameters will need to be 

recalibrated using Caltrans performance data.   

It is expected that a stronger structure will have high resistance to cracking and will reduce the rate of 

progression of alligator cracking. Accordingly, an increase in the thickness of the overlay, both for 

material types AA and BA, an increase in the thickness of the untreated or treated base, and an increase in 

the thickness of underlying asphalt concrete layers, are expected to decrease the rate of alligator cracking 

progression by increasing the strength of the pavement. 

On the other hand, an increase in the existing cracking before rehabilitation is expected to increase the 

rate of crack progression because the cracking results in a weaker pavement structure and because of the 

mechanism of propagation by reflection cracking to the overlay surface. It is also expected that as the 

minimum temperature increases, the stiffness of the asphalt concrete overlay decreases, which decreases 

the rate of alligator cracking progression. Precipitation is expected to accelerate the rate of cracking since 

water infiltrates to the granular layers and the subgrade and softens them, thus weakening support for the 

asphalt layers and rendering them more susceptible to cracking. Greater precipitation would also be 

expected to increase the cracking susceptibility of the overlay. 

3.6.3 Model Results and Their Interpretations 

Table 3 shows the results of the estimation of the parameters of Equation (32). The results shown 

in Table 3 confirm the expectations in terms of the correctness of the signs. Furthermore, the t-statistics 

show that each variable is a significant explanatory variable of the progression of alligator cracking at the 

five percent significance level.  
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Table 3: Results of the Tobit Model Regression 

Variable Variable Description Coefficient t-statistics 

Constant  1.18E+00 3.39 

Yi(t-1) Percent of wheelpath w/ alligator cracking -5.86E-01 -39.1 

E_Allii Percent wheelpath w/crack before overlay 8.07E-02 20.01 

Actbthicki Thickness of asphalt-treated base, ft -0.175E+00 -4.89 

Pctbthicki Thickness of PCC-treated base, ft -0.171E+00 -8.91 

Untrthicki Thickness of untreated base, ft -0.357E-01 -5.09 

ULTi Thickness of underlying AC, ft -1.26E+00 -8.77 

Overlayaai Thickness of overlay with Type A mix, ft -3.88E+00 -4.32 

Overlaybai Thickness of overlay with Type B mix, ft -1.54E+00 -6.56 

Trafficit Annual ESALs 4.56E-06 5.45 

Precipit Annual rainfall, mm 4.40E-04 10.18 

Mintempcit Average min daily temp in December, °C -5.42E-02 -5.74 

λi Incidental truncation correction term 1.20E+00 15.97 

Error term Value t-statistics 
sigma_u 0.84 14.7 
sigma_e 4.41 230.79 
Rho 0.035 N/A 

Number of Observations Wald Test 

36,194 2,230.52 

The signs of the explanatory variables indicate the following effects on the rate of crack progression: 

• The value for β1 indicates that the greater the amount of alligator cracking in the overlay, the 

smaller the increase in alligator cracking, which means that the cracking progression trend is 

concave in time. This is a surprising result, as there is no reason to expect the amount of cracking 

to level off at a particular value. The explanation for this behavior is that the data used for 
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development of this model comes from in-service pavements. As such, these overlays were 

subjected to (unrecorded) maintenance activities, possibly including crack sealing or patching. As 

noted in Section 3.4.2, for some observations, the value of ∆it was negative, which is why Tobit 

(censored) regression was used as an estimation method. Censoring replaces these negative 

values with zeros. The effect of these zero values for ∆it is to force a leveling off of alligator 

cracking. Therefore, this model predicts cracking progression in overlays that are subject to 

maintenance activities. The implication of this result is that the model should only be used to 

predict cracking progression for agencies that follow a similar maintenance policy. 

• The value for β2 indicates that the greater the existing alligator cracking in previous layers, 

the faster the progression of alligator cracking in the overlay, confirming the hypothesis that 

overlay cracking is mostly due to reflection cracking. 

• A thicker underlying structure (base thickness, previous AC layers thickness, overlay 

thickness) results in a smaller rate of crack progression. HMA- or PC-treated bases do not 

seem to differ much in reducing the rate of crack progression, however they are both 

significantly better (almost by a multiple of 5) in resisting crack progression than untreated 

bases of the same thickness. The underlying AC layer is about 10 times more effective in 

resisting crack progression than even the strongest base of the same thickness. 

• Overlay thickness appears to have the largest effect on resisting crack progression as one 

would expect, with Type A overlays about more than twice as effective in reducing the rate of 

alligator crack progression than Type B overlays of the same thickness. 

• Traffic (ESAL) appears to have a significant effect on the rate of progression of alligator 

cracking; the higher the traffic at a given year the larger the rate of crack progression.  

• Climate variables, particularly yearly precipitation and minimum temperature, also play a 

significant role: the higher the yearly precipitation, the higher the rate of crack progression, 

while higher minimum temperatures reduce the rate of crack progression.  

• The coefficient βλ is significant suggesting that the correction for the incidental truncation is 

appropriate. Moreover, since βλ > 0 , this indicates that β′x is reduced when the incidental 

truncation correction term is included compared to a regression with no incidental truncation 

correction term, which means that the rate of increase of alligator cracking is reduced when 

the correction term is introduced in the regression. This result is expected since the correction 

term corrects for the over-representation of weaker pavement overlays in the sample.  
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The values and significance of sigma_u, sigma_e, and rho require discussion. Sigma_u represents the 

standard deviation of the random disturbance η i , discussed in Equation (19), characterizing the ith 

observation and accounting for cross-sectional heterogeneity in a random effect panel data model. 

Sigma_e represents the standard deviation of the random disturbances θ it in Equation (19), and accounts 

for random error terms in time and across sections. Rho represents the portion of the total error term that 

is due to unobserved heterogeneity and to random error, and is given by: 

(sigma _ u)2 

Rho = 2 2 (33) 
(sigma _ u) + (sigma _ e) 

The model coefficients of Equation (32) were estimated using a random-effects model; however the very 

low value of Rho (0.035, which is almost zero) suggests that unobserved heterogeneity is nonexistent in 

the model. This can be explained by the fact that the incidental truncation correction terms, which only 

vary across cross-sectional observations, act as dummy variables for the different pavement sections. This 

is equivalent to a fixed effect model specification as discussed in Section 3.3.1. This model differs 

slightly from a fixed effect panel data model since some, but only a few, pavement sections can have the 

same correction term λi and thus share the same identifier, so that λi is not a “perfect” dummy variable.  

3.6.4 Model Predictions 

In this section the crack initiation and progression model suite is used to perform some predictions of the 

initiation and progression of alligator cracking with time. A spreadsheet was used for applying the models 

of crack initiation and progression. The prediction methodology and the details of the spreadsheet are 

described in Appendix A. 

It must be emphasized that the model predicts well for explanatory variables varied within the range of its 

values in the data only. The model specification (variables and their relationships) works well within the 

ranges of data used to calibrate the model, but it must be recalibrated for data outside this range. 

Recalibration is essential for overlay thickness (variables Overlayaa and Overlayba in Table 3) since 

Washington State’s maintenance strategy is to perform pavement preservation mainly with overlays 

averaging about 0.15 ft (45 mm) thickness, and place few thicker rehabilitation overlays. Recalibration is 

also essential if overlays are being placed after cracking in the existing pavement has propagated to 

greater extents than is the practice of WSDOT (variable E_Alli in Table 3). WSDOT almost always 

places overlays before cracking has exceeded 10 percent of the wheelpath cracked and typically overlays 

at about 5 percent of the wheelpath cracked. 
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If greater extents of cracking in the existing pavement, outside the range of data are used, this will lead to 

a severe under-prediction of the extent of cracking and the rate of crack propagation. This occurs because 

cracking in the overlay will reach the level of cracking in the pavement prior to overlay, for thin overlays 

on relatively thick existing structures because the mechanism is reflection of the existing cracks. 

Eventually, bottom-up fatigue cracking will occur and propagate to the surface. However, this is not 

encountered in this database because WSDOT continues to apply preservation overlays, slowly increasing 

the structural capacity of the section; this is confirmed by inspecting the histograms of alligator cracking 

extents in the current and previous overlays, shown in Figures 2 and 3. The increase in the structural 

capacity added by the overlays appears to stay ahead of the bottom-up damage development in the rest of 

the asphalt layers for this data set. This might not be true for greater levels of annual truck traffic (in 

terms of ESALs, variable Traffic in Table 3) than are encountered in the WSDOT data. 

Another caveat is that this model predicts cracking progression in overlays that are subject to maintenance 

activities. The implication of this result is that the model should only be used to predict cracking 

progression for agencies that follow a similar maintenance policy. 

In order to perform predictions, a typical pavement section was selected and the values of its explanatory 

variables were defined as “default values.” Each of the explanatory variables of the typical section was 

varied from its 25th percentile to its median and then its 75th percentile (Table 4). The only variables that 

made a significant difference in the prediction of alligator cracking initiation and progression were: 

overlay material type (AA vs. BA) and ESAL. The predictions for different values of overlay material 

type and ESAL are shown in Figure 3 through Figure 10. 

As is explained in Appendix A, the spreadsheet creates a graph that shows the cracking paths resulting 

from 1,000 simulated experiments. To show that different cracking paths have different probabilities, the 

graph includes information on the frequency of each path. 
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Figure 2:  Histogram of percent cracking in the wheelpaths of the current overlay. 
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Figure 3:  Histogram of percent cracking in the wheelpaths at the time of most recent overlay. 
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Table 4: Default Values of the Typical Section Used for Predictions for Washington State 

AA 

Allig. (%) 
Long. 
(%) 

UnTrThick 
(in) SurfThk (in) PrevThk (in) Tmax (F) 

median 0 30 6 1.8 7.0 78.8 
lower 
25% 0 0 4.6 1.8 4.7 71.6 
upper 
25% 5 30 10.0 1.8 9.4 86.0 

Tmin (F) FTCycle Prep (in) FTPrep 
ACTB thick 

(in) 
PCTB 

thick (in) 

median 33.8 20 35 700 
0 (4.2 w/o 

others) 
0 (6 w/o 

others) 
lower 
25% 23.0 11.8 15 177 

0 (3.96 w/o 
others) 0 

upper 
25% 33.8 60 24.6 1476 

0 (4.2 w/ 
others 0 

BA 

Allig. (%) 
Long. 
(%) 

UnTrThick 
(in) SurfThk (in) PrevThk (in) Tmax (F) 

median 5 30 8.5 1.8 4.78 78.8 
lower 
25% 0 30 6 1.4 3.27 71.6 
upper 
25% 6 30 12 1.8 6.6 86 

Tmin (F) FTCycle Prep (in) FTPrep 
ACTB thick 

(in) 
PCTB 

thick (in) 

median 33.8 17.7 30 531 
0 (4.2 w/o 

others) 0 
lower 
25% 23 11.8 15 177 

0 (3.6 w/o 
others) 0 

upper 
25% 33.8 60 24.6 1476 

0 (4.5 w/o 
others) 0 
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Figure 4:  Overlay Type AA, all explanatory variables set at their median values, ACTB = 0, 
PCTB = 0, annual ESAL = 250,000 in design lane, 3% traffic growth. 
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Figure 5:  Overlay Type AA, all explanatory variables set at their medians, base dummy variables 
as in Figure 4, but ESAL = 100,000 in design lane. 
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Figure 6:  Overlay Type AA, all explanatory variables set at their medians, base dummy variables 
as in Figure 4, but annual ESAL = 500,000 in design lane. 
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Figure 7:  Overlay Type AA, all explanatory variables set at their medians, base dummy variables 
as in Figure 4, but annual ESAL = 1,000,000 in design lane. 
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Figure 8:  Overlay Type BA, all explanatory variables set at their median values, ACTB = 0, 
PCTB = 0, annual ESAL = 250,000 in design lane, 3 percent traffic growth. 

456 

343 

125 

41 
19 9 3 1 1 1 0 1 0 0 0 0 0 0 0 0 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Year 

Pe
rc

en
t A

lli
g 

B 
Cr

ac
ki

ng
 

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

Nu
m

be
r o

f C
ra

ck
 In

iti
at

io
ns

 

Figure 9:  Overlay Type BA, all explanatory variables set at their medians, base dummy variables 
as in Figure 7, but annual ESAL = 100,000 per year in design lane. 
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Figure 10:  Overlay Type BA, all explanatory variables set at their medians, base dummy variables 
as in Figure 7, but annual ESAL = 500,000 in design lane per year. 
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Figure 11:  Overlay type BA, all explanatory variables set at their medians, Base dummy variables 
as in Figure 7, but annual ESAL = 1,000,000 per year in design lane.  
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The following observations can be made, on the basis of Figure 3 through Figure 10: 

• Overlays made of Type AA material consistently perform better than those made with type BA 

material. The graphs show that, in the median case, overlays of Type AA may crack as late as in the 

ninth year, whereas the crack initiation of overlays of Type BA occurs in the first two years in the 

median case. Moreover, for the median case, the maximum cracking percentage around Year 14 

(which is the average time interval between overlays in Washington State) is around 4 percent for 

Type AA and closer to 6 percent for Type BA materials. This behavior was expected given that the 

coefficients of the dummy variable for Type AA were higher than those for Type BA in both the 

initiation and progression models. 

• The effect of traffic loading is clearly important. As can be seen, both cracking initiation and 

progression accelerate significantly as loading is approximately doubled from 100,000 ESALs per 

year to 250,000, then to 500,000 and 1,000,000. 

Table 5:  AA Median Parameter Values 

Alligator 

Cracking 

Longitudinal 

Cracking 

Untreated 

Thickness 

Surface 

Thickness 

Previous 

Thickness 

Median 0% 30% 6 in. 1.8 in. 6.96 in. 

3.6.5 Model Predictions for California Conditions 

To illustrate the use of our model system, we applied it to three locations in California. Crack initiation 

and progression predictions were made for Los Angeles, Sacramento, and Arcata using median values for 

the pavement properties seen in the Washington State Pavement Management System database. 

Traffic volumes were varied to simulate a wide variety of possible traffic situations. As such, tests were 

run for each city at 125,000 ESALs, 250,000 ESALs, 500,000 ESALs, and 1,000,000 ESALs. Weather 

data for each of the cities were obtained using the Climatic Database for Integrated Model (CDIM) 

software. All climate data were from the most recent year available, 1997. 

3.7 Results 

As can be seen by comparing Figure 6 and Figure 7 with Figure 14 and Figure 15 and Figure 22 to Figure 

23, there is quite a difference between the performance predictions from the model between California 

and Washington. For instance, according to scenario run for Washington State shown in Figure 6 

(variables at median, traffic: 500,000 ESALs in design lane) fiftieth-percentile crack initiation occurs in 

Year 3. However, Figure 18, which is run for Arcata’s climate and traffic level, predicts fiftieth-percentile 
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crack initiation in Year 5. In general, according to the model, in Washington it is not uncommon to see 

the majority of crack initiations begin relatively sooner for California climate, all other variables being 

equal. 

Since the same pavement characteristics are used for both Washington and California predictions, only 

the climate data is significantly different. Upon looking closer at the data, it also becomes apparent that 

there is not a great difference between the temperature extremes for the two states. This would imply that 

the precipitation and freeze-thaw cycles are the determining factor in the large difference seen in crack 

initiation. 

The crack initiation model uses (Annual _ Pr ecip)*(FT _ Cycles) as one of the explanatory variables. The 

primary difference between Washington and California climate data is the relative lack of freeze-thaw 

cycles in California, with none seen in either Los Angeles or Arcata and only one in Sacramento. In 

Washington State, on the other hand, the median was 20 freeze-thaw cycles. 

Crack progression, unlike initiation, shows no overwhelming indication of a strong reliance on climate 

data. In nearly all cases, the crack progressions were very similar, apparently most affected by loading 

rather than other factors. 
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Figure 12:  Sacramento—all medians—125,000 ESALs per year in design lane. 
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Figure 13:  Sacramento—all medians—250,000 ESALs per year in design lane. 
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Figure 14:  Sacramento—all medians—500,000 ESALs per year over in design lane. 
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Figure 15:  Sacramento—all medians—1,000,000 ESALs per year in design lane. 
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Figure 16:  Arcata—all medians—125,000 ESALs per year in design lane. 
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Figure 17:  Arcata—all medians—250,000 ESALs per year in design lane. 
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Figure 18:  Arcata—all medians—500,000 ESALs per year in design lane. 
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Figure 19:  Arcata—all medians—1,000,000 ESALs per year in design lane. 
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Figure 20:  Los Angeles—all medians—125,000 ESALs per year in design lane. 
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Figure 21:  Los Angeles—all medians—250,000 ESALs per year in design lane. 
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Figure 22:  Los Angeles—all medians—500,000 ESALs per year in design lane. 
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Figure 23:  Los Angeles—all medians—1,000,000 ESALs per year in design lane. 
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4 CONCLUSIONS 

4.1 Summary of Research Objectives and Results  

In this work, Empirical-Mechanistic (E-M) models for progression of overlay cracking in asphalt concrete 

pavements were developed using data from Washington State’s Pavement Management System (PMS) 

databases. Performance models are an important component of a PMS and were introduced in detail along 

with the other PMS components.  

An overlay crack progression model was developed in this research. Panel data problems, such as 

incidental truncation, left censoring, and cross-sectional heterogeneity, were properly addressed and 

suitable statistical tools were applied. The research shows that a specification that captures the main 

factors responsible for the overlay crack initiation and crack progression processes, combined with careful 

analysis of the data, can produce models of sufficient realism for pavement management purposes. 

The following explanatory variables were found to be the most relevant predictors of the annual 

increment in alligator cracking for hot-mix asphalt (HMA) overlays on HMA pavements: 

• The alligator cracking in the previous year 

• The existing alligator cracking prior to the application of the (last) overlay 

• The thicknesses of AC-treated, portland cement-treated and untreated bases 

• The thickness of the underlying HMA layers prior to application of the overlay 

• The thicknesses of overlays of different material types 

• The annual traffic loading in ESALs 

• The annual precipitation and annual freeze-thaw cycles 

• The average daily minimum temperature during the coldest month and the average daily high 

temperature during the hottest month. 

4.2 Recommendations for Implementation 

While the functional form and specification of the cracking initiation model and cracking progression 

model developed in this report are transferable to Caltrans, the values of the coefficients that were 

estimated with Washington State DOT data are not directly transferable. This is due to a number of 

reasons, including differences in materials, environment (at least in the drier and warmer regions of 

California), and most importantly, maintenance practices. 
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Washington State DOT’s maintenance strategy is to perform pavement preservation mainly with overlays 

averaging about 0.15 ft (45 mm) thickness, and place few thicker rehabilitation overlays.  

Therefore, the following recommendations for implementation are made: 

• The developed HMA pavement performance model suite [the cracking initiation model described in 

report UCPRC-RR-2005-5 (5) and the cracking progression model described in this report] should be 

tested with California PMS data. These data can either be collected as part of a pilot project or mined 

from data in the Caltrans PMS database after that database has been populated with information 

collected over consistently segmented sections. Because of the differences in maintenance policy 

between Washington State DOT and Caltrans, it is expected that the model parameters will need to be 

recalibrated. 

