

# CALTRANS Adaptation Priorities REPORT



February 2021



This page intentionally left blank.

## CONTENTS

| 1. | INTRO                                                                                                                                                                                                                                                                                                                                  | DUCTION1                                                                      |  |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|--|
|    | 1.1.                                                                                                                                                                                                                                                                                                                                   | Purpose of Report2                                                            |  |  |  |  |  |  |
|    | 1.2.                                                                                                                                                                                                                                                                                                                                   | Report Organization2                                                          |  |  |  |  |  |  |
| 2. | CALTR                                                                                                                                                                                                                                                                                                                                  | ANS' CLIMATE ADAPTATION FRAMEWORK                                             |  |  |  |  |  |  |
| 3. | PRIOR                                                                                                                                                                                                                                                                                                                                  | ITIZATION METHODOLOGY                                                         |  |  |  |  |  |  |
|    | 3.1.                                                                                                                                                                                                                                                                                                                                   | General Description of the Methodology6                                       |  |  |  |  |  |  |
|    | 3.2.                                                                                                                                                                                                                                                                                                                                   | Asset Types and Hazards Studied7                                              |  |  |  |  |  |  |
|    | 3.3.                                                                                                                                                                                                                                                                                                                                   | Prioritization Metrics113.3.1. Exposure Metrics143.3.2. Consequence Metrics19 |  |  |  |  |  |  |
|    | 3.4.                                                                                                                                                                                                                                                                                                                                   | Calculation of Initial Prioritization Scores21                                |  |  |  |  |  |  |
|    | 3.5.                                                                                                                                                                                                                                                                                                                                   | Adjustments to Prioritization25                                               |  |  |  |  |  |  |
| 4. | DISTRI                                                                                                                                                                                                                                                                                                                                 | ICT ADAPTATION PRIORITIES                                                     |  |  |  |  |  |  |
|    | 4.1.                                                                                                                                                                                                                                                                                                                                   | Bridges26                                                                     |  |  |  |  |  |  |
|    | 4.2.                                                                                                                                                                                                                                                                                                                                   | Large Culverts                                                                |  |  |  |  |  |  |
|    | 4.3.                                                                                                                                                                                                                                                                                                                                   | Small Culverts                                                                |  |  |  |  |  |  |
|    | 4.4.                                                                                                                                                                                                                                                                                                                                   | Roadways                                                                      |  |  |  |  |  |  |
| 5. | NEXT                                                                                                                                                                                                                                                                                                                                   | STEPS                                                                         |  |  |  |  |  |  |
| 6. | 3.1.General Description of the Methodology63.2.Asset Types and Hazards Studied73.3.Prioritization Metrics113.3.1.Exposure Metrics143.2.Consequence Metrics193.4.Calculation of Initial Prioritization Scores213.5.Adjustments to Prioritization25DISTRICT ADAPTATION PRIORITIES264.1.Bridges264.2.Large Culverts304.3.Small Culverts32 |                                                                               |  |  |  |  |  |  |

## TABLES

| Table 1: Asset-Hazard Combinations Studied                                                    | 7  |
|-----------------------------------------------------------------------------------------------|----|
| Table 2: Metrics Included for Each Asset-Hazard Combination Studied                           | 13 |
| Table 3: Weights by Metric for Each Asset-Hazard Combination Studied                          | 23 |
| Table 4: Priority 1 Bridges                                                                   | 27 |
| Table 5: Priority 1 Large Culverts                                                            |    |
| Table 6: Priority 1 Small Culverts                                                            |    |
| Table 7: Priority 1 Roadways                                                                  |    |
| Table 8: Prioritization of Bridges for Detailed Climate Change Adaptation Assessments         | 45 |
| Table 9: Prioritization of Large Culverts for Detailed Climate Change Adaptation Assessments  | 52 |
| Table 10: Prioritization of small culverts for detailed climate change adaptation assessments | 53 |
| Table 11: Prioritization of Roadways for Detailed Climate Change Adaptation Assessments       | 72 |



## FIGURES

| Figure 1: Caltrans' Climate Adaptation Framework (FEAR NAHT Framework)          | 4  |
|---------------------------------------------------------------------------------|----|
| Figure 2: Ocean Protection Council Sea Level Rise Projections for Port San Luis | 16 |
| Figure 3: Prioritization of Bridges for Detailed Adaptation Assessments         | 29 |
| Figure 4: Prioritization of Large Culverts for Detailed Adaptation Assessments  | 31 |
| Figure 5: Prioritization of Small Culverts for Detailed Adaptation Assessments  | 37 |
| Figure 6: Prioritization of Roadways for Detailed Adaptation Assessments        | 41 |



## **Term and Definitions**

- Adaptation: The steps taken to prepare a community or modify a targeted asset prior to a weather or climate-related disruption to minimize or avoid the impacts of that event. An example would be elevating assets in areas likely to experience increased flooding in the future.
- **Carriageway:** Each of the two sides of a highway, each of which may have two or more lanes. A dual carriageway is where the right and left sides of a highway are divided by a barrier (e.g., median). The Caltrans State Highway System is most often represented by