• Once Caltrans has populated its PMS database with sufficiently extensive condition survey data, these 

developed HMA pavement models can be updated recalibrated with the California data. Recalibration 

does not necessarily mean that all parameters will need to be re-estimated. Instead, statistical fusion 

procedures, such as Bayesian updating, can be used to recalibrate a subset of the coefficients in the 

model. The coefficients that will need recalibration include the coefficient for overlay thickness, 

because Washington State DOT uses thinner overlays than Caltrans and the coefficient for existing 

cracking before overlay. 

• The concave shape of the crack progression trend, observed in Figure 3 through Figure 10 of this 

report, is the result of unrecorded maintenance activities such as crack sealing or patching. If Caltrans 

does not use similar routine maintenance, the coefficient for percent wheelpath with alligator 

cracking should also be recalibrated, because the value of that coefficient determines the curvature of 

the crack progression trend. 
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APPENDIX A – SPREADSHEET EXPLANATION 

A.1. Introduction 

This spreadsheet applies the cracking initiation and progression models described in Partnered Pavement 

Research Center (PPRC) report number UCPRC-RR-2005-5 (5) and this report, respectively. The 

spreadsheet predicts the probability distribution of alligator cracking (in each year) for asphalt concrete 

pavements with asphalt concrete overlays. 

Cautious use of the spreadsheet is advised for geographic locations other than Washington State, such as 

California, because the input data (described below) should be within the ranges of the Washington State 

data that were used for developing the two models. 

A sample simulation using commonly seen inputs is included to serve as an example for how to use the 

spreadsheet. This example will provide step-by-step instruction for the process of creating a crack 

initiation and progression prediction. 

A.2. Input Data 

The user needs to enter data on pavement condition, pavement structure, pavement maintenance, road 

geometry, climate, and traffic. These input data are summarized in Table 8. 

To account for the distribution of truck traffic when two or more lanes are available in one direction, 

truck factors recommended by AASHTO are used. Table 6 summarizes these values as well as the 

correction factors used to correct the original model. The correction has already been applied in the 

spreadsheet and user does not need to input these values in the model. 
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Table 6:  Lane Distribution Chart 

No. of Lanes Each Way % Truck Factor Default Values Correction Factor 
1 100 100 1.0 
2 80-100 90 0.9/0.5 = 1.8 
3 60-80 70 0.7/0.333 = 2.1 
4 50-75 65 0.65/0.25 = 2.6 

Table 7: Input Ranges for Spreadsheet Data 

Category Required Input Mnemonic 
Used in 

Spreadsheet 

Units Recommended 
Range 

Condition Existing alligator cracking before 
last overlay (WSDOT definition) 

Prev. Allig. Cr. % 0–60 

Condition Existing longitudinal cracking 
before last overlay (WSDOT 

definition) 

Prev. Long. Cr. % 0–100 

Structure AC-treated base thickness ACTB thickness Inch 0–6 

Structure PCC-treated base thickness PCTB thickness Inch 0–6 

Structure Untreated base thickness UNTB thickness Inch 0–28 

Structure Underlying asphalt concrete 
thickness 

Underlying 
HMA thickness 

Inch 0.5–15 

Maintenance Material type of new overlay 
(WSDOT classification) 

Overlay type - AA or BA 

Maintenance Thickness of new overlay Overlay 
thickness 

Inch 0.7–5.4 

Geometry Number of lanes # Lanes Each Integer value 

Climate Annual precipitation Precipitation Inch 4–106 

Climate Average monthly minimum 
temperature of the coldest month 

(December) 

MinTemp °F 12–39 

Climate Average monthly maximum 
temperature of the hottest month 

(July) 

MaxTemp °F 64–93 

Climate Annual number of freeze-thaw 
cycles 

Freeze-Thaw 
cycle 

cycle/year 2–225 

Traffic Traffic loading in all lanes in one 
direction for first year 

Year 1 traffic 
(all lanes in one 

direction) 

ESAL/year 18,000+ 

Traffic Annual traffic growth factor Annual traffic 
growth 

% 0+ 
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The inputs used for the sample simulation are taken primarily from the default values specified in Table 4. 

To better simulate realistic conditions, the yearly traffic loading, overlay thickness, and untreated 

thickness were set at their respective mean values instead of default values. Figure 24 shows these values 

entered into the data input screen of the spreadsheet. 

Figure 24: Spreadsheet data input screen with sample simulation values. 

A.3. Cracking Simulation 

Let t be a (positive) random variable representing the cumulative traffic loading (in units of ESAL) at 

which cracking initiates. Based on the input data, the cracking initiation model provides Ft(t), the 

cumulative distribution function for t. For example, Ft(100,000) is the probability that a pavement section 

has started cracking by the time the cumulative traffic loading has reached 100,000 ESALs. 

The inverse transformation method can be used to simulate t. Let U be a random variable with a 

continuous uniform distribution between 0 and 1. Let t’ be a random variable defined as follows: 

 t’ = min { z, such that Ft(z) ≥ U } 
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In other words, t’ is the minimum value of z, for which F(z) is at least U. Since Ft given by the crack 

initiation model is strictly increasing, t’ can be expressed as follows: 

t’ = Ft
-1(U) 

 where Ft
-1(U) is the value z that satisfies Ft(z)=U. 

It is easy to show that t’ has the cumulative distribution function Ft (see, for example, Introduction to 

Probability Models by S. Ross). Therefore for a given, randomly generated value of U, the corresponding 

value of t’ represents one simulated value of t. 

In order to simulate one value of cumulative loading to failure, one needs to generate one uniformly 

distributed number and find the corresponding t’. This t’ is then used as the cumulative loading to failure 

for this experiment. Then, for a given year h, say 5, cracking initiates if h ≥ t’. Using the fact that Ft is 

strictly increasing, h ≥ t’ if and only if Ft(h) ≥  Ft(t’) = U. Therefore, if we want to find out whether 

cracking has initiated at year h, it suffices to check whether Ft(h) is at least U. 

The spreadsheet only looks at integer numbers of years. For a given simulated experiment, the 

spreadsheet applies the cracking progression model starting at integer year y’, where y’ is the smallest 

integer year greater than or equal to t’. The percentage of alligator cracking values for all the years up to 

y’ are zero. In each experiment, the spreadsheet finds the percentage of cracking for years 1 through 10, 

which can then be plotted as the cracking path, given that cracking initiates at year y’. 

The spreadsheet repeats this experiment 1,000 times. This is called Monte Carlo simulation. Since the 

spreadsheet uses the progression model in a deterministic way, all experiments that have the same year of 

cracking initiation (e.g., all the experiments that start cracking in Year 2) will have the exact same 

cracking path, for a given overlay. 

A.4. Graph 

The spreadsheet creates a graph that shows the cracking paths resulting from the 1,000 simulated 

experiments. In order to show that different cracking paths have different probabilities, the graph also 

includes information on the frequency of each cracking path. Figure 25 shows an example of such graph. 

The x-axis is the year, the left y-axis is the percentage of alligator cracking, and the right y-axis is the 

number of crack initiations out of 1,000 iterations in a given year. 
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In this example, each of the 1,000 simulated experiments starts cracking in year 1 or 2. The two curves 

represent the cracking paths. Each curve has a corresponding vertical bar, which indicates the number of 

simulated experiments that are characterized by this cracking path. In this simulation, there are 993 

experiments that start cracking in Year 1, and their cracking path is represented by the upper curve. 

Similarly, there are seven experiments that start cracking in Year 2, and their cracking path is the lower 

curve. This lower curve is horizontal at 0 percent cracking up to Year 2, when alligator cracking initiates 

and starts increasing. 
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Figure 25:  Graphical representation of sample crack initiation and progression. 
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APPENDIX B: LITERATURE SURVEY OF PERFORMANCE MODELS 

Prediction of future performance is needed in pavement management systems at the network and project 

levels. At the network level, performance prediction is used in preparing long-range budget estimates of 

the cost to maintain the highway system at a specified minimum performance level or to determine the 

consequences of future funding levels. At the project level, prediction of future performance is used in 

life-cycle cost analysis of pavement sections. Performance prediction is also useful in determining the 

consequences of deferral of rehabilitation actions (45). 

B.1. Performance Models for Overall Performance Measures 

The early trend in pavement performance modeling was to develop models that predict the overall 

performance of pavement sections. These models predict the change of a general condition measure for a 

pavement section in time, given a vector of explanatory variables. Overall performance measures have 

been designated by several names in literature including: pavement serviceability index (PSI), pavement 

condition rating (PCR), and pavement condition index (PCI); each is a composite measure of roughness 

and different distresses, such as rutting and cracking. The current Washington State Department of 

Transportation Pavement Management System (WSDOT PMS) makes use of performance prediction 

models for PCI.  

Roughness (also referred to as “smoothness” and “ride quality”) is an important pavement characteristic 

because it affects ride quality and vehicle delay costs, fuel consumption, and maintenance costs. Surface 

distress is defined by the Highway Research Board (46) as, “Any indication of poor or unfavorable 

pavement performance or signs of impending failure; any unsatisfactory performance of a pavement short 

of failure.” Rutting and cracking are the pavement distresses with most occurrence and implication on 

pavement management policies. 

An example of early overall condition models is the model presented by Scullion et al. (47), and given by: 

P = P0 −αt β (1) 

where  P0 is the initial serviceability index,  
t is the total time elapsed to reach a present serviceability index equal to P, 
α and β are parameters to be estimated.  
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Note that the previous model is constructed similarly to the power curve suggested by LeClerc and 

Nelson (48) and used in the WSDOT PMS.  

Another model is the S-shaped, or sigmoidal, model which is given by Riggins et al. (49): 

P = P − (P − P ) exp[(−ρ / t)β ] (2) 0 0 f 

where Pf, α and β are parameters to be estimated. 

Another type of model is the B-Spline Model. This model relates an overall measure of pavement 

conditions to age (50). The B-spline function (51) is a polynomial between each pair of selected points, 

called knots, along the age axis of the performance curve. Adjacent polynomials join continuously with 

continuous first and second derivatives. In general, a B-spline with degree k is a continuous function with 

its first (k-1) derivatives being continuous. Shahin et al. (51) found that B-splines of degree as low as 3 

are sufficiently smooth to be useful for approximating the PCI-age data. The serious disadvantage of the 

B-spline function is that it may exhibit occasional positive slopes suggesting that the PCI increases with 

age. In addition, the selection of the knots requires advanced engineering judgment.  

Other types of models are the recursion models (52, 53), which are essentially time series models of 

performance index. Other explanatory models such as age, traffic, and structural conditions were 

sometimes added to these models. 

Overall performance models are still currently used by some pavement management agencies. 

Performance models in the North Carolina State PMS (54) use a power curve to predict the Pavement 

Condition Rating (PCR) measure versus the pavement age as follows: 

PCR = C0 + C1 AgeC2 (3) 

where C0, C1, and C2 are constants to be estimated. 

Gulen et al. (55) developed a PCR model for Indiana roads given by:  

PCR = A0 + A1 Age + A2 PV (4) 

where Age is the age of the overlay, and PV a dummy variable that is equal to 1 for concrete 
pavements and 0 for bituminous pavements. A0, A1, and A2 are parameters to be 
estimated.  
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B.2. Performance Models for Individual Distresses 

Although performance models using composite indices of pavement condition (PCR, PSI, PCI, etc.) such 

as those summarized above are currently used widely in practice, in reality, overall pavement 

performance depends on the level of several different distresses such as rutting and cracking, as well as on 

roughness. These distresses occur due to different physical mechanisms and have different implications 

on Maintenance, Repair and Reconstruction (MR&R) strategies. Therefore it is more appropriate to 

model these distresses separately. In order to do so, pavement engineers and researchers used different 

approaches to develop distress specific performance models. These approaches generate models that can 

be generally divided into the following categories: 

• Mechanistic and Mechanistic-Empirical models 

• Empirical and Empirical-Mechanistic models 

B.3. Mechanistic and Mechanistic-Empirical Models 

In general, Mechanistic models are based on the use of material behavior and pavement response 

functions, which are believed to represent the actual behavior of the pavement structure under the 

combined actions of traffic and the environment. Although there are currently various attempts in this 

direction, a comprehensive and reliable mechanistic pavement model has yet to be developed. 

Mechanistic models require too much data to be used for pavement management systems. 

Mechanistic-Empirical models make use of material characterization (laboratory or in situ testing) and 

pavement response models (usually multilayer linear elastic or finite element type models) to determine 

pavement response critical to each distress mode (i.e., cracking, rutting, etc). This response is, in turn, 

correlated to pavement performance and finally calibrated to an actual pavement structure. Both pavement 

test sections and in-service pavement sections are used for this purpose. The models are usually calibrated 

by applying a bias correction factor (usually referred to as the shift factor or transfer function) (56, 57). 

Mechanistic-Empirical models are becoming used more frequently for project-level design. They are, 

however, too expensive to use for pavement management systems because of the amount of data that they 

require. 

Empirical performance models have proven to be the most appropriate models for pavement management 

and will be discussed in more detail in the next section. 
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B.4. Empirical and Empirical-Mechanistic Models 

In Empirical and Empirical-Mechanistic models, the dependent variable is some indicator of pavement 

performance. Both subjective indicators, such as overall performance measures (riding quality, 

serviceability, condition index, etc.), and objective indicators, such as distress specific measures 

(roughness, rutting, cracking, etc.), are used as dependent variables. 

These performance indicators are related to one or more explanatory variables, such as pavement 

structural strength, traffic loading, and environmental conditions. These models are often developed based 

purely on statistical considerations without any attempt to represent the actual physical phenomenon 

underlying the performance process. Different researchers have approached the development of these 

models in different ways, especially in the way in which the form of the model specification is developed. 

In the majority of empirical models found in the literature, explanatory variables are used and discarded 

solely on the basis of consideration of the statistics of their parameters. Often, relevant variables are 

discarded, owing to low statistical significance (as measured by t statistics). On the other hand, irrelevant 

variables are often incorporated into the models, based on the same considerations. Any models 

developed following such an approach will undoubtedly suffer from specification biases. Most of the 

specifications are a linear combination of the available regressors, and the criterion for the selection of the 

best specification among several alternatives is to obtain the best possible fit to the data. 

A few researchers have used specification forms that simulate the actual physical process of deterioration. 

In their work, the form of the specification, even though relatively simple (by comparison with the actual 

physical phenomenon and Mechanistic-Empirical models) is not constrained to linear equations. This 

approach is often referred to as the Empirical–Mechanistic approach and is further discussed in this 

section (58). 

Two broad categories of Empirical-Mechanistic models have been used in modeling the pavement 

condition deterioration process: Deterministic models and Probabilistic models. 

The Deterministic model assumes that pavement behavior follows a predetermined pattern that can be 

formulated by a specific mathematical expression relating the considered pavement performance indicator 

to one or more explanatory variables. However, inherent variability of material properties, environmental 

conditions, and traffic characteristics cause pavement performance to inherit random characteristics. 

Therefore by disregarding the uncertainty observed in pavement deterioration modeling, the Deterministic 
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models tend to oversimplify the process of pavement deterioration. On the other hand, Probabilistic 

models treat pavement condition measures such as crack, roughness, and rut development as random 

variables, and therefore are able to incorporate the uncertainty associated with pavement deterioration. 

Examples of both Deterministic and Probabilistic models are presented below. 

B.5. Deterministic Models 

The AASHO cracking model (46) is one of the early most used deterministic empirical models. Although 

its functional form was relatively arbitrary, the model has been widely accepted and forms the basis for 

most current pavement design procedures in the world today. It relates the traffic repetition (dependent 

variable) to pavement thickness and load type (explanatory variables): 
A1 A3 A (a D + a D + a D + a ) L 0 1 1 2 2 3 3 4 2 W = (5) 

2 c (L + L ) A 
1 2 

where Wc = Number of weighted axle applications sustained by the pavement before appearance 
of Class 2 Cracking; 

  D1, D2, D3 = Thickness of surfacing, base and sub-base respectively, in inches; 
  L1 = Nominal axle load, in kips; 
  L2 = 1 for single axle configuration and 2 for tandem axle configuration; 
  a1, a2, a3, a4 = Coefficients that were assigned earlier; 
  A1, A2, A3, A4 = Regression coefficients. 

Although the AASHO model was widely accepted and used, it nevertheless had several defects. One of 

the defects is that the analysis did not account for censoring. Censoring occurs when cracking is not 

actually observed. Left censoring occurs when the section has cracked before the first inspection, and 

right censoring occurs when the section has not cracked at the last inspection or by the time the 

experiment ended. Right-censored data was frequent in the AASHO Road Test and were not properly 

accounted for in the model, which led to a biased model. (Censoring is further discussed in Chapter 3.) 

Another problem of the AASHO model is that it is arbitrary. L1 and L2 for example have different units 

and were added together. Moreover the coefficients a1, a2, a3, a4 were determined a-priori instead of being 

estimated simultaneously with the other parameters. a1, a2, a3, a4 were used to calculate the Structural 

Number (SN), a measure of the strength of the pavement. The general equation for SN reflects the relative 

importance of the layer coefficients (ai) and thickness (Di): 
3 

SN = ∑ai Di (6) 
i=1 

The estimated values of the coefficients, a1, a2 and a3, were: 0.33, 0.10, and 0.08 respectively. 
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Performance models were developed either separately for cracking initiation and cracking progression, or 

both initiation and progression were expressed in one model. 

Parsley and Robinson (59) and Hodges et al. (60), as part of the Transportation Research Laboratory 

(TRL) road costs study in Kenya, combined cracking initiation and progression in one relation expressed 

in terms of cracking and patching. The cracking progression model predicts the incremental change in the 

area of cracking as a function of the modified structural number and the incremental cumulative traffic 

loading since the most recent resurfacing. The incremental form of the cracking progression models is as 

follows: 

Δ(C + P) i = αSN −SN ΔNE (7) 

where (C + P) = Sum of areas of cracking and patching (m2/km/lane); 
  SN  =  Structural number; 
  NE = Cumulative traffic loadings since latest resurfacing; 

α = Regression coefficient. 

The Queiroz-GEIPOT models (61, 62) are examples of models that separate crack initiation and 

the rate of crack progression. The dependent variable in their crack initiation model is the number of 

equivalent single axles to initiation, and the explanatory variable is the structural number. The initiation 

model is given by: 

Log N = α + β log SN (8) 10 c 10 

where, Nc = The number of Equivalent Single Axle Loads (ESALs) needed to initiate cracking;
  SN = Structural number; 

α, β = Regression coefficients. 

The progression model predicted the percentage of area cracked as a function of the structural number, 

traffic, and age of the pavement as follows: 

CR = α + βLN / SN + γALN (9) 

where, CR = percentage area cracked; 
  LN = logarithm to the base 10 of the number of cumulative equivalent axles; 

  A = pavement age since construction or overlay (years); 
  SN = structural number; 

α, β, γ = regression parameters. 
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Oliver (63) presented a crack initiation model for chip seals: 

A0 Y = (10) 
(A1T + A2 )2 

where, Y = number of years to reach crack initiation; 
T = average site air temperature. 

  A0, A1, and A2 = parameters to be estimated. 

Shin (64) presented a crack progression model of the following form: 
1 2 crit = β0 SNi 

β ESALβ 
it (11) 

where,  crit = area cracked for pavement i at time t; 
  SNi = Structural Number of pavement section i; 
  ESAL = Cumulative traffic expressed in Equivalent Single Axle Load (ESAL);  

β0, β1, and β2 are parameters to be estimated. 

B.6. Probabilistic Models 

Infrastructure deterioration is a stochastic process that varies widely with several factors, many of which 

are generally not captured by the available data. Therefore, Probabilistic models are used to predict the 

deterioration of infrastructure facilities such as pavement surfaces. Two types of Probabilistic models 

have been used for infrastructure facility deterioration prediction: state-based and time-based models. 

State-based models predict the probability that a facility will undergo a change in condition-state at a 

given time, conditional on an array of explanatory variables such as traffic loading, environmental factors, 

design attributes, and maintenance history. Typical examples of a state-based model are the Markov and 

semi-Markov processes. In recent years, researchers have refined the simple Markovian transition 

probabilities that have been used in infrastructure management, by accounting for the effects of age (time 

heterogeneity) and deterioration history, thus relaxing the Markovian assumption (or equivalently, 

imposing it on an augmented state which includes the history of the process). At the same time, 

econometric methods such as Poisson regression, Probit regression, and duration models have been used 

to estimate the parameters of these models and to compute the transition probabilities (65, 66, 67, 68). 

Time-based models, on the other hand, predict the probability distribution of the time taken by an 

infrastructure facility to change its condition-state, conditional on an array of explanatory variables such 

as traffic loading, environmental factors, design attributes, and maintenance history. Such models have 
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been used frequently in pavement deterioration modeling to predict the time to cracking initiation (69) or 

the number of axle load repetitions needed to reduce serviceability below an acceptable level (70). 

It is important to observe that while the two modeling approaches are based on different econometric 

techniques, they have a number of similarities. In particular, it is possible to use one modeling approach 

to predict the dependent variable of the other. For example, given a set of condition-state transition 

probabilities, one can derive the probability distribution of the time to condition-state change. Similarly, 

given a distribution of time-in-state, it is possible to compute time-dependent transition probabilities. The 

state-based model gives the probability of N events (transitions in condition-state) in a fixed time period, 

while the time-based model gives the probability density of the inter-event times (time between 

transitions in condition-state). Therefore, the decision of which Probabilistic approach to use must be 

based on empirical considerations. Specifically, the nature of the condition data available for model 

development may favor one approach over the other. If continuous (or almost continuous) observations of 

facility condition over a long time window (i.e., a time window that is longer than the maximum time 

needed for condition-state transition) are available, then it is possible to develop a time-based model 

because accurate observations of the dependent variable are possible. 

On the other hand, if inspections are made infrequently or if the available data only span a relatively short 

time window, then the measurement of the time between condition-state transitions will suffer from 

potentially large measurement errors or from severe censoring, both of which may render the resulting 

time-based models inaccurate. In such situations, a state-based model would be the better approach (71). 

With regard to Probabilistic Time-Based Models, Paterson’s empirical work, based on data from the 

World Bank’s Highway Design and Maintenance (HDM-III) project was one of the most comprehensive 

attempts to develop Probabilistic time-based models for different types of pavement distresses (72). The 

World Bank’s Highway Design and Maintenance (HDM) models (72) use a Probabilistic Parametric 

Duration model to predict crack initiation, where the dependent variable is the probability distribution of 

the time to cracking. The HDM-III crack initiation model used a Weibull hazard function, h(t) of the 

following form: 
γ −1 h(t) = γ exp(−γμ)t (12) 

The parameter μ is replaced by a linear function of explanatory variables x, and is given by μ = β ′x . β 

and γ are parameters to be estimated. 
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The resulting model for prediction of expected cumulative traffic loading to crack initiation is: 
β β SY 2 3 TE = β SN e (13) CR2 1 

where,  TECR2 = mean cumulative traffic loading at initiation of narrow cracking (in millions of 
ESALs); 

  SN = Structural number; 
  SY = SN4 / (1000 YE4), where YE4 is the annual traffic loading (in millions of 

ESAL/lane/year); 
β1, β2, β3 = parameters to be estimated. 

Models with separate predictions for initiation and progression have the advantage that they can be 

estimated separately, allowing a better description and understanding of initiation and progression, 

processes that are physically different. 

Van Dam et al. (73) analyze the Strategic Highway Research Program (SHRP) Long-Term Pavement 

Performance (LTPP) data by using the Probabilistic Failure-time Crack Initiation models previously 

developed for use in HDM-III. On the basis of that analysis, they conclude that the HDM-III models do 

not accurately capture the climatic factors that play a role in linear cracking initiation typically observed 

in North America. When considering only fatigue-related cracking, HDM-III models could be 

successfully fit to the data, but concerns related to the shape parameter call into question their general 

applicability. It is concluded that although some aspects of this analysis suggest that HDM-III models 

adequately model fatigue-related crack initiation in LTPP pavement sections, overall the results are 

inconclusive and a more in-depth analysis needs to be conducted. 

The two models, derived from the HDM-III models, which best fit the LTPP data are given by Van Dam 

et al. (73): 

TYcr = a0 exp(a1YE4 + a2 SNC) (14) 

⎡ ⎛ YE ⎞⎤ TYcr = a3 exp⎢a4 ⎜ 4 ⎟⎥ (15) 
⎣ ⎝ SNC 2 ⎠⎦ 

where  TYcr = The expected age in years of the surfacing at age and temperature-related cracking 
initiation; 

  SNC = Modified Structural Number; 
  YE4 = Traffic loading rate in millions of equivalent single axle loads (ESALs) per lane 

per year; 
  a0, a1, a2, a3, a4, and a5 are coefficients to be estimated. 
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Shin and Madanat (74) and Shin (64) used a Weibull model to estimate a crack initiation model. The 

parameter μ was defined by Shin (64) as: 

μ = β + β D + β D + β Type × Load + β 6 (1− Type) × Load (16) 1 2 1 3 2 5 

where  D1 = Surface thickness in inches; 
  D2 = Base thickness in inches; 
  D3 = Subbase thickness in inches; 

  Load = Nominal axle load (in kips); 
  Type = Single dummy variable, 1 for single axle and 0 for tandem axle; 

β0, β1, β2, β3, β4, β5, β6 are parameters to be estimated.  

Colucci et al (75) estimate the survival function S of pavement sections in different regions in Puerto Rico 

as a function of cumulative traffic to failure wf. The survival function defined by Colucci et al. (75) is 

given by: 
δ ⎛ w f ⎞ −⎜⎜ ⎟ 

⎝ ⎠ S(w f ) = e α ⎟ 
(17) 

where α and δ are parameters to be estimated. 

De Lisle et al. (76) presented a study for network-level pavement performance prediction that 

incorporates censored condition data. They used data from the New York State Department of 

Transportation (NYSDOT) to model the survival function of the dependent variable, defined as 

qualitative measure of the extent of cracking on the pavement surface, for different regions in New York 

State. De Lisle et al. (76) assumed a Weibull distribution of the survival function and used time as the 

only explanatory variables in their models. While De Lisle et al. (76) applied a proper modeling approach 

by using duration models and accounting for right censoring; their model included only time as 

explanatory variable, and therefore it is simplistic and not very useful to determine pavement 

management policies. 

Loizos and Karlaftis (77) developed surface distress prediction models for pavement crack initiation on 

the surface of flexible and semirigid pavements (asphalt placed on cement-treated base) on the basis of a 

large and recent data set collected from in-service pavements in 15 European countries by using the 

principles of stochastic duration models. They found that, as expected, construction, traffic, and climatic 

factors affect pavement distress. They also compared several parametric forms of the survival function 

(Lognormal, Loglogistic, Weibull, and Exponential) using the likelihood ratio test and found that the 

lognormal functional form, in contrast to the findings of previous studies, best describes the distress 

initiation process. This last finding however was not very convincing since the likelihood ratio test for the 
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Lognormal, Loglogistic, and Weibull models were roughly similar and the differences might not have 

been significant. Moreover, Loizos and Karlaftis (77) combined cracking in pavement overlays as well as 

cracking in the first pavement layer in their analysis, while in practice they should be separated as some 

factors that affect overlay cracking (reflection cracking) do not contribute to crack initiation in the first 

pavement layers. 

Wang et al. (78) presented a study that analyzed the development patterns of fatigue cracking shown in 

flexible pavement test sections of the LTPP program. A large number of LTPP test sections exhibited a 

sudden burst of fatigue cracking after a few years of service, and in order to characterize this type of 

LTPP cracking data, Wang et al. (78) conducted a survival analysis to investigate the relationship 

between fatigue failure time and various explanatory variables. They used an Accelerated Failure Time 

model. The Accelerated Failure Time model assumes that the effect of independent variables on a failure 

time distribution is multiplicative on the event time. One possible form of the Accelerated Failure Time 

model is as follows: 
β ′ x T = e Tb (18) 

where  T is the failure time;  
  Tb is the failure time associated with a baseline distribution function;  
  x vector of the explanatory variables;  
β is a vector of parameters to be estimated by maximum likelihood. 

Wang et al. (78) assumed different parametric distributions for the baseline function, such as the 

Loglogistic, Weibull, Lognormal, Exponential, and Generalized gamma distributions. Since the assumed 

baseline models above are nested within the Generalized Gamma distribution, or in other terms represent 

a special case of the Generalized Gamma distribution, the likelihood-ratio test can be used to compare 

these nested models. Wang et al. (78) found that the Generalized Gamma distribution for the baseline 

function represent the best fit for the LTTP data. 

With regard to Probabilistic State-Based models, one of the commonly used probabilistic modeling 

approaches is the method of Markov chains. Markovian transition models have been employed 

extensively for modeling infrastructure performance (6, 40, 7). The key to modeling the condition 

deterioration process using a Markov chain is to establish a matrix of appropriate transition probabilities. 

Historically, two methods have been employed for the derivation of the transition probabilities depending 

on the extent of the available pavement condition survey data. Due to the scarcity of data in the initial 

stages of a PMS, pavement expert knowledge is usually sought to construct a reasonably accurate 
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transition probability matrix that is stationary or invariant with respect to the condition deterioration 

process. Considering the subjective nature of pavement expert knowledge and the wide variation of the 

impact of the associated variables on the pavement deterioration, the adequacy of the stationary and 

subjective transition probability matrix in representing the deterioration process is questionable.  

On the other hand, in an established and well-functioning PMS with a wealth of historical condition 

survey data, the transition probability matrix is usually deduced from statistics of pavement condition 

data. In this regard, a case study has been reported by Wang et al. (79), who developed transition 

probability matrices from statistics of survey data for the Arizona Department of Transportation. 

Mishalani and Madanat (68) also derived transition probabilities from Stochastic Duration models. 

However, most highway agencies that adopt the Markov chain–based performance model in their PMS 

still rely on static transition probabilities. 

Researchers have recently applied econometric methodologies in modeling infrastructure deterioration 

using condition-rating data. Combining well-established methodologies and accurate facility 

characteristics data, these models can be considered more appropriate than the Markov chains based on 

stationary transition probabilities. As an example, Madanat et al. (66) introduced an ordered Probit model 

for estimating transition probabilities from infrastructure inspection data. The above model assumes the 

existence of an underlying continuous random variable and therefore allows the latent nature of 

infrastructure performance to be captured. Then an ordered Probit model is used to construct an 

incremental discrete deterioration model in which the difference in observed condition rating is an 

indicator of the underlying latent deterioration. Finally this model is used to compute a nonstationary, i.e., 

time-dependent transition matrix. Based on the previous work, Madanat et al. (67) proposed an improved 

Probit model with the specification of random effects to account for the heterogeneity and extended the 

model to investigate the state dependence. 

Yang et al. (80) presented a detailed study on the use and development of state-based Markovian models. 

They established a simple relationship between the transition probabilities of pavement crack condition 

and all relevant explanatory variables through a logistic model to facilitate the computation of dynamic 

transition probabilities that truly represent the state dependency of the pavement deterioration process. 

The issue of state dependency of transition probabilities was addressed by including the lagged pavement 

crack condition index itself as one predictor in the model specification. Then, a recurrent Markov chain 

was constructed based on the logistic model and a computationally simple procedure was established for 

crack condition forecasting. 
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	TABLE OF CONTENTS 
	TABLE OF CONTENTS 
	TABLE OF CONTENTS 

	Project Objectives 
	Project Objectives 
	......................................................................................................................................
	iii 

	Executive Summary 
	Executive Summary 
	Executive Summary 
	.................................................................................................................................... 
	v 

	List of Figures
	List of Figures
	............................................................................................................................................. 
	xi 

	List of Tables
	List of Tables
	.............................................................................................................................................
	xii 

	Abbreviations and Terms Used in the Text
	Abbreviations and Terms Used in the Text
	...........................................................................................
	xiii 

	1 INTRODUCTION
	1 INTRODUCTION
	................................................................................................................................
	1 

	2 THE ROLE OF PERFORMANCE MODELS IN PAVEMENT MANAGEMENT SYSTEMS 
	2 THE ROLE OF PERFORMANCE MODELS IN PAVEMENT MANAGEMENT SYSTEMS 
	.. 
	3 

	2.1 
	2.1 
	Data Collection and Management 
	............................................................................................. 
	5 

	2.2 
	2.2 
	Pavement Performance Prediction 
	............................................................................................ 
	6 

	2.3 
	2.3 
	Economic Analysis and Life-Cycle Cost Analysis 
	................................................................... 
	7 

	2.4 
	2.4 
	Optimization
	..............................................................................................................................
	9 

	3 
	3 
	DEVELOPMENT OF A PROGRESSION MODEL FOR ALLIGATOR CRACKING 
	............ 
	11 

	3.1 
	3.1 
	Introduction 
	............................................................................................................................. 
	11 

	3.2 
	3.2 
	Methodology 
	........................................................................................................................... 
	12 

	3.3 
	3.3 
	Statistical Review
	.................................................................................................................... 
	14 

	3.3.1 
	3.3.1 
	Panel Data Models 
	.............................................................................................................. 
	14 

	3.3.2 
	3.3.2 
	Selection Bias (Incidental Truncation) 
	............................................................................... 
	16 

	3.3.3 
	3.3.3 
	Binary Probit Model 
	........................................................................................................... 
	18 

	3.3.4 
	3.3.4 
	Censored Panel Data and Tobit Models
	.............................................................................. 
	19 

	3.4 
	3.4 
	Data Description
	...................................................................................................................... 
	20 

	3.4.1 
	3.4.1 
	Sample Selection for the Progression Model
	......................................................................
	20 

	3.4.2 
	3.4.2 
	Description of Relevant Variables 
	...................................................................................... 
	21 

	3.5 
	3.5 
	Estimation of the Incidental Truncation Correction Term 
	...................................................... 
	24 

	3.6 
	3.6 
	The Crack Progression Model
	................................................................................................. 
	27 

	3.6.1 
	3.6.1 
	Model Specification
	............................................................................................................
	27 

	3.6.2 
	3.6.2 
	Expectations of the Model Results
	...................................................................................... 
	27 

	3.6.3 
	3.6.3 
	Model Results and Their Interpretations
	............................................................................. 
	28 

	3.6.4 
	3.6.4 
	Model Predictions 
	...............................................................................................................
	31 

	3.6.5 
	3.6.5 
	Model Predictions for California Conditions
	......................................................................
	39 

	3.7 
	3.7 
	Results 
	..................................................................................................................................... 
	39 

	4 CONCLUSIONS
	4 CONCLUSIONS
	................................................................................................................................. 
	47 

	4.1 
	4.1 
	Summary of Research Objectives and Results
	........................................................................
	47 

	4.2 
	4.2 
	Recommendations for Implementation 
	................................................................................... 
	47 

	References
	References
	.................................................................................................................................................. 
	49 

	APPENDIX A – SPREADSHEET EXPLANATION 
	APPENDIX A – SPREADSHEET EXPLANATION 
	............................................................................ 
	57 

	A.1.
	A.1.
	 Introduction 
	.................................................................................................................................. 
	57 

	A.2.
	A.2.
	 Input Data 
	..................................................................................................................................... 
	57 

	A.3.
	A.3.
	 Cracking Simulation
	..................................................................................................................... 
	59 

	A.4.
	A.4.
	 Graph 
	............................................................................................................................................ 
	60 

	APPENDIX B
	APPENDIX B
	: LITERATURE SURVEY OF PERFORMANCE MODELS
	.....................................
	63 

	B.1.
	B.1.
	 Performance Models for Overall Performance Measures
	.............................................................
	63 

	B.2.
	B.2.
	 Performance Models for Individual Distresses
	.............................................................................
	65 

	B.3.
	B.3.
	 Mechanistic and Mechanistic-Empirical Models
	.......................................................................... 
	65 

	B.4.
	B.4.
	 Empirical and Empirical-Mechanistic Models 
	............................................................................. 
	66 

	B.5.
	B.5.
	 Deterministic Models
	.................................................................................................................... 
	67 

	B.6.
	B.6.
	 Probabilistic Models 
	..................................................................................................................... 
	69 

	Figure 1
	Figure 1
	:  Conceptual relation of elements of modern PMS
	......................................................................... 
	5 

	Figure 2
	Figure 2
	:  Histogram of percent cracking in the wheelpaths of the current overlay. 
	.................................. 
	33 

	Figure 3
	Figure 3
	:  Histogram of percent cracking in the wheelpaths at the time of most recent overlay
	................
	33 

	Figure 4
	Figure 4
	:  Overlay Type AA, all explanatory variables set at their median values, ACTB = 0,  PCTB = 0, annual ESAL = 250,000 in design lane, 3% traffic growth
	.........................................
	35 

	Figure 5
	Figure 5
	:  Overlay Type AA, all explanatory variables set at their medians, base dummy variables as  

	in
	in
	 Figure 4, but ESAL = 100,000 in design lane
	............................................................................ 
	35 

	Figure 6
	Figure 6
	:  Overlay Type AA, all explanatory variables set at their medians, base dummy variables as  

	in
	in
	 Figure 4, but annual ESAL = 500,000 in design lane
	................................................................
	36 

	Figure 7
	Figure 7
	:  Overlay Type AA, all explanatory variables set at their medians, base dummy variables as  

	in
	in
	 Figure 4, but annual ESAL = 1,000,000 in design lane
	.............................................................
	36 

	Figure 8
	Figure 8
	:  Overlay Type BA, all explanatory variables set at their median values, ACTB = 0,  PCTB = 0, annual ESAL = 250,000 in design lane, 3 percent traffic growth
	................................ 
	37 

	Figure 9
	Figure 9
	:  Overlay Type BA, all explanatory variables set at their medians, base dummy variables as  

	in
	in
	 Figure 7, but annual ESAL = 100,000 per year in design lane
	..................................................
	37 

	Figure 10
	Figure 10
	:  Overlay Type BA, all explanatory variables set at their medians, base dummy variables  as in Figure 7, but annual ESAL = 500,000 in design lane per year
	.............................................. 
	38 

	Figure 11
	Figure 11
	:  Overlay type BA, all explanatory variables set at their medians, Base dummy variables  as in Figure 7, but annual ESAL = 1,000,000 per year in design lane
	........................................... 
	38 

	Figure 12
	Figure 12
	:  Sacramento—all medians—125,000 ESALs per year in design lane. 
	..................................... 
	40 

	Figure 13
	Figure 13
	:  Sacramento—all medians—250,000 ESALs per year in design lane. 
	..................................... 
	41 

	Figure 14
	Figure 14
	:  Sacramento—all medians—500,000 ESALs per year over in design lane. 
	............................. 
	41 

	Figure 15
	Figure 15
	:  Sacramento—all medians—1,000,000 ESALs per year in design lane. 
	.................................. 
	42 

	Figure 16
	Figure 16
	:  Arcata—all medians—125,000 ESALs per year in design lane
	............................................... 
	42 

	Figure 17;  Arcata—all medians—250,000 ESALs per year in design lane
	Figure 17;  Arcata—all medians—250,000 ESALs per year in design lane
	............................................... 
	43 

	Figure 18
	Figure 18
	:  Arcata—all medians—500,000 ESALs per year in design lane
	............................................... 
	43 

	Figure 19
	Figure 19
	:  Arcata—all medians—1,000,000 ESALs per year in design lane
	............................................ 
	44 

	Figure 20
	Figure 20
	:  Los Angeles—all medians—125,000 ESALs per year in design lane. 
	.................................... 
	44 

	Figure 21
	Figure 21
	:  Los Angeles—all medians—250,000 ESALs per year in design lane. 
	.................................... 
	45 

	Figure 22
	Figure 22
	:  Los Angeles—all medians—500,000 ESALs per year in design lane. 
	.................................... 
	45 

	Figure 23
	Figure 23
	:  Los Angeles—all medians—1,000,000 ESALs per year in design lane. 
	................................. 
	46 

	Figure 24
	Figure 24
	: Spreadsheet data input screen with sample simulation values. 
	................................................. 
	59 

	Figure 25
	Figure 25
	:  Graphical representation of sample crack initiation and progression
	....................................... 
	61 

	Table 1
	Table 1
	: Summary Statistics of the Sample 
	................................................................................................ 
	21 

	Table 2
	Table 2
	: Results of the Probit Model for Probability that a Section Cracks, Pr(Cr=1)
	............................... 
	26 

	Table 3
	Table 3
	: Results of the Tobit Model Regression
	......................................................................................... 
	29 

	Table 4
	Table 4
	: Default Values of the Typical Section Used for Predictions for Washington State 
	..................... 
	34 

	Table 5
	Table 5
	:  AA Median Parameter Values 
	..................................................................................................... 
	39 

	Table 6
	Table 6
	:  Lane Distribution Chart 
	............................................................................................................... 
	58 



	LIST OF FIGURES 
	LIST OF TABLES 

	ABBREVIATIONS AND TERMS USED IN THE TEXT 
	ABBREVIATIONS AND TERMS USED IN THE TEXT 
	ADOT Arizona Department of Transportation 
	Caltrans California Department of Transportation 
	GLS Generalized Least Squares 
	GIS Geographic information systems 
	GPS Global Positioning System 
	HDM-III Highway Design and Maintenance, World Bank’s 
	IMS Infrastructure Management Systems 
	LSDV Least Squares Dummy Variables 
	LCCA Life-Cycle Cost Analysis 
	MR&R Maintenance, Repair and Reconstruction 
	PPRC SPE 3.2.5/4.5 Partnered Pavement Research Center Strategic Plan Element 
	3.2.5/4.5 
	PCI Pavement Condition Index 
	PCR Pavement Condition Rating 
	PMS Pavement Management System 
	PSI Pavement Serviceability Index 
	PST Pavement Standards Team 
	SN Structural Number 
	UCPRC University of California Pavement Research Center 
	1 INTRODUCTION 
	1 INTRODUCTION 
	The work presented in this report was performed for the California Department of Transportation (Caltrans) by the University of California Pavement Research Center (UCPRC) as part of Partnered Pavement Research Center Strategic Plan Element 3.2.5 (PPRC SPE 3.2.5), titled “Documentation of pavement performance data for pavement preservation strategies and evaluation of cost-effectiveness of such strategies.” Work on PPRC SPE 3.2.5 was begun in 2006. The Pavement Standards Team (PST) technical lead for PPRC S
	An infrastructure management system (ISM) is a decision-support tool that aids public agencies in planning maintenance activities of their facilities. A complete IMS facilitates the following tasks: facility inspection and data collection, deterioration prediction through performance models, and Maintenance, Repair, and Reconstruction (MR&R) policy selection over the planning horizon. 
	Several IMSs have been developed and applied to actual infrastructure networks. The Arizona Pavement Management System (PMS) was implemented in the 1980s with estimated savings of about $200 million in maintenance and rehabilitation costs in five years (1). Pontis, a system for maintenance optimization and improvement of a bridge network, has been used effectively for bridge improvement and maintenance planning in 40 states in the US (2). In California, $188 million of pavement rehabilitation contracts were
	Performance models are a core component of a PMS. There are two types of empirical performance models used in a PMS: models based on field data, and those based on experimental data. Experimental data are likely to suffer from biases as they do not represent the true deterioration mechanisms of pavements. Data from actual in-service pavement sections subjected to the combined actions of highway traffic and environmental conditions are more representative of the actual deterioration process. However, models 
	The main objective of this research is to develop Empirical-Mechanistic (E-M) models for initiation and progression of overlay cracking in asphalt pavements, using data from the Washington State Department of Transportation (WSDOT) PMS databases. Overlay cracking occurs due to a combination of different types of cracking such as: thermal cracking which is due to extreme cold temperatures, fatigue cracking which is caused by traffic stresses, and reflection cracking which is a form of fatigue cracking that r
	E-M models are deductive models where the functional form and specification (choice of explanatory variables) are based on physical considerations, and where the model parameters (coefficients) are calibrated by using empirical data and statistical estimation procedures. E-M models are discussed in detail in Appendix B. 
	The research described in this report extends the work performed in PPRC SPE 4.5, which involved development of empirical-mechanistic pavement performance models using data from the Washington State PMS databases. That work included development of a model for crack initiation in asphalt overlays of asphalt pavements, in terms of Equivalent Single Axle Loads (ESALs) to Five Percent Cracking of any type in the wheelpaths, including the WSDOT PMS equivalents of alligator cracking Types A, B, and C as defined i
	The remainder of this report is organized as follows: Chapter 2 presents an overview of the major components of a PMS. Chapter 3 discusses the development of a panel data overlay crack progression model. Panel data problems, such as incidental truncations, left censoring, and cross-sectional heterogeneity, are properly addressed and suitable statistical tools are applied. Chapter 4 presents the final conclusions resulting from this report, and discusses recommended future research to follow this work. Appen

	2 THE ROLE OF PERFORMANCE MODELS IN PAVEMENT MANAGEMENT SYSTEMS 
	2 THE ROLE OF PERFORMANCE MODELS IN PAVEMENT MANAGEMENT SYSTEMS 
	This chapter presents an overview of the major components of pavement management systems and the role of pavement performance models. A detailed literature review of pavement performance models is presented in Appendix B. 
	Since their introduction in the late 1960s and early 1970s, pavement management systems (PMSs) have evolved continuously in their scope, methodology, and application. PMSs were conceived in response to the shift from the deployment mode to the repair and maintain mode. At that time, the United States’ network of freeways and major highways was almost complete, and a major responsibility for highway agencies was to preserve the huge investment in the pavements. As resources available for pavement maintenance
	The early systems used simple data-processing methods to evaluate and rank candidate pavement rehabilitation projects on the basis of such factors as current pavement condition and traffic. Forecasting of future pavement conditions was not considered, and no economic analysis of preventive versus deferred maintenance was performed. These were project-level systems that evaluated project priorities but did not formally address network-level planning issues such as the impact of limited budgets and desired pe
	The network perspective was formally incorporated in the systems developed in the early 1980s, and the first such system was developed for the Arizona Department of Transportation (ADOT) (6). Systems developed in the 1990s use integrated techniques of performance prediction, network and project-level optimization, multicomponent prioritization, and geographic information systems (GIS) (7, 8, 9, 10, 11). Early systems focused on developing a pavement rehabilitation program for a single planning year. Priorit
	The current generation of PMSs focuses on developing a multiyear program based on both current and projected pavement conditions. Candidate projects are identified for each year of a multiyear planning 
	horizon, annual budgets are estimated, and the annual network performance is projected for percentages of roadway miles in good and poor pavement conditions.  
	In the future, it is likely that PMSs will provide integrated multiyear programs for multiple components of a roadway network (such as pavements and bridges). One can also envision PMS programs integrated with management systems for multimodal infrastructure facilities that include railroads, transit, airports, and harbors (12). 
	The following sections of this chapter briefly summarize the major components of a pavement management system: 
	• 
	• 
	• 
	Data collection and management 

	• 
	• 
	Pavement performance prediction 

	• 
	• 
	Economic analysis and life cycle cost analysis 

	• 
	• 
	Optimization 


	The relationship of each of these components in the development of a PMS with all of these capabilities is summarized in Figure 1. The figure shows the PMS as a pyramid. The first requirement for the PMS is adequate data collection and management, particularly the ability to access each of the data elements shown in the first level of the PMS and to relate them to each other in terms of time and location. The next level, which requires implementation of the first level, is the development of pavement perfor
	Figure
	Figure 1:  Conceptual relation of elements of modern PMS. 
	2.1 Data Collection and Management 
	2.1 Data Collection and Management 
	The development of a sound PMS is conditional on the collection and management of a detailed and complete database. Early PMSs relied on subjective ratings of pavement condition; quantitative data on pavement distresses generally were not collected. Today, relational database software systems provide efficient methods for linking, sorting, analyzing, and organizing data. Equipment-based measurements of the severity and extent of different pavement distresses are now common practice for conducting pavement c
	In the near future, greater automation of pavement condition surveys is expected. Equipment and software that use the concepts of artificial intelligence and digital imaging are likely to be available to collect data on most pavement distresses, including different types of cracking. The Global Positioning System (GPS) will be increasingly used to provide location referencing to elements of infrastructure facilities, thus allowing greater and more efficient use of GIS. Another future direction for database 
	Recommendations for database elements for the Caltrans PMS needed to support pavement performance prediction models have been made in two other UCPRC reports for Caltrans (5, 13). Reports by Cambria (14, 15) identified the status of current Caltrans data collection and accessibility with respect to the needs for a modern PMS. The Cambria Systems reports considered the information provided in the UCPRC reports. 

	2.2 Pavement Performance Prediction 
	2.2 Pavement Performance Prediction 
	The prediction of pavement performance is the most essential element in a modern PMS, and reliable pavement performance prediction models are crucial for identifying the least-cost rehabilitation strategies that maintain desired levels of pavement performance. 
	Early systems did not have a predictive element, and they evaluated only current pavement conditions. Relatively simple prediction models were later introduced that often considered age as the only predictive variable. These models generally were based on engineering judgment to estimate the expected design life of different rehabilitation actions. This is the status of the current Caltrans PMS. 
	More modern systems use a variety of performance models. Some are based on empirical analysis of pavement condition survey data in which the potential predictive variables include traffic loading, climatic conditions, pavement structural properties, and history of pavement condition. Other models use mechanistic principles in which the pavement structure is modeled as a multilayered system subjected to traffic loading, the structural response of the pavement is calculated, and a damage accumulation model is

	2.3 Economic Analysis and Life-Cycle Cost Analysis 
	2.3 Economic Analysis and Life-Cycle Cost Analysis 
	The economic analysis element involves quantifying the various components of cost for alternative rehabilitation strategies so that the least-cost strategy can be identified. Early systems used only the initial construction costs of rehabilitation actions. Candidate projects were ranked on the basis of some simple measure (such as a weighted index of current distresses, for example a Pavement Condition Index [PCI]), and projects were selected by moving through this list until the entire construction budget 
	More modern systems analyze both agency costs and user costs. All future costs are converted to their present-worth costs and summed to obtain the total life-cycle cost of each alternative strategy. A likely future enhancement is the development of better user cost models and methods of calculating factors that cause user cost, such as construction-related traffic delay and safety, and vehicle operating costs. (Inclusion of better methods of calculating traffic delay for use in life-cycle cost analysis is p
	The current vehicle operating cost models are based on data from pavement studies conducted in developing countries. The range of pavement roughness in these studies is much larger than that reflected in the U.S. highway network. Additional data on user costs on U.S. highways will continue to be collected. Two types of user cost data will be compiled. One type of data relates to the impact of pavement roughness on speed profiles and vehicle operating and maintenance costs. The other type of data relates to 
	At the current time, highway agencies are increasingly moving toward the use of life-cycle concepts in planning and budgeting for their pavement investments. In fact, life-cycle concepts have been advocated or used widely within and outside the maintenance arena to study treatment effectiveness or to identify specific types and/or timings of pavement rehabilitation or reconstruction (17, 18, 19, 20, 21, 22). In a study that developed decision trees for selecting specific pavement preservation strategies, ef
	At the current time, highway agencies are increasingly moving toward the use of life-cycle concepts in planning and budgeting for their pavement investments. In fact, life-cycle concepts have been advocated or used widely within and outside the maintenance arena to study treatment effectiveness or to identify specific types and/or timings of pavement rehabilitation or reconstruction (17, 18, 19, 20, 21, 22). In a study that developed decision trees for selecting specific pavement preservation strategies, ef
	out by Mouaket et al. (24) and Al-Mansour and Sinha (25). Using various problem formulations, a number of researchers have sought to identify the optimal frequency of pavement interventions or identification of specific treatment actions over construction life cycle or rehabilitation life cycle (26, 27, 28, 29, 30, 31, 32, 33, 34). These studies have focused on reconstruction life cycles and/or sought to determine the specific types and timings of specific rehabilitation (resurfacing) treatments over such p

	Pavement management agencies are also grappling with the integration of maintenance programs into their existing pavement management systems. Consistent with such issues is the practice of pavement preservation which involves application of maintenance prior to the onset of significant deterioration. Pavement preservation, which is also referred to as “preventive maintenance” in the literature and is deservedly getting attention among highway pavement managers, potentially increases average pavement perform
	The dilemma facing pavement network managers is as follows:  if pavement preservation is applied too infrequently, user costs and reactive maintenance costs increase and overall life-cycle costs can be very high. On the other hand, if pavement preservation is applied too frequently, it is uneconomical because the excessive expenditure outweighs the additional benefits of extended pavement life and increased average pavement condition, and each preventive maintenance activity may incur construction-related u
	In a conceptual illustration that illustrates such a trade-off, Mamlouk and Zaniewski (38) implied that increasing pavement preservation effort (represented as frequency of pavement preservation treatments or reciprocal of pavement preservation treatment intervals) leads to increasing cost-effectiveness up to a point after which it leads to decreasing cost effectiveness. Agencies seek the level of pavement preservation expenditure that corresponds to maximum cost effectiveness for each pavement class. Such 

	2.4 Optimization 
	2.4 Optimization 
	The optimization element of a PMS involves using mathematical methods to identify the optimal pavement rehabilitation policies. These methods can be used to maximize some measure of benefit subject to meeting budgetary and other applicable policy constraints or to minimize the total cost subject to meeting specified performance goals and policy constraints. 
	Early systems were based on simple priority ranking methods and formal optimization models had not yet been developed. In the 1980s, some use of optimization models was initiated, and the initial focus was on project-level decision-making. The first network-level optimization model was employed in the PMS developed for the Arizona Department of Transportation (ADOT) (6, 40). For this system, a Markov Decision Process was used to model pavement decision-making, and a large-scale linear program algorithm was 
	The two basic formulations for the optimization models are top-down and bottom-up. The top-down formulation provides a simultaneous analysis of an entire roadway network. The first step is to aggregate pavements having similar structure, traffic loading, and environment into mutually exclusive and collectively exhaustive homogeneous groups. Individual road segments are not represented in the optimization; instead, the units of analysis are the fractions of the groups in specific condition states. As a resul
	The user specifies network performance goals and available maintenance, rehabilitation, and reconstruction (MR&R) budgets. The objective of the optimization model is to find the optimal network MR&R polices that maximize benefits or minimize costs subject to meeting budgetary and policy constraints. These optimal network policies then guide the selection of actual projects for rehabilitation (6). 
	The main advantage of the top-down approach is that it allows the user to properly address the trade-off between rehabilitation and pavement preservation. That is, should a fixed budget be allocated to rehabilitation of a small number of segments or to pavement preservation of a larger number of segments? 
	The main disadvantage of the top-down approach is that it does not specify optimal activities for individual segments: the mapping of optimal network policies to facility activities is left to district managers. On the other hand, this gives engineers latitude in using their judgment, which is needed to compensate for the loss of pavement-segment information in the aggregation step. 
	The bottom-up approach can be formulated in several ways. The most logical formulation consists of the following steps: first, select a small set of optimal (or close-to optimal) sequences of MR&R activities for each facility, covering the desired planning horizon. Then, for a fixed budget, select the combination of sequences (one for each facility) that meets the budget constraint while optimizing a network-wide objective (42). 
	The main advantage of the bottom-up approach is that it preserves the identity of individual roadway segments, with all its information (structure, materials, history of construction, MR&R and traffic loading, environment). The main disadvantage of the bottom-up approach is that it lends itself to setting performance goals for individual projects rather than for the entire network. 


	3 DEVELOPMENT OF A PROGRESSION MODEL FOR ALLIGATOR CRACKING 
	3 DEVELOPMENT OF A PROGRESSION MODEL FOR ALLIGATOR CRACKING 
	3.1 Introduction 
	3.1 Introduction 
	This chapter presents the development of the progression model for alligator cracking of asphalt concrete overlays using the Washington State Department of Transportation Pavement Management System (WSDOT PMS) database. The progression of alligator cracking is a continuous process and represents the change in the percentage of the wheelpath cracked with time under certain structural, traffic, and climate conditions. Crack progression occurs due to the combination of the following conditions: the widening an
	The prediction of crack progression is very important for pavement management agencies since the extent of crack progression reflects the structural condition of a pavement section and triggers maintenance and rehabilitation activities. The primary focus of this research is on the progression of alligator cracking rather than longitudinal cracking since the former is an advanced stage of the latter.  
	Obtaining sound empirical progression models with reasonable prediction capabilities, and estimated with a rich and relevant set of explanatory variables, has been a challenge for pavement engineers. In fact, the development of proper progression models requires having a data set constructed from detailed and accurate condition surveys. Given the nature of condition surveys, which are highly subjective, obtaining such data has always been a major obstacle. While the development of duration models, as discus
	In the following sections of this chapter it will be shown that developing sound empirical progression models is possible using relatively accurate condition surveys and applying proper econometric techniques. First, the methodology used to develop a sound empirical progression model will be shown. 
	Second, the model that was developed using data from the WSDOT condition surveys will be presented. Finally, the model will be used to make predictions of the progression of alligator cracking in time. 

	3.2 Methodology 
	3.2 Methodology 
	Pavement crack initiation and crack progression represent two different physical phenomena and need to be modeled separately. Crack initiation is a stochastic process that signals the beginning of cracking in pavement sections, while crack progression is a continuous process that occurs due to the propagation and widening of those cracks that have initiated, as well as to the initiation of further cracks. Thus the occurrence of crack progression is conditional on the occurrence of crack initiation, and need
	An initiation model that describes the condition of pavement sections prior to the occurrence of cracking will account for the zero values, while the progression model is estimated for only those sections that have passed the crack initiation threshold, which results in better predictions. This modeling approach however introduces the problem of incidental truncation that will be discussed in more detail later in this chapter.  
	The dependent variable in the previously developed crack initiation model (5) was the distribution of the time (or number of accumulated Equivalent Single Axle Loads [ESALs]) to a cracking threshold (combination of any longitudinal or alligator cracking in five percent of the wheelpaths). Longitudinal cracking as defined in the WSDOT PMS is equivalent to Type A alligator cracking in the Caltrans PMS. Alligator cracking as defined in the WSDOT PMS is equivalent to the combination of Caltrans Type B and Type 
	Calculating the value of the dependent variable required recording the year when cracking occurred (complete observations) or the last year of the condition survey (censored observations) for every pavement section. The resulting sample was thus a cross-sectional data set.  
	For crack progression, the dependent variable is the change in the percentage of alligator cracking over the years for every section where cracking has already initiated. Thus for every section that has cracked, observations are needed of the yearly change in alligator cracking percentage from the time that initiation has started, to the time of the last survey. The data for the progression model therefore have a panel structure.  
	A panel, or longitudinal, data set is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data sets possess several major advantages over conventional cross-sectional or time-series data sets. Panel data usually give the researcher a large number of data points, increasing the degrees of freedom and reducing the collinearity among explanatory variables, hence improving the efficiency of econometric estimates. More importan
	Compared with cross-sectional or time-series data, panel data raise new specification issues that need to be considered during the analysis. The most important of these is heterogeneity bias. Heterogeneity refers to the differences across cross-sectional units that may not be appropriately reflected in the available explanatory variables. If heterogeneity across cross-sectional units is not accounted for in the model, estimated parameters are biased because they capture part of the heterogeneity. In fact, c
	Incidental truncation, or selection bias, arises in the estimation of empirical crack progression models due to the fact that crack progression is observed only after crack initiation has occurred. In other words, crack progression is only observed in weaker sections that have already failed according to the crack initiation criteria. The sample selection problem will result in an over representation of the weak sections in the sample, and the estimated parameters will have a downward bias. This requires th
	It should be expected that overlay cracking increases with time and the change of the percentage of cracking is positive, unless some maintenance activity was performed. Several observations were found in the WSDOT data where the change in the percentage of cracking is negative, which suggests either a non-recorded routine maintenance or more likely a measurement error. Given that the dependent variable is the change of crack progression with no routine maintenance or measurement errors, left censoring (at 
	Section 3.3 presents a review of the statistical approach used. Section 3.4 presents the development of the progression model. In Section 3.5 the correction term for the incidental truncation is estimated, and in Section 3.6 the final progression model is presented and the results are discussed. 
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	3.3.1 Panel Data Models 
	3.3.1 Panel Data Models 
	A panel, or longitudinal, data set is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. 
	There are several possible specifications for panel data depending on the nature of the data analyzed. Models can be fixed-effect or random-effect models depending on the specification of the term that accounts for cross-sectional heterogeneity.  
	A panel data regression is written as: 
	y= βx+ u,  i = 1,…,n; t = 1,…,T (1) 
	it 
	'
	it 
	it 

	where  i refers to the cross-sectional units or individuals,  
	t refers to the time periods,  
	β is a vector of parameters to be estimated,  
	  xit is a vector of explanatory variables, and  
	 the disturbance term.  
	it 
	u

	When differences across units can be captured as differences in the constant term, a dummy variable is introduced to allow for the effects of omitted variables that are specific to individual cross-sectional units but stay constant over time. This type of model is known as a fixed-effects model or Least Squares Dummy Variables (LSDV) model since it can be estimated using Ordinary Least Squares (OLS) 
	When differences across units can be captured as differences in the constant term, a dummy variable is introduced to allow for the effects of omitted variables that are specific to individual cross-sectional units but stay constant over time. This type of model is known as a fixed-effects model or Least Squares Dummy Variables (LSDV) model since it can be estimated using Ordinary Least Squares (OLS) 
	techniques by multiplying the constant term by dummy variables indicating the ith unit. These models can be written as: 

	y =α + βx + u = D α+ βx + u i = 1,…,n; t = 1,…,T (2) 
	'
	'

	it i itit i itit 
	where  αis a scalar constant representing those variables peculiar to the ith individual and constant in time, and  D is a dummy variable indicating the ith individual. 
	i 
	i

	The fixed effects specification suffers from an obvious shortcoming in that it requires the estimation of many parameters (mainly the dummy variables) with the associated loss of the degrees of freedom. This can be avoided by introducing the random effects model. Unlike the fixed effect model where inference is conditional on the particular cross-sectional units sampled, the random-effects model is an appropriate specification if n cross-sectional units are randomly drawn from a large population. This is re
	u = u + v ,  i = 1,…,n; t = 1,…,T (3) 
	it iit 
	where  uis the random disturbance characterizing the ith observation and is constant in time, and  are random disturbances. 
	i 

	it 
	v

	By rewriting Equation (1) using Equation (3), the random-effects model is given by: 
	y = βx + u + v ,  i = 1,…,n; t = 1,…,T (4) 
	'

	it it iit 
	The parameters β of the random effects are estimated using the Generalized Least Squares (GLS) technique. 

	3.3.2 Selection Bias (Incidental Truncation) 
	3.3.2 Selection Bias (Incidental Truncation) 
	The incidental truncation problem, or selection bias, can be explained mathematically, in the following manner. 
	Suppose that y and z have a bivariate distribution with correlation ρ. Of interest is the distribution of y given that z exceeds a particular value. In this case, y is observed and represents the yearly change in the percentage of alligator cracking, while z is not observed (latent) and represents what can be defined as the propensity to crack. If y and z are positively correlated, it should be expected that the truncation of z should push the distribution of y to the right, resulting in overestimation of c
	f ( y, z) 
	f ( y, zz > a) = (5) 
	Pr ob(z > a) 
	where a is the point at which the truncation of z occurs.  
	Let the equation that determines the latent variable z be 
	z= γ'w+μ(6) 
	i 
	i 
	i 

	And let the equation for yearly change in percentage of alligator cracking be 
	y = β'x + u (7) 
	it itit 
	where is the dependent variable of interest (change in the percentage of alligator cracking),  
	it z is the latent variable (representing the propensity of a pavement section to crack),  β and γ are vectors of parameters to be estimated,    wi and xit are vectors of explanatory variables, and  
	y
	i

	it μ are error terms.  
	u
	i

	is only observed for those sections that have cracked. Since zrepresents the propensity to crack, then 
	i 

	it 
	y

	a section i has cracked only if zi exceeds a certain threshold a. Without loss of generality let a = 0 , then 
	 is observed only when z> 0. 
	i 

	it 
	y

	Define σ  and σas the standard deviation of u and μ respectively. If μ and uare assumed to 
	u
	μ 
	it
	i
	i
	it 

	have a bivariate normal distribution with zero means and correlation ρ , then: 
	E[ y│ yis observed] = E[ y
	it 
	it 
	it 
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	and  
	φ(γ'w/σ) λ(α) = (11) 
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	Φ(γ'w
	i 
	/σ
	μ 
	) 

	where φ(.) is the standard normal distribution, and Φ(.) is the standard cumulative normal distribution, and η is a random error term. 
	it

	Thus, the panel data model with incidental truncation occurring on the distribution of the cross-sectional observations is given by Equation (9). The parameters βλ, γ, and λi of the sample selection model are estimated using the two-step Heckman’s procedure: 
	β, 

	In the first step, the Probit Equation (11) is estimated by maximum likelihood to obtain estimates of γ. Binary Probit models are further explained in Section 3.3.3. Then for each observation in the selected sample the following is computed: 
	∧ 
	φ(γ 'w) 
	∧ 
	i 

	λ=(12) Φ(γ'w) 
	i 
	∧ 
	i 

	∧∧ 
	where λand γ are the estimated values of λand γ respectively. 
	i 
	i 

	λ of Equation (9) are estimated by 
	In the second step of Heckman’s procedure, the parameters 
	β 
	and 
	β

	∧ 
	regressing the dependent variable yon λand the vector of explanatory variables x. 
	it 
	i 
	it 


	3.3.3 Binary Probit Model 
	3.3.3 Binary Probit Model 
	A binary choice model is a model that considers two discrete outcomes in contrast to multinomial models that consider three or more discrete outcomes. The distinction between binary models and multinomial models is important since the derivation between the two can vary significantly, especially for the Probit models. Probit models arise when the disturbance terms ε in the equation: P(i) = P(βx− βx≥ε −ε)∀ I ≠ i are assumed to be normally distributed. An attractive 
	n 
	i 
	in 
	I 
	In 
	In 
	in 

	feature of normally distributed variates is that the addition or subtraction of two normal variates also produces a normally distributed variate.  
	Of interest for this project is the probability that the latent variable z of Equation (6) is positive. Therefore, Cr can be defined as an indicator that section i has cracked or not, and the binary outcomes can be defined as 0 and 1, where Cr = 1 indicates that the section has cracked and Cr = 0 indicates that the section did not crack. Then 
	Cr = 0 If z ≤ 0 (13) 
	Cr = 1  If z > 0 (14) 
	Under the above assumptions, Equation (4) can be rewritten to give the following Probit model: P(Cr = 1) =Φ(γ′w) (15) 
	i 
	i 

	and P(Cr = 0) = 1−Φ(γ′w) (16) 
	i 
	i 

	where P(Cr = 1) is the probability of choosing the outcome Cr = 1 over the outcome Cr = 0. 
	i 

	The parameter vector γ is estimated using the maximum likelihood method. Let δbe defined as a dummy variable that takes the value 1 if the observed discrete outcome for observation n is 1 (Cr = 1) and zero otherwise. The likelihood function is thus given by: 
	in 

	δ −δ 
	ii 
	L =[Φ(γ′w)] [1−Φ(γ′w)](17) 
	∏
	i 
	i 
	1 

	i 
	The log likelihood function is given by LL =[δLNΦ(γ′w) + (1−δ)LN(1−Φ(γ′w))] (18) 
	∑
	i 
	i 
	i 
	i 

	i 
	where LN is the natural log function. 

	3.3.4 Censored Panel Data and Tobit Models 
	3.3.4 Censored Panel Data and Tobit Models 
	The regression model for a censored dependent variable with a normal distribution is referred to as the Tobit model. Let  be a latent variable with an uncensored normal distribution where: 
	*

	it 
	y

	* '' 
	y= β x+ βλ(α) +η= β x+ βλ(α) +η+θ, i = 1,…,n; t = 1,…,T (19) 
	it 
	it 
	λ
	i 
	μ 
	it 
	it 
	λ
	i 
	μ 
	i 
	it 

	where  
	η =η +θ (20) 
	it iit 
	η is the random disturbance characterizing the ith observation and is constant in time, and  θare random disturbances. Equation (19) is similar to Equation (4) and indicates that Equation (19) is a random effects panel data model. 
	i
	it 

	And let y= 0 if y≤ 0, (21) 
	it 
	it 
	* 

	y= y if y> 0 (22) 
	it 
	it 
	*
	it 
	* 

	where  β is a vector of parameters to be estimated,  xit is a vector of explanatory variables, and  βλ is the coefficient of the incidental truncation term λ(α).  
	i 
	μ 

	λ are estimated using the maximum likelihood technique where, under the assumption that ηis randomly distributed with density function g(η) , the likelihood function of the censored data takes the form (44): 
	The parameters 
	β
	 and 
	β
	i 

	⎡⎤ 
	N 

	(23) 
	L = ⎢F (−βx−βλ(α) −η)f ( y−η− β′ x−βλ(α))⎥g(η)dηi=1 ⎣ t∈ci t∈i ⎦ 
	∏
	∫ 
	∏ 
	'
	it 
	λ
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	i 
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	where  c ={ty = 0} , cdenotes its complement,  
	i 

	i 
	it f (.) denotes the density function of θand  
	it 

	F(a) = f (θ )dθ . 
	a

	−∞ 
	∫

	Once the parameters β and βλ of Equation (23) are estimated, then the expected value of the latent variable function is given by 
	E[ y
	it 
	* 

	x] = βx(24) 
	it 
	'
	it 

	Note that the term βλ (α ) is only included to obtain unbiased estimates of β. Once β are estimated, 
	λ i μ 
	the term βλ(α) is not used for prediction purposes. Equation (24) can be used for predicting y for a 
	λ
	i 
	μ 
	it

	sample of observations that is selected and known to be uncensored. However, for an observation randomly drawn from the population, which may or may not be censored, the expected value of the 
	dependent variable of interest  is 
	it 
	y

	⎛ β x⎞ 
	it 
	' 

	E[ y
	it 

	x] = Φ⎜ ⎟(β x+ σψ ) (25) 
	it 
	⎜
	' 
	⎟
	it 
	it 

	σ 
	⎝⎠ 
	where  
	where  
	φ(β'x/σ ) 
	it 


	ψ = (26) Φ(β'x/σ ) 
	it 
	it 

	and  σ is the standard deviation of the error terms ν ,  φ(.) is the standard normal distribution, and Φ(.) is the standard cumulative normal distribution. 
	it 



	3.4 Data Description 
	3.4 Data Description 
	3.4.1 Sample Selection for the Progression Model 
	The propagation, or progression, of overlay cracking starts only after crack initiation has occurred in the overlay. This is why crack progression models are used for prediction purposes only after an initiation model has predicted a failure in a pavement section. Thus, in order to have consistency between the crack initiation and the crack progression models, the pavement sections used for the estimation of the progression model should be selected from the sample of pavement sections used for the estimatio
	The sample used for the estimation of the progression model was selected from the Washington State PMS database. The sample used for the estimation of the crack initiation model consists of 7,162 pavement sections, of which 5,441 are complete observations, i.e., where cracking has initiated in the overlay, and the rest are right censored, i.e., crack initiation has not occurred by the year of the last condition survey. Given that alligator crack progression is conditional on crack initiation, only the pavem
	Table 1: Summary Statistics of the Sample 
	Total number of observations 
	Total number of observations 
	Total number of observations 
	36,194 

	Number of pavement sections 
	Number of pavement sections 
	5,441 

	Minimum number of observations (years) per section 
	Minimum number of observations (years) per section 
	1 

	Average number of observations (years) per section 
	Average number of observations (years) per section 
	6.7 

	Maximum number of observations (years) per section 
	Maximum number of observations (years) per section 
	12 



	3.4.2 Description of Relevant Variables  
	3.4.2 Description of Relevant Variables  
	Some additional variables relevant to the progression model were created and are described below: 
	• 
	• 
	• 
	Yit: Percentage of the wheelpaths with alligator cracking in pavement section i at time t, where t is the number of years since the last overlay was built. The progression model predicts the change in the percentage of alligator cracking in a pavement section i as a function of time. Alligator cracking is defined as the equivalent of Type B and Type C (combined extent of the two types) in the Caltrans PMS.  

	• 
	• 
	Yi(t-1): Percentage of alligator cracking in pavement section i at time (t-1).This variable captures the effect of conditions in the previous year on the change of the percentage of alligator cracking in a pavement section i at year t.  

	• 
	• 
	it: Represents the yearly change in the percentage of alligator cracking for pavement section i between time t and (t-1) and is given by: 
	∆



	it it i(t−1) 
	Δ
	= Y
	− Y
	(27) 

	Since the progression of alligator cracking is the dependent variable, in terms of the percentage of the it could have been chosen as the dependent variable for the it is smaller than Yi(t-1), it. A negative ∆it can be explained by the occurrence of a nonrecorded routine maintenance activity, or a measurement error. The desired model is for the change of crack progression with no routine maintenance or measurement errors. Therefore left censoring was imposed on the observations with negative change in the p
	wheelpaths with alligator cracking, ∆
	progression model. However, there are several incidences in the data where Y
	resulting in a decrease of the percentage of alligator cracking and a negative ∆

	• it: which is the progression model dependent variable and represents the left-censored yearly change in the percentage of alligator cracking for pavement section i between time t and (t1). It is defined as: 
	Cens_∆
	-

	Cens _ Δ=ΔIf Δ≥ 0 (28) 
	it 
	it 
	it 

	Cens _Δ= 0 If Δ< 0 (29) 
	it 
	it 

	Note that ∆it and Cens_∆ it correspond to, respectively, y and y discussed in Section 3.3.4.  
	it 
	*
	it

	• 
	• 
	• 
	i: Existing alligator cracking before rehabilitation. This variable represents the last measured cracking before the last rehabilitation activity was performed. It represents the distress level of the pavement before the overlay. This is an important variable in modeling overlay cracking because overlay cracking is partly due to reflection cracking, which occurs when there are cracks in the previous pavement surface layer and they propagate through the overlay. 
	E_Alli


	• 
	• 
	i: Sum of the thickness of the underlying asphalt concrete pavement layers (in ft.).  
	ULT


	• 
	• 
	i: The thickness of the nontreated base (in ft.) 
	Untrthick


	• 
	• 
	i: The thickness of asphalt concrete-treated base (in ft.) 
	Actbthick


	• 
	• 
	i: The thickness of portland cement-treated base (in ft.) 
	Pctbthick


	• 
	• 
	Trafficit: Traffic in ESALs for pavement section i at time t. This variable reflects the yearly traffic loading in ESALs. Trafficit is the number of ESALs at section i at year t+t, where t is it varies across different pavement sections, and usually increases with time for any given section i. 
	0
	0
	the year the overlay was built and 
	t
	 the number of years since the overlay was built. Traffic


	• 
	• 
	it: Average monthly minimum temperature of the coldest month (December) in C. Mintempcit is the average minimum temperature of the coldest month for section i in year t+t. Thus Mintempcit varies across pavement sections and over time for the same pavement section. The increase in the percentage of alligator cracking between times (t-1) and t is dependent on the climate conditions at time t, while past climate conditions affect this i(t-1) as will be discussed in Section 3.6.  
	Mintempc
	o
	0
	increase through the lagged variable Y


	• 
	• 
	Precipit: Annual precipitation (in mm): the annual precipitation for section i in year t+t.  
	0


	• 
	• 
	Pr_aa, Pr_ba: The probability of choosing overlay material types AA or BA  respectively. These represent WSDOT asphalt concrete mix Types A and B, respectively. WSDOT Type A mix is similar to Caltrans Type A mix. WSDOT Type B mix has quality requirements that are between those of Caltrans Type A and Type B mixes. 

	• 
	• 
	Newoverlay1: Instrumented overlay thickness (in ft.). This variable reflects the thickness of the new overlay constructed on top of the existing pavement. 

	• 
	• 
	i: The product of Newoverlay1 and Pr_aa. Reflects the structural strength of the overlay through the interaction between the choice of material type AA and the thickness of the overlay. This variable changes across pavement sections and is time independent. 
	Overlayaa


	• 
	• 
	i: The product of Newoverlay1 and Pr_baReflects the structural strength of the overlay through the interaction between the choice of material type BA and the thickness of the overlay. This variable changes across pavement sections and is time independent. 
	Overlayba
	. 


	• 
	• 
	i: The correction term for incidental truncation. This variable corrects for the selection bias. i was presented in Section 3.3.2; Section 3.5 presents the estimation of this correction term. 
	λ
	A theoretical discussion of λ



	An important detail in the WSDOT traffic data was the lane distribution of ESALs. The lane distribution factor was not included in the original model and this omission resulted in an underestimation of ESALs in the design lane that carries most of the traffic. However, both the revised crack initiation and crack progression models were updated using the correct distribution factor. 

	3.5 Estimation of the Incidental Truncation Correction Term 
	3.5 Estimation of the Incidental Truncation Correction Term 
	As discussed in Section 3.4.1, the sections that have crack initiation were used to estimate the progression model. This introduces a selection bias that needs to be corrected for, by using Heckman’s procedure, which was presented in Section 3.3.2. The first step of Heckman’s procedure using a Probit model (discussed is Section 3.3.3) to estimate the parameters γ of Equation (18) using the maximum likelihood 
	method is presented in this section of the report. Once γ are estimated, Equation (12) is used to 
	compute λ. 
	ˆ 
	i 

	Define the latent variable explaining the propensity to crack zof Equation (6) as:  
	i 

	zi = γ + γActbthick + γPctbthick + γUntrthick + γULT + γPr_aa + γPr_ba + γCum_ESAL + 
	0
	1
	2
	3
	4
	5
	6
	7

	γFTprep + γNewoverlay1 (30) 
	8
	9

	Then the Probit model of Equation (15) is specified as follows: 
	Pr(Cr=1) = Φ(γ + γActbthick + γPctbthick + γUntrthick + γULT + γPr_aa + γPr_ba + 
	0
	1
	2
	3
	4
	5
	6

	γCum_ESAL + γFTprep + γNewoverlay1 ) (31) 
	7
	8
	9

	0 to γare parameters to be estimated, and Actbthick, Pctbthick, Untrthick, ULT, Pr_aa, Pr_ba, Cum_ESAL, FTprep, and Newoverlay1 are explanatory variables for the crack initiation model. The definitions of these explanatory variables were presented in report UCPRC-RR-2005-5 (5).  
	Where γ
	9 

	The same sample that was used for the estimation of the initiation model was used to estimate the Probit model of Equation (31). Table 2 presents the results of the Probit model estimation. 
	All the explanatory variables of Table 2 are significant to the 10% significance level. Greater thicknesses of the structural variables reduce the probability of crack initiation. The structural variables are the thicknesses of the asphalt concrete-treated base, the portland cement-treated base, the untreated base, the thickness of previous asphalt concrete layers, and the thickness of the overlay. Overlay thickness has by far the largest effect in reducing the probability of cracking, as one would expect. 
	All the explanatory variables of Table 2 are significant to the 10% significance level. Greater thicknesses of the structural variables reduce the probability of crack initiation. The structural variables are the thicknesses of the asphalt concrete-treated base, the portland cement-treated base, the untreated base, the thickness of previous asphalt concrete layers, and the thickness of the overlay. Overlay thickness has by far the largest effect in reducing the probability of cracking, as one would expect. 
	cumulative ESALs, and the harsher the climate conditions (higher FTprep, which is the product of freeze-thaw cycles and annual rainfall), the larger the probability of cracking for a pavement section. 

	When analyzing the results of the Probit model above, one has to be careful about interpreting the meaning of the probability of cracking for a pavement section defined in this section, and to differentiate that from the probability of cracking initiation. The probability of cracking defined in this section represents a binary output that a pavement section has cracked or not at a given time (or at a given Cumulative ESALs). Thus the specification of the Probit model does not account for the history of a pa
	The duration model takes into account this additional information through the definition of the hazard rate as the probability that a section i fails at a certain time t (or Cumulative ESALs) given it has survived until 
	t. Moreover, the Probit model is a point estimate of the probability of failure of a section i at a time t, while the duration model estimates the distribution of the probability of failure of a section i versus time. This is why duration models are richer, and more appropriate to use for predicting the life, or time to failure, of a pavement section i, while the Probit model above is used mainly for estimating the correction term for the incidental truncation, rather than for predicting the life of overlay
	distribution of the error terms of z

	The estimated parameters γ of the Probit model in Equation (35) are then used to compute the incidental truncation correction term λ. This completes the first step of Heckman’s procedure. The second step 
	i 

	consists of introducing λas an explanatory variable during the estimation of yit and is performed in Section 3.6. 
	i 

	Table 2: Results of the Probit Model for Probability that a Section Cracks, Pr(Cr=1) 
	Pr(Cr=1) Variable 
	Pr(Cr=1) Variable 
	Pr(Cr=1) Variable 
	Coefficient 
	t-statistics 

	Constant 
	Constant 
	6.64E+00 
	9.55 

	Actbthick (thickness of asphalt-treated base, ft) 
	Actbthick (thickness of asphalt-treated base, ft) 
	-1.60E+00 
	-6.49 

	Pctbthick (thickness of portland cement-treated base, ft) 
	Pctbthick (thickness of portland cement-treated base, ft) 
	-7.95E-01 
	-6.26 

	Untrthick (thickness of untreated base, ft) 
	Untrthick (thickness of untreated base, ft) 
	-5.44E-01 
	-11.28 

	ULT (thickness of underlying asphalt concrete, ft) 
	ULT (thickness of underlying asphalt concrete, ft) 
	-9.00E-01 
	-10.96 

	Pr_aa (Type A asphalt concrete used) 
	Pr_aa (Type A asphalt concrete used) 
	-4.25E+00 
	-5.26 

	Pr_ba (Type B asphalt concrete used) 
	Pr_ba (Type B asphalt concrete used) 
	-9.99E-01 
	-1.87 

	Cum_ESAL (cumulative Equivalent Single Axle Loads) 
	Cum_ESAL (cumulative Equivalent Single Axle Loads) 
	2.47E-06 
	29.28 

	FTprep (product of annual freeze-thaw cycles and annual precipitation) 
	FTprep (product of annual freeze-thaw cycles and annual precipitation) 
	1.22E-05 
	4.64 

	Newoverlay1 (thickness of overlay, ft) 
	Newoverlay1 (thickness of overlay, ft) 
	-4.02E+01 
	-15.95 

	Goodness of Fit Measures Number of Observations Likelihood Ratio 
	Goodness of Fit Measures Number of Observations Likelihood Ratio 
	Pseudo R2   

	7,162 
	7,162 
	1,149.5 
	0.153 



	3.6 The Crack Progression Model 
	3.6 The Crack Progression Model 
	3.6.1 Model Specification 
	In order to estimate the crack progression model, a sample of 36,194 observations, described in Section it described in Section 3.4.2, was regressed on explanatory variables, using the following model specification: 
	3.4.1, was used. A panel data Tobit model was selected, and the dependent variable, 
	Cens_∆

	Cens_∆it= β + βYi(t-1)+ βE_Allii + β actbthicki + β pctbthicki + β5 untrthicki+ βULTi + 
	0
	1
	2
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	6

	βOverlayaai + βOverlaybai + βTrafficit+ βPrecipit + βMintempcit + βλλi (32) 
	7
	8
	9
	10
	11

	i(t-1), Overlayaai, Overlaybai, Trafficit, Precipit, Mintempcit, and λi were defined in Section 
	The variables Y

	3.4.2. The subscript i indicates that an explanatory variable changes across pavement sections, and the subscript t [and (t-1)] indicates that an explanatory variable changes in time. If both subscripts i and t are present, then the explanatory variable changes both across pavement sections and in time.  

	3.6.2 Expectations of the Model Results 
	3.6.2 Expectations of the Model Results 
	The expected effects of the explanatory variables on the progression of alligator cracking are described in this section. It is important to define the expected effects of the explanatory variables prior to regression to apply appropriate engineering judgment to the statistical modeling results.  
	A major limitation of the Washington State PMS data is that alligator cracking rarely exceeds 10 percent, because WSDOT essentially follows a pavement preservation approach and a new overlay is usually put in place before cracking exceeds 10 percent of the wheelpath with alligator cracking. Thus the model parameters reflect a network and its performance data in which overlays are placed before there is less than 10 percent alligator cracking in the wheelpath, and the overlays are overlaid again before they 
	A major limitation of the Washington State PMS data is that alligator cracking rarely exceeds 10 percent, because WSDOT essentially follows a pavement preservation approach and a new overlay is usually put in place before cracking exceeds 10 percent of the wheelpath with alligator cracking. Thus the model parameters reflect a network and its performance data in which overlays are placed before there is less than 10 percent alligator cracking in the wheelpath, and the overlays are overlaid again before they 
	cracking would propagate through the underlying existing asphalt layers and through the overlay, resulting in an acceleration of cracking extent from that time on.  

	If Caltrans is not using a similar pavement preservation strategy as WSDOT, and is instead placing overlays only at greater extents of alligator cracking, then the model parameters will need to be recalibrated using Caltrans performance data.   
	It is expected that a stronger structure will have high resistance to cracking and will reduce the rate of progression of alligator cracking. Accordingly, an increase in the thickness of the overlay, both for material types AA and BA, an increase in the thickness of the untreated or treated base, and an increase in the thickness of underlying asphalt concrete layers, are expected to decrease the rate of alligator cracking progression by increasing the strength of the pavement. 
	On the other hand, an increase in the existing cracking before rehabilitation is expected to increase the rate of crack progression because the cracking results in a weaker pavement structure and because of the mechanism of propagation by reflection cracking to the overlay surface. It is also expected that as the minimum temperature increases, the stiffness of the asphalt concrete overlay decreases, which decreases the rate of alligator cracking progression. Precipitation is expected to accelerate the rate 

	3.6.3 Model Results and Their Interpretations 
	3.6.3 Model Results and Their Interpretations 
	Table 3 shows the results of the estimation of the parameters of Equation (32). The results shown in Table 3 confirm the expectations in terms of the correctness of the signs. Furthermore, the t-statistics show that each variable is a significant explanatory variable of the progression of alligator cracking at the five percent significance level.  
	Table 3: Results of the Tobit Model Regression 
	Variable 
	Variable 
	Variable 
	Variable Description 
	Coefficient 
	t-statistics 

	Constant  
	Constant  
	1.18E+00 
	3.39 

	Yi(t-1) 
	Yi(t-1) 
	Percent of wheelpath w/ alligator cracking 
	-5.86E-01 
	-39.1 

	E_Allii 
	E_Allii 
	Percent wheelpath w/crack before overlay 
	8.07E-02 
	20.01 

	Actbthicki 
	Actbthicki 
	Thickness of asphalt-treated base, ft 
	-0.175E+00 
	-4.89 

	Pctbthicki 
	Pctbthicki 
	Thickness of PCC-treated base, ft 
	-0.171E+00 
	-8.91 

	Untrthicki 
	Untrthicki 
	Thickness of untreated base, ft 
	-0.357E-01 
	-5.09 

	ULTi 
	ULTi 
	Thickness of underlying AC, ft 
	-1.26E+00 
	-8.77 

	Overlayaai 
	Overlayaai 
	Thickness of overlay with Type A mix, ft 
	-3.88E+00 
	-4.32 

	Overlaybai 
	Overlaybai 
	Thickness of overlay with Type B mix, ft 
	-1.54E+00 
	-6.56 

	Trafficit 
	Trafficit 
	Annual ESALs 
	4.56E-06 
	5.45 

	Precipit 
	Precipit 
	Annual rainfall, mm 
	4.40E-04 
	10.18 

	Mintempcit 
	Mintempcit 
	Average min daily temp in December, °C 
	-5.42E-02 
	-5.74 

	λi 
	λi 
	Incidental truncation correction term 
	1.20E+00 
	15.97 

	Error term 
	Error term 
	Value 
	t-statistics 

	sigma_u 
	sigma_u 
	0.84 
	14.7 

	sigma_e 
	sigma_e 
	4.41 
	230.79 

	Rho 
	Rho 
	0.035 
	N/A 

	Number of Observations 
	Number of Observations 
	Wald Test 

	36,194 
	36,194 
	2,230.52 


	The signs of the explanatory variables indicate the following effects on the rate of crack progression: 
	• 
	• 
	• 
	• 
	 indicates that the greater the amount of alligator cracking in the overlay, the smaller the increase in alligator cracking, which means that the cracking progression trend is concave in time. This is a surprising result, as there is no reason to expect the amount of cracking to level off at a particular value. The explanation for this behavior is that the data used for 
	The value for 
	β
	1


	development of this model comes from in-service pavements. As such, these overlays were subjected to (unrecorded) maintenance activities, possibly including crack sealing or patching. As it was negative, which is why Tobit (censored) regression was used as an estimation method. Censoring replaces these negative it is to force a leveling off of alligator cracking. Therefore, this model predicts cracking progression in overlays that are subject to maintenance activities. The implication of this result is that
	noted in Section 3.4.2, for some observations, the value of 
	∆
	values with zeros. The effect of these zero values for 
	∆


	• 
	• 
	 indicates that the greater the existing alligator cracking in previous layers, the faster the progression of alligator cracking in the overlay, confirming the hypothesis that overlay cracking is mostly due to reflection cracking. 
	The value for 
	β
	2


	• 
	• 
	A thicker underlying structure (base thickness, previous AC layers thickness, overlay thickness) results in a smaller rate of crack progression. HMA- or PC-treated bases do not seem to differ much in reducing the rate of crack progression, however they are both significantly better (almost by a multiple of 5) in resisting crack progression than untreated bases of the same thickness. The underlying AC layer is about 10 times more effective in resisting crack progression than even the strongest base of the sa

	• 
	• 
	Overlay thickness appears to have the largest effect on resisting crack progression as one would expect, with Type A overlays about more than twice as effective in reducing the rate of alligator crack progression than Type B overlays of the same thickness. 

	• 
	• 
	Traffic (ESAL) appears to have a significant effect on the rate of progression of alligator cracking; the higher the traffic at a given year the larger the rate of crack progression.  

	• 
	• 
	Climate variables, particularly yearly precipitation and minimum temperature, also play a significant role: the higher the yearly precipitation, the higher the rate of crack progression, while higher minimum temperatures reduce the rate of crack progression.  

	• 
	• 
	λ is significant suggesting that the correction for the incidental truncation is appropriate. Moreover, since β> 0 , this indicates that β′x is reduced when the incidental truncation correction term is included compared to a regression with no incidental truncation correction term, which means that the rate of increase of alligator cracking is reduced when 
	The coefficient 
	β
	λ 



	the correction term is introduced in the regression. This result is expected since the correction term corrects for the over-representation of weaker pavement overlays in the sample.  
	The values and significance of sigma_u, sigma_e, and rho require discussion. Sigma_u represents the 
	standard deviation of the random disturbance η, discussed in Equation (19), characterizing the ith 
	i 

	observation and accounting for cross-sectional heterogeneity in a random effect panel data model. 
	Sigma_e represents the standard deviation of the random disturbances θin Equation (19), and accounts 
	it 

	for random error terms in time and across sections. Rho represents the portion of the total error term that is due to unobserved heterogeneity and to random error, and is given by: 
	(sigma _ u)
	2 

	Rho = (33) 
	2
	2 

	(sigma _ u) + (sigma _ e) 
	The model coefficients of Equation (32) were estimated using a random-effects model; however the very low value of Rho (0.035, which is almost zero) suggests that unobserved heterogeneity is nonexistent in the model. This can be explained by the fact that the incidental truncation correction terms, which only vary across cross-sectional observations, act as dummy variables for the different pavement sections. This is equivalent to a fixed effect model specification as discussed in Section 3.3.1. This model 
	same correction term λ


	3.6.4 Model Predictions 
	3.6.4 Model Predictions 
	In this section the crack initiation and progression model suite is used to perform some predictions of the initiation and progression of alligator cracking with time. A spreadsheet was used for applying the models of crack initiation and progression. The prediction methodology and the details of the spreadsheet are described in Appendix A. 
	It must be emphasized that the model predicts well for explanatory variables varied within the range of its values in the data only. The model specification (variables and their relationships) works well within the ranges of data used to calibrate the model, but it must be recalibrated for data outside this range. Recalibration is essential for overlay thickness (variables Overlayaa and Overlayba in Table 3) since Washington State’s maintenance strategy is to perform pavement preservation mainly with overla
	If greater extents of cracking in the existing pavement, outside the range of data are used, this will lead to a severe under-prediction of the extent of cracking and the rate of crack propagation. This occurs because cracking in the overlay will reach the level of cracking in the pavement prior to overlay, for thin overlays on relatively thick existing structures because the mechanism is reflection of the existing cracks. Eventually, bottom-up fatigue cracking will occur and propagate to the surface. Howev
	Another caveat is that this model predicts cracking progression in overlays that are subject to maintenance activities. The implication of this result is that the model should only be used to predict cracking progression for agencies that follow a similar maintenance policy. 
	In order to perform predictions, a typical pavement section was selected and the values of its explanatory variables were defined as “default values.” Each of the explanatory variables of the typical section was varied from its 25percentile to its median and then its 75 percentile (Table 4). The only variables that made a significant difference in the prediction of alligator cracking initiation and progression were: overlay material type (AA vs. BA) and ESAL. The predictions for different values of overlay 
	th 
	th

	As is explained in Appendix A, the spreadsheet creates a graph that shows the cracking paths resulting from 1,000 simulated experiments. To show that different cracking paths have different probabilities, the graph includes information on the frequency of each path. 
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	Figure 2:  Histogram of percent cracking in the wheelpaths of the current overlay. 
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	Figure 3:  Histogram of percent cracking in the wheelpaths at the time of most recent overlay. 
	Figure 3:  Histogram of percent cracking in the wheelpaths at the time of most recent overlay. 
	Table 4: Default Values of the Typical Section Used for Predictions for Washington State 

	AA 
	AA 
	AA 

	TR
	Allig. (%) 
	Long. (%) 
	UnTrThick (in) 
	SurfThk (in) 
	PrevThk (in) 
	Tmax (F) 

	median 
	median 
	0 
	30 
	6 
	1.8 
	7.0 
	78.8 

	lower 25% 
	lower 25% 
	0 
	0 
	4.6 
	1.8 
	4.7 
	71.6 

	upper 25% 
	upper 25% 
	5 
	30 
	10.0 
	1.8 
	9.4 
	86.0 

	TR
	Tmin (F) 
	FTCycle 
	Prep (in) 
	FTPrep 
	ACTB thick (in) 
	PCTB thick (in) 

	median 
	median 
	33.8 
	20 
	35 
	700 
	0 (4.2 w/o others) 
	0 (6 w/o others) 

	lower 25% 
	lower 25% 
	23.0 
	11.8 
	15 
	177 
	0 (3.96 w/o others) 
	0 

	upper 25% 
	upper 25% 
	33.8 
	60 
	24.6 
	1476 
	0 (4.2 w/ others 
	0 

	BA 
	BA 

	TR
	Allig. (%) 
	Long. (%) 
	UnTrThick (in) 
	SurfThk (in) 
	PrevThk (in) 
	Tmax (F) 

	median 
	median 
	5 
	30 
	8.5 
	1.8 
	4.78 
	78.8 

	lower 25% 
	lower 25% 
	0 
	30 
	6 
	1.4 
	3.27 
	71.6 

	upper 25% 
	upper 25% 
	6 
	30 
	12 
	1.8 
	6.6 
	86 

	TR
	Tmin (F) 
	FTCycle 
	Prep (in) 
	FTPrep 
	ACTB thick (in) 
	PCTB thick (in) 

	median 
	median 
	33.8 
	17.7 
	30 
	531 
	0 (4.2 w/o others) 
	0 

	lower 25% 
	lower 25% 
	23 
	11.8 
	15 
	177 
	0 (3.6 w/o others) 
	0 

	upper 25% 
	upper 25% 
	33.8 
	60 
	24.6 
	1476 
	0 (4.5 w/o others) 
	0 
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	Figure 4:  Overlay Type AA, all explanatory variables set at their median values, ACTB = 0, PCTB = 0, annual ESAL = 250,000 in design lane, 3% traffic growth. 
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	Figure 5:  Overlay Type AA, all explanatory variables set at their medians, base dummy variables as in Figure 4, but ESAL = 100,000 in design lane. 
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	Figure 6:  Overlay Type AA, all explanatory variables set at their medians, base dummy variables as in Figure 4, but annual ESAL = 500,000 in design lane. 
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	Figure 7:  Overlay Type AA, all explanatory variables set at their medians, base dummy variables as in Figure 4, but annual ESAL = 1,000,000 in design lane. 
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	Figure 8:  Overlay Type BA, all explanatory variables set at their median values, ACTB = 0, PCTB = 0, annual ESAL = 250,000 in design lane, 3 percent traffic growth. 
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	Figure 9:  Overlay Type BA, all explanatory variables set at their medians, base dummy variables as in Figure 7, but annual ESAL = 100,000 per year in design lane. 
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	Figure 10:  Overlay Type BA, all explanatory variables set at their medians, base dummy variables as in Figure 7, but annual ESAL = 500,000 in design lane per year. 
	Figure 10:  Overlay Type BA, all explanatory variables set at their medians, base dummy variables as in Figure 7, but annual ESAL = 500,000 in design lane per year. 
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	Figure 11:  Overlay type BA, all explanatory variables set at their medians, Base dummy variables as in Figure 7, but annual ESAL = 1,000,000 per year in design lane.  
	Figure 11:  Overlay type BA, all explanatory variables set at their medians, Base dummy variables as in Figure 7, but annual ESAL = 1,000,000 per year in design lane.  


	The following observations can be made, on the basis of Figure 3 through Figure 10: 
	• 
	• 
	• 
	Overlays made of Type AA material consistently perform better than those made with type BA material. The graphs show that, in the median case, overlays of Type AA may crack as late as in the ninth year, whereas the crack initiation of overlays of Type BA occurs in the first two years in the median case. Moreover, for the median case, the maximum cracking percentage around Year 14 (which is the average time interval between overlays in Washington State) is around 4 percent for Type AA and closer to 6 percent

	• 
	• 
	The effect of traffic loading is clearly important. As can be seen, both cracking initiation and progression accelerate significantly as loading is approximately doubled from 100,000 ESALs per year to 250,000, then to 500,000 and 1,000,000. 


	Table 5:  AA Median Parameter Values 
	Table
	TR
	Alligator Cracking 
	Longitudinal Cracking 
	Untreated Thickness 
	Surface Thickness 
	Previous Thickness 

	Median 
	Median 
	0% 
	30% 
	6 in. 
	1.8 in. 
	6.96 in. 



	3.6.5 Model Predictions for California Conditions 
	3.6.5 Model Predictions for California Conditions 
	To illustrate the use of our model system, we applied it to three locations in California. Crack initiation and progression predictions were made for Los Angeles, Sacramento, and Arcata using median values for the pavement properties seen in the Washington State Pavement Management System database. 
	Traffic volumes were varied to simulate a wide variety of possible traffic situations. As such, tests were run for each city at 125,000 ESALs, 250,000 ESALs, 500,000 ESALs, and 1,000,000 ESALs. Weather data for each of the cities were obtained using the Climatic Database for Integrated Model (CDIM) software. All climate data were from the most recent year available, 1997. 

	3.7 Results 
	3.7 Results 
	As can be seen by comparing Figure 6 and Figure 7 with Figure 14 and Figure 15 and Figure 22 to Figure 23, there is quite a difference between the performance predictions from the model between California and Washington. For instance, according to scenario run for Washington State shown in Figure 6 (variables at median, traffic: 500,000 ESALs in design lane) fiftieth-percentile crack initiation occurs in Year 3. However, Figure 18, which is run for Arcata’s climate and traffic level, predicts fiftieth-perce
	As can be seen by comparing Figure 6 and Figure 7 with Figure 14 and Figure 15 and Figure 22 to Figure 23, there is quite a difference between the performance predictions from the model between California and Washington. For instance, according to scenario run for Washington State shown in Figure 6 (variables at median, traffic: 500,000 ESALs in design lane) fiftieth-percentile crack initiation occurs in Year 3. However, Figure 18, which is run for Arcata’s climate and traffic level, predicts fiftieth-perce
	crack initiation in Year 5. In general, according to the model, in Washington it is not uncommon to see the majority of crack initiations begin relatively sooner for California climate, all other variables being equal. 

	Since the same pavement characteristics are used for both Washington and California predictions, only the climate data is significantly different. Upon looking closer at the data, it also becomes apparent that there is not a great difference between the temperature extremes for the two states. This would imply that the precipitation and freeze-thaw cycles are the determining factor in the large difference seen in crack initiation. 
	The crack initiation model uses (Annual _ Pr ecip)*(FT _ Cycles) as one of the explanatory variables. The primary difference between Washington and California climate data is the relative lack of freeze-thaw cycles in California, with none seen in either Los Angeles or Arcata and only one in Sacramento. In Washington State, on the other hand, the median was 20 freeze-thaw cycles. 
	Crack progression, unlike initiation, shows no overwhelming indication of a strong reliance on climate data. In nearly all cases, the crack progressions were very similar, apparently most affected by loading rather than other factors. 
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	Figure 12:  Sacramento—all medians—125,000 ESALs per year in design lane. 
	Figure 12:  Sacramento—all medians—125,000 ESALs per year in design lane. 
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	Figure 13:  Sacramento—all medians—250,000 ESALs per year in design lane. 
	Figure 13:  Sacramento—all medians—250,000 ESALs per year in design lane. 
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	Figure 14:  Sacramento—all medians—500,000 ESALs per year over in design lane. 
	Figure 14:  Sacramento—all medians—500,000 ESALs per year over in design lane. 
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	Figure 15:  Sacramento—all medians—1,000,000 ESALs per year in design lane. 
	Figure 15:  Sacramento—all medians—1,000,000 ESALs per year in design lane. 
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	Figure 16:  Arcata—all medians—125,000 ESALs per year in design lane. 
	Figure 16:  Arcata—all medians—125,000 ESALs per year in design lane. 
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	Figure 17:  Arcata—all medians—250,000 ESALs per year in design lane. 
	Figure 17:  Arcata—all medians—250,000 ESALs per year in design lane. 
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	Figure 18:  Arcata—all medians—500,000 ESALs per year in design lane. 
	Figure 18:  Arcata—all medians—500,000 ESALs per year in design lane. 
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	Figure 19:  Arcata—all medians—1,000,000 ESALs per year in design lane. 
	Figure 19:  Arcata—all medians—1,000,000 ESALs per year in design lane. 
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	Figure 20:  Los Angeles—all medians—125,000 ESALs per year in design lane. 
	Figure 20:  Los Angeles—all medians—125,000 ESALs per year in design lane. 
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	Figure 21:  Los Angeles—all medians—250,000 ESALs per year in design lane. 
	Figure 21:  Los Angeles—all medians—250,000 ESALs per year in design lane. 
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	Figure 22:  Los Angeles—all medians—500,000 ESALs per year in design lane. 
	Figure 22:  Los Angeles—all medians—500,000 ESALs per year in design lane. 
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	Figure 23:  Los Angeles—all medians—1,000,000 ESALs per year in design lane. 
	Figure 23:  Los Angeles—all medians—1,000,000 ESALs per year in design lane. 




	4 CONCLUSIONS 
	4 CONCLUSIONS 
	4.1 Summary of Research Objectives and Results  
	4.1 Summary of Research Objectives and Results  
	In this work, Empirical-Mechanistic (E-M) models for progression of overlay cracking in asphalt concrete pavements were developed using data from Washington State’s Pavement Management System (PMS) databases. Performance models are an important component of a PMS and were introduced in detail along with the other PMS components.  
	An overlay crack progression model was developed in this research. Panel data problems, such as incidental truncation, left censoring, and cross-sectional heterogeneity, were properly addressed and suitable statistical tools were applied. The research shows that a specification that captures the main factors responsible for the overlay crack initiation and crack progression processes, combined with careful analysis of the data, can produce models of sufficient realism for pavement management purposes. 
	The following explanatory variables were found to be the most relevant predictors of the annual increment in alligator cracking for hot-mix asphalt (HMA) overlays on HMA pavements: 
	• 
	• 
	• 
	The alligator cracking in the previous year 

	• 
	• 
	The existing alligator cracking prior to the application of the (last) overlay 

	• 
	• 
	The thicknesses of AC-treated, portland cement-treated and untreated bases 

	• 
	• 
	The thickness of the underlying HMA layers prior to application of the overlay 

	• 
	• 
	The thicknesses of overlays of different material types 

	• 
	• 
	The annual traffic loading in ESALs 

	• 
	• 
	The annual precipitation and annual freeze-thaw cycles 

	• 
	• 
	The average daily minimum temperature during the coldest month and the average daily high temperature during the hottest month. 



	4.2 Recommendations for Implementation 
	4.2 Recommendations for Implementation 
	While the functional form and specification of the cracking initiation model and cracking progression model developed in this report are transferable to Caltrans, the values of the coefficients that were estimated with Washington State DOT data are not directly transferable. This is due to a number of reasons, including differences in materials, environment (at least in the drier and warmer regions of California), and most importantly, maintenance practices. 
	Washington State DOT’s maintenance strategy is to perform pavement preservation mainly with overlays averaging about 0.15 ft (45 mm) thickness, and place few thicker rehabilitation overlays.  
	Therefore, the following recommendations for implementation are made: 
	• 
	• 
	• 
	The developed HMA pavement performance model suite [the cracking initiation model described in report UCPRC-RR-2005-5 (5) and the cracking progression model described in this report] should be tested with California PMS data. These data can either be collected as part of a pilot project or mined from data in the Caltrans PMS database after that database has been populated with information collected over consistently segmented sections. Because of the differences in maintenance policy between Washington Stat

	• 
	• 
	Once Caltrans has populated its PMS database with sufficiently extensive condition survey data, these developed HMA pavement models can be updated recalibrated with the California data. Recalibration does not necessarily mean that all parameters will need to be re-estimated. Instead, statistical fusion procedures, such as Bayesian updating, can be used to recalibrate a subset of the coefficients in the model. The coefficients that will need recalibration include the coefficient for overlay thickness, becaus

	• 
	• 
	The concave shape of the crack progression trend, observed in Figure 3 through Figure 10 of this report, is the result of unrecorded maintenance activities such as crack sealing or patching. If Caltrans does not use similar routine maintenance, the coefficient for percent wheelpath with alligator cracking should also be recalibrated, because the value of that coefficient determines the curvature of the crack progression trend. 
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	APPENDIX A – SPREADSHEET EXPLANATION 
	APPENDIX A – SPREADSHEET EXPLANATION 
	A.1. Introduction 
	A.1. Introduction 
	This spreadsheet applies the cracking initiation and progression models described in Partnered Pavement Research Center (PPRC) report number UCPRC-RR-2005-5 (5) and this report, respectively. The spreadsheet predicts the probability distribution of alligator cracking (in each year) for asphalt concrete pavements with asphalt concrete overlays. 
	Cautious use of the spreadsheet is advised for geographic locations other than Washington State, such as California, because the input data (described below) should be within the ranges of the Washington State data that were used for developing the two models. 
	A sample simulation using commonly seen inputs is included to serve as an example for how to use the spreadsheet. This example will provide step-by-step instruction for the process of creating a crack initiation and progression prediction. 

	A.2. Input Data 
	A.2. Input Data 
	The user needs to enter data on pavement condition, pavement structure, pavement maintenance, road geometry, climate, and traffic. These input data are summarized in Table 8. 
	To account for the distribution of truck traffic when two or more lanes are available in one direction, truck factors recommended by AASHTO are used. Table 6 summarizes these values as well as the correction factors used to correct the original model. The correction has already been applied in the spreadsheet and user does not need to input these values in the model. 
	Table 6:  Lane Distribution Chart 
	No. of Lanes Each Way 
	No. of Lanes Each Way 
	No. of Lanes Each Way 
	% Truck Factor 
	Default Values 
	Correction Factor 

	1 
	1 
	100 
	100 
	1.0 

	2 
	2 
	80-100 
	90 
	0.9/0.5 = 1.8 

	3 
	3 
	60-80 
	70 
	0.7/0.333 = 2.1 

	4 
	4 
	50-75 
	65 
	0.65/0.25 = 2.6 


	Table 7: Input Ranges for Spreadsheet Data 
	Category 
	Category 
	Category 
	Required Input 
	Mnemonic Used in Spreadsheet 
	Units 
	Recommended Range 

	Condition 
	Condition 
	Existing alligator cracking before last overlay (WSDOT definition) 
	Prev. Allig. Cr. 
	% 
	0–60 

	Condition 
	Condition 
	Existing longitudinal cracking before last overlay (WSDOT definition) 
	Prev. Long. Cr. 
	% 
	0–100 

	Structure 
	Structure 
	AC-treated base thickness 
	ACTB thickness 
	Inch 
	0–6 

	Structure 
	Structure 
	PCC-treated base thickness 
	PCTB thickness 
	Inch 
	0–6 

	Structure 
	Structure 
	Untreated base thickness 
	UNTB thickness 
	Inch 
	0–28 

	Structure 
	Structure 
	Underlying asphalt concrete thickness 
	Underlying HMA thickness 
	Inch
	 0.5–15 

	Maintenance 
	Maintenance 
	Material type of new overlay (WSDOT classification) 
	Overlay type 
	- 
	AA or BA 

	Maintenance 
	Maintenance 
	Thickness of new overlay 
	Overlay thickness 
	Inch
	 0.7–5.4 

	Geometry 
	Geometry 
	Number of lanes 
	# Lanes 
	Each 
	Integer value 

	Climate 
	Climate 
	Annual precipitation 
	Precipitation 
	Inch 
	4–106 

	Climate 
	Climate 
	Average monthly minimum temperature of the coldest month (December) 
	MinTemp 
	°F 
	12–39 

	Climate 
	Climate 
	Average monthly maximum temperature of the hottest month (July) 
	MaxTemp 
	°F 
	64–93 

	Climate 
	Climate 
	Annual number of freeze-thaw cycles 
	Freeze-Thaw cycle 
	cycle/year 
	2–225 

	Traffic 
	Traffic 
	Traffic loading in all lanes in one direction for first year 
	Year 1 traffic (all lanes in one direction) 
	ESAL/year 
	18,000+ 

	Traffic 
	Traffic 
	Annual traffic growth factor 
	Annual traffic growth 
	% 
	0+ 


	The inputs used for the sample simulation are taken primarily from the default values specified in Table 4. To better simulate realistic conditions, the yearly traffic loading, overlay thickness, and untreated thickness were set at their respective mean values instead of default values. Figure 24 shows these values entered into the data input screen of the spreadsheet. 
	Figure
	Figure 24: Spreadsheet data input screen with sample simulation values. 
	Figure 24: Spreadsheet data input screen with sample simulation values. 



	A.3. Cracking Simulation 
	A.3. Cracking Simulation 
	Let t be a (positive) random variable representing the cumulative traffic loading (in units of ESAL) at t(t), the t(100,000) is the probability that a pavement section has started cracking by the time the cumulative traffic loading has reached 100,000 ESALs. 
	which cracking initiates. Based on the input data, the cracking initiation model provides F
	cumulative distribution function for 
	t
	. For example, F

	The inverse transformation method can be used to simulate t. Let U be a random variable with a continuous uniform distribution between 0 and 1. Let t’ be a random variable defined as follows: 
	t(z) ≥ U } 
	t(z) ≥ U } 
	 t’
	 = min { z, such that F

	t given by the crack initiation model is strictly increasing, t’ can be expressed as follows: 
	In other words, 
	t’
	 is the minimum value of z, for which F(z) is at least U. Since F


	t(U) 
	t’
	 = F
	-1

	t(U) is the value z that satisfies Ft(z)=U. 
	 where F
	-1

	It is easy to show that has the cumulative distribution function Ft (see, for example, Introduction to Probability Models by S. Ross). Therefore for a given, randomly generated value of U, the corresponding value of t’ represents one simulated value of t. 
	t’ 

	In order to simulate one value of cumulative loading to failure, one needs to generate one uniformly distributed number and find the corresponding t’. This t’ is then used as the cumulative loading to failure t is t(h) ≥ Ft(t’) = U. Therefore, if we want to find out whether t(h) is at least U. 
	for this experiment. Then, for a given year 
	h
	, say 5, cracking initiates if 
	h 
	≥ 
	t’
	. Using the fact that F
	strictly increasing, 
	h 
	≥ 
	t’ 
	if and only if F
	cracking has initiated at year h, it suffices to check whether F

	The spreadsheet only looks at integer numbers of years. For a given simulated experiment, the spreadsheet applies the cracking progression model starting at integer year y’, where y’ is the smallest integer year greater than or equal to t’. The percentage of alligator cracking values for all the years up to y’ are zero. In each experiment, the spreadsheet finds the percentage of cracking for years 1 through 10, which can then be plotted as the cracking path, given that cracking initiates at year y’. 
	The spreadsheet repeats this experiment 1,000 times. This is called Monte Carlo simulation. Since the spreadsheet uses the progression model in a deterministic way, all experiments that have the same year of cracking initiation (e.g., all the experiments that start cracking in Year 2) will have the exact same cracking path, for a given overlay. 

	A.4. Graph 
	A.4. Graph 
	The spreadsheet creates a graph that shows the cracking paths resulting from the 1,000 simulated experiments. In order to show that different cracking paths have different probabilities, the graph also includes information on the frequency of each cracking path. Figure 25 shows an example of such graph. The x-axis is the year, the left y-axis is the percentage of alligator cracking, and the right y-axis is the number of crack initiations out of 1,000 iterations in a given year. 
	In this example, each of the 1,000 simulated experiments starts cracking in year 1 or 2. The two curves represent the cracking paths. Each curve has a corresponding vertical bar, which indicates the number of simulated experiments that are characterized by this cracking path. In this simulation, there are 993 experiments that start cracking in Year 1, and their cracking path is represented by the upper curve. Similarly, there are seven experiments that start cracking in Year 2, and their cracking path is th
	2.5 
	1200 
	1000 
	993 7 0 0 0 0 0 0 0 0 

	2 
	800 
	1.5 
	600 
	1 
	400 
	0.5 
	200 
	Percent Cracking 
	Number of Crack Initiations 
	0 
	0 
	12 345 67 8910 
	Year 
	Figure 25:  Graphical representation of sample crack initiation and progression. 


	APPENDIX B: LITERATURE SURVEY OF PERFORMANCE MODELS 
	APPENDIX B: LITERATURE SURVEY OF PERFORMANCE MODELS 
	Prediction of future performance is needed in pavement management systems at the network and project levels. At the network level, performance prediction is used in preparing long-range budget estimates of the cost to maintain the highway system at a specified minimum performance level or to determine the consequences of future funding levels. At the project level, prediction of future performance is used in life-cycle cost analysis of pavement sections. Performance prediction is also useful in determining 
	B.1. Performance Models for Overall Performance Measures 
	B.1. Performance Models for Overall Performance Measures 
	The early trend in pavement performance modeling was to develop models that predict the overall performance of pavement sections. These models predict the change of a general condition measure for a pavement section in time, given a vector of explanatory variables. Overall performance measures have been designated by several names in literature including: pavement serviceability index (PSI), pavement condition rating (PCR), and pavement condition index (PCI); each is a composite measure of roughness and dif
	Roughness (also referred to as “smoothness” and “ride quality”) is an important pavement characteristic because it affects ride quality and vehicle delay costs, fuel consumption, and maintenance costs. Surface distress is defined by the Highway Research Board (46) as, “Any indication of poor or unfavorable pavement performance or signs of impending failure; any unsatisfactory performance of a pavement short of failure.” Rutting and cracking are the pavement distresses with most occurrence and implication on
	An example of early overall condition models is the model presented by Scullion et al. (47), and given by: 
	P = P−αt (1) 
	0 
	β 

	 is the initial serviceability index,  t is the total time elapsed to reach a present serviceability index equal to P, α and β are parameters to be estimated.  
	where  
	P
	0

	Note that the previous model is constructed similarly to the power curve suggested by LeClerc and Nelson (48) and used in the WSDOT PMS.  
	Another model is the S-shaped, or sigmoidal, model which is given by Riggins et al. (49): 
	P = P − (P − P )exp[(−ρ / t)] (2) 
	β 

	00 f 
	where f, α and β are parameters to be estimated. 
	P

	Another type of model is the B-Spline Model. This model relates an overall measure of pavement conditions to age (50). The B-spline function (51) is a polynomial between each pair of selected points, called knots, along the age axis of the performance curve. Adjacent polynomials join continuously with continuous first and second derivatives. In general, a B-spline with degree k is a continuous function with its first (k-1) derivatives being continuous. Shahin et al. (51) found that B-splines of degree as lo
	Other types of models are the recursion models (52, 53), which are essentially time series models of performance index. Other explanatory models such as age, traffic, and structural conditions were sometimes added to these models. 
	Overall performance models are still currently used by some pavement management agencies. Performance models in the North Carolina State PMS (54) use a power curve to predict the Pavement Condition Rating (PCR) measure versus the pavement age as follows: 
	PCR = C+ CAge(3) 
	0 
	1 
	C
	2 

	, C, and C are constants to be estimated. Gulen et al. (55) developed a PCR model for Indiana roads given by:  
	where C
	0
	1
	2

	PCR = A+ AAge + APV (4) 
	0 
	1 
	2 

	where Age is the age of the overlay, and PV a dummy variable that is equal to 1 for concrete , A, and A are parameters to be estimated.  
	pavements and 0 for bituminous pavements. A
	0
	1
	2


	B.2. Performance Models for Individual Distresses 
	B.2. Performance Models for Individual Distresses 
	Although performance models using composite indices of pavement condition (PCR, PSI, PCI, etc.) such as those summarized above are currently used widely in practice, in reality, overall pavement performance depends on the level of several different distresses such as rutting and cracking, as well as on roughness. These distresses occur due to different physical mechanisms and have different implications on Maintenance, Repair and Reconstruction (MR&R) strategies. Therefore it is more appropriate to model th
	• 
	• 
	• 
	Mechanistic and Mechanistic-Empirical models 

	• 
	• 
	Empirical and Empirical-Mechanistic models 



	B.3. Mechanistic and Mechanistic-Empirical Models 
	B.3. Mechanistic and Mechanistic-Empirical Models 
	In general, Mechanistic models are based on the use of material behavior and pavement response functions, which are believed to represent the actual behavior of the pavement structure under the combined actions of traffic and the environment. Although there are currently various attempts in this direction, a comprehensive and reliable mechanistic pavement model has yet to be developed. Mechanistic models require too much data to be used for pavement management systems. 
	Mechanistic-Empirical models make use of material characterization (laboratory or in situ testing) and pavement response models (usually multilayer linear elastic or finite element type models) to determine pavement response critical to each distress mode (i.e., cracking, rutting, etc). This response is, in turn, correlated to pavement performance and finally calibrated to an actual pavement structure. Both pavement test sections and in-service pavement sections are used for this purpose. The models are usu
	Empirical performance models have proven to be the most appropriate models for pavement management and will be discussed in more detail in the next section. 

	B.4. Empirical and Empirical-Mechanistic Models 
	B.4. Empirical and Empirical-Mechanistic Models 
	In Empirical and Empirical-Mechanistic models, the dependent variable is some indicator of pavement performance. Both subjective indicators, such as overall performance measures (riding quality, serviceability, condition index, etc.), and objective indicators, such as distress specific measures (roughness, rutting, cracking, etc.), are used as dependent variables. 
	These performance indicators are related to one or more explanatory variables, such as pavement structural strength, traffic loading, and environmental conditions. These models are often developed based purely on statistical considerations without any attempt to represent the actual physical phenomenon underlying the performance process. Different researchers have approached the development of these models in different ways, especially in the way in which the form of the model specification is developed. 
	In the majority of empirical models found in the literature, explanatory variables are used and discarded solely on the basis of consideration of the statistics of their parameters. Often, relevant variables are discarded, owing to low statistical significance (as measured by t statistics). On the other hand, irrelevant variables are often incorporated into the models, based on the same considerations. Any models developed following such an approach will undoubtedly suffer from specification biases. Most of
	A few researchers have used specification forms that simulate the actual physical process of deterioration. In their work, the form of the specification, even though relatively simple (by comparison with the actual physical phenomenon and Mechanistic-Empirical models) is not constrained to linear equations. This approach is often referred to as the Empirical–Mechanistic approach and is further discussed in this section (58). 
	Two broad categories of Empirical-Mechanistic models have been used in modeling the pavement condition deterioration process: Deterministic models and Probabilistic models. 
	The Deterministic model assumes that pavement behavior follows a predetermined pattern that can be formulated by a specific mathematical expression relating the considered pavement performance indicator to one or more explanatory variables. However, inherent variability of material properties, environmental conditions, and traffic characteristics cause pavement performance to inherit random characteristics. Therefore by disregarding the uncertainty observed in pavement deterioration modeling, the Determinis
	The Deterministic model assumes that pavement behavior follows a predetermined pattern that can be formulated by a specific mathematical expression relating the considered pavement performance indicator to one or more explanatory variables. However, inherent variability of material properties, environmental conditions, and traffic characteristics cause pavement performance to inherit random characteristics. Therefore by disregarding the uncertainty observed in pavement deterioration modeling, the Determinis
	models tend to oversimplify the process of pavement deterioration. On the other hand, Probabilistic models treat pavement condition measures such as crack, roughness, and rut development as random variables, and therefore are able to incorporate the uncertainty associated with pavement deterioration. Examples of both Deterministic and Probabilistic models are presented below. 


	B.5. Deterministic Models 
	B.5. Deterministic Models 
	The AASHO cracking model (46) is one of the early most used deterministic empirical models. Although its functional form was relatively arbitrary, the model has been widely accepted and forms the basis for most current pavement design procedures in the world today. It relates the traffic repetition (dependent variable) to pavement thickness and load type (explanatory variables): 
	AA
	1 
	3 

	A (aD + aD + aD + a ) L 
	01122334 2 
	W = (5) 
	W = (5) 
	2 
	(L + L ) 
	c 
	A 

	12 
	where Wc = Number of weighted axle applications sustained by the pavement before appearance 
	of Class 2 Cracking; 
	1, D, D= Thickness of surfacing, base and sub-base respectively, in inches; 
	  D
	2
	3 

	 = Nominal axle load, in kips; 
	  L
	1

	 = 1 for single axle configuration and 2 for tandem axle configuration; 
	  L
	2

	  a1, a2, a3, a= Coefficients that were assigned earlier; 
	4 

	1, A2, A, A= Regression coefficients. 
	  A
	3
	4 

	Although the AASHO model was widely accepted and used, it nevertheless had several defects. One of the defects is that the analysis did not account for censoring. Censoring occurs when cracking is not actually observed. Left censoring occurs when the section has cracked before the first inspection, and right censoring occurs when the section has not cracked at the last inspection or by the time the experiment ended. Right-censored data was frequent in the AASHO Road Test and were not properly accounted for 
	Another problem of the AASHO model is that it is arbitrary. and L for example have different units and were added together. Moreover the coefficients 1, a2, a3, awere determined a-priori instead of being estimated simultaneously with the other parameters. 1, a2, a3, awere used to calculate the Structural Number (SN), a measure of the strength of the pavement. The general equation for SN reflects the relative importance of the layer coefficients (i) and thickness (Di): 
	L
	1 
	2
	a
	4 
	a
	4 
	a

	3 
	3 

	SN =aD(6) 
	∑
	i 
	i 

	i=1 
	The estimated values of the coefficients, , a2 and a, were: 0.33, 0.10, and 0.08 respectively. 
	a
	1
	3

	Performance models were developed either separately for cracking initiation and cracking progression, or both initiation and progression were expressed in one model. 
	Parsley and Robinson (59) and Hodges et al. (60), as part of the Transportation Research Laboratory (TRL) road costs study in Kenya, combined cracking initiation and progression in one relation expressed in terms of cracking and patching. The cracking progression model predicts the incremental change in the area of cracking as a function of the modified structural number and the incremental cumulative traffic loading since the most recent resurfacing. The incremental form of the cracking progression models 
	Δ(C + P)=αSN ΔNE (7) 
	i 
	−SN 

	where (C + P) = Sum of areas of cracking and patching (m/km/lane);   SN = Structural number;   NE = Cumulative traffic loadings since latest resurfacing; α = Regression coefficient. 
	2

	The Queiroz-GEIPOT models (61, 62) are examples of models that separate crack initiation and the rate of crack progression. The dependent variable in their crack initiation model is the number of equivalent single axles to initiation, and the explanatory variable is the structural number. The initiation model is given by: 
	Log N =α +β log SN (8) 
	10 c 10 
	c = The number of Equivalent Single Axle Loads (ESALs) needed to initiate cracking;  SN = Structural number; α, β = Regression coefficients. 
	where, 
	N

	The progression model predicted the percentage of area cracked as a function of the structural number, traffic, and age of the pavement as follows: 
	CR =α +βLN / SN +γALN (9) 
	where, CR = percentage area cracked;   LN = logarithm to the base 10 of the number of cumulative equivalent axles;   A = pavement age since construction or overlay (years);   SN = structural number; α, β, γ = regression parameters. 
	Oliver (63) presented a crack initiation model for chip seals: 
	A
	A
	0 

	Y = (10) 
	(A
	(A
	1
	T + A
	2
	)
	2 

	where, Y = number of years to reach crack initiation; T = average site air temperature. , A1, and A2 = parameters to be estimated. 
	  A
	0

	Shin (64) presented a crack progression model of the following form: 
	12 
	cr=βSNESAL(11) 
	it 
	0 
	i 
	β 
	β 
	it 

	where, it = area cracked for pavement i at time t; i = Structural Number of pavement section i;   ESAL = Cumulative traffic expressed in Equivalent Single Axle Load (ESAL);  0, β1, and β2 are parameters to be estimated. 
	 cr
	  SN
	β



	B.6. Probabilistic Models 
	B.6. Probabilistic Models 
	Infrastructure deterioration is a stochastic process that varies widely with several factors, many of which are generally not captured by the available data. Therefore, Probabilistic models are used to predict the deterioration of infrastructure facilities such as pavement surfaces. Two types of Probabilistic models have been used for infrastructure facility deterioration prediction: state-based and time-based models. 
	State-based models predict the probability that a facility will undergo a change in condition-state at a given time, conditional on an array of explanatory variables such as traffic loading, environmental factors, design attributes, and maintenance history. Typical examples of a state-based model are the Markov and semi-Markov processes. In recent years, researchers have refined the simple Markovian transition probabilities that have been used in infrastructure management, by accounting for the effects of a
	Time-based models, on the other hand, predict the probability distribution of the time taken by an infrastructure facility to change its condition-state, conditional on an array of explanatory variables such as traffic loading, environmental factors, design attributes, and maintenance history. Such models have 
	Time-based models, on the other hand, predict the probability distribution of the time taken by an infrastructure facility to change its condition-state, conditional on an array of explanatory variables such as traffic loading, environmental factors, design attributes, and maintenance history. Such models have 
	been used frequently in pavement deterioration modeling to predict the time to cracking initiation (69) or the number of axle load repetitions needed to reduce serviceability below an acceptable level (70). 

	It is important to observe that while the two modeling approaches are based on different econometric techniques, they have a number of similarities. In particular, it is possible to use one modeling approach to predict the dependent variable of the other. For example, given a set of condition-state transition probabilities, one can derive the probability distribution of the time to condition-state change. Similarly, given a distribution of time-in-state, it is possible to compute time-dependent transition p
	On the other hand, if inspections are made infrequently or if the available data only span a relatively short time window, then the measurement of the time between condition-state transitions will suffer from potentially large measurement errors or from severe censoring, both of which may render the resulting time-based models inaccurate. In such situations, a state-based model would be the better approach (71). 
	With regard to Probabilistic Time-Based Models, Paterson’s empirical work, based on data from the World Bank’s Highway Design and Maintenance (HDM-III) project was one of the most comprehensive attempts to develop Probabilistic time-based models for different types of pavement distresses (72). The World Bank’s Highway Design and Maintenance (HDM) models (72) use a Probabilistic Parametric Duration model to predict crack initiation, where the dependent variable is the probability distribution of the time to 
	γ−1 
	h(t) =γ exp(−γμ)t (12) 
	The parameter μ is replaced by a linear function of explanatory variables x, and is given by μ =β′x . β and γ are parameters to be estimated. 
	The resulting model for prediction of expected cumulative traffic loading to crack initiation is: 
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	CR2 = mean cumulative traffic loading at initiation of narrow cracking (in millions of 
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	  SN = Structural number; 
	  SY = SN / (1000 YE), where YE is the annual traffic loading (in millions of 
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	ESAL/lane/year); 
	1, β2, β = parameters to be estimated. 
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	Models with separate predictions for initiation and progression have the advantage that they can be estimated separately, allowing a better description and understanding of initiation and progression, processes that are physically different. 
	Van Dam et al. (73) analyze the Strategic Highway Research Program (SHRP) Long-Term Pavement Performance (LTPP) data by using the Probabilistic Failure-time Crack Initiation models previously developed for use in HDM-III. On the basis of that analysis, they conclude that the HDM-III models do not accurately capture the climatic factors that play a role in linear cracking initiation typically observed in North America. When considering only fatigue-related cracking, HDM-III models could be successfully fit t
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	where  TYcr = The expected age in years of the surfacing at age and temperature-related cracking 
	initiation; 
	  SNC = Modified Structural Number; 
	= Traffic loading rate in millions of equivalent single axle loads (ESALs) per lane 
	  YE
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	per year; 
	  a0, a1, a2, a3, a4, and a5 are coefficients to be estimated. 
	Shin and Madanat (74) and Shin (64) used a Weibull model to estimate a crack initiation model. The parameter μ was defined by Shin (64) as: 
	μ=β +β D +β D +β Type × Load +β(1− Type) × Load (16) 
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	1 2132 5 
	= Surface thickness in inches;  = Base thickness in inches;  = Subbase thickness in inches;   Load = Nominal axle load (in kips);   Type = Single dummy variable, 1 for single axle and 0 for tandem axle; 0, β1, β2, β3, β4, β5, β6 are parameters to be estimated.  
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	Colucci et al (75) estimate the survival function S of pavement sections in different regions in Puerto Rico f. The survival function defined by Colucci et al. (75) is given by: 
	as a function of cumulative traffic to failure 
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	where α and δ are parameters to be estimated. 
	De Lisle et al. (76) presented a study for network-level pavement performance prediction that incorporates censored condition data. They used data from the New York State Department of Transportation (NYSDOT) to model the survival function of the dependent variable, defined as qualitative measure of the extent of cracking on the pavement surface, for different regions in New York State. De Lisle et al. (76) assumed a Weibull distribution of the survival function and used time as the only explanatory variabl
	Loizos and Karlaftis (77) developed surface distress prediction models for pavement crack initiation on the surface of flexible and semirigid pavements (asphalt placed on cement-treated base) on the basis of a large and recent data set collected from in-service pavements in 15 European countries by using the principles of stochastic duration models. They found that, as expected, construction, traffic, and climatic factors affect pavement distress. They also compared several parametric forms of the survival 
	Loizos and Karlaftis (77) developed surface distress prediction models for pavement crack initiation on the surface of flexible and semirigid pavements (asphalt placed on cement-treated base) on the basis of a large and recent data set collected from in-service pavements in 15 European countries by using the principles of stochastic duration models. They found that, as expected, construction, traffic, and climatic factors affect pavement distress. They also compared several parametric forms of the survival 
	Lognormal, Loglogistic, and Weibull models were roughly similar and the differences might not have been significant. Moreover, Loizos and Karlaftis (77) combined cracking in pavement overlays as well as cracking in the first pavement layer in their analysis, while in practice they should be separated as some factors that affect overlay cracking (reflection cracking) do not contribute to crack initiation in the first pavement layers. 

	Wang et al. (78) presented a study that analyzed the development patterns of fatigue cracking shown in flexible pavement test sections of the LTPP program. A large number of LTPP test sections exhibited a sudden burst of fatigue cracking after a few years of service, and in order to characterize this type of LTPP cracking data, Wang et al. (78) conducted a survival analysis to investigate the relationship between fatigue failure time and various explanatory variables. They used an Accelerated Failure Time m
	β′ x 
	T = e T(18) 
	b 

	where  T is the failure time;  b is the failure time associated with a baseline distribution function;    x vector of the explanatory variables;  β is a vector of parameters to be estimated by maximum likelihood. 
	  T

	Wang et al. (78) assumed different parametric distributions for the baseline function, such as the Loglogistic, Weibull, Lognormal, Exponential, and Generalized gamma distributions. Since the assumed baseline models above are nested within the Generalized Gamma distribution, or in other terms represent a special case of the Generalized Gamma distribution, the likelihood-ratio test can be used to compare these nested models. Wang et al. (78) found that the Generalized Gamma distribution for the baseline func
	With regard to Probabilistic State-Based models, one of the commonly used probabilistic modeling approaches is the method of Markov chains. Markovian transition models have been employed extensively for modeling infrastructure performance (6, 40, 7). The key to modeling the condition deterioration process using a Markov chain is to establish a matrix of appropriate transition probabilities. 
	Historically, two methods have been employed for the derivation of the transition probabilities depending on the extent of the available pavement condition survey data. Due to the scarcity of data in the initial stages of a PMS, pavement expert knowledge is usually sought to construct a reasonably accurate 
	Historically, two methods have been employed for the derivation of the transition probabilities depending on the extent of the available pavement condition survey data. Due to the scarcity of data in the initial stages of a PMS, pavement expert knowledge is usually sought to construct a reasonably accurate 
	transition probability matrix that is stationary or invariant with respect to the condition deterioration process. Considering the subjective nature of pavement expert knowledge and the wide variation of the impact of the associated variables on the pavement deterioration, the adequacy of the stationary and subjective transition probability matrix in representing the deterioration process is questionable.  

	On the other hand, in an established and well-functioning PMS with a wealth of historical condition survey data, the transition probability matrix is usually deduced from statistics of pavement condition data. In this regard, a case study has been reported by Wang et al. (79), who developed transition probability matrices from statistics of survey data for the Arizona Department of Transportation. Mishalani and Madanat (68) also derived transition probabilities from Stochastic Duration models. However, most
	Researchers have recently applied econometric methodologies in modeling infrastructure deterioration using condition-rating data. Combining well-established methodologies and accurate facility characteristics data, these models can be considered more appropriate than the Markov chains based on stationary transition probabilities. As an example, Madanat et al. (66) introduced an ordered Probit model for estimating transition probabilities from infrastructure inspection data. The above model assumes the exist
	Yang et al. (80) presented a detailed study on the use and development of state-based Markovian models. They established a simple relationship between the transition probabilities of pavement crack condition and all relevant explanatory variables through a logistic model to facilitate the computation of dynamic transition probabilities that truly represent the state dependency of the pavement deterioration process. The issue of state dependency of transition probabilities was addressed by including the lagg
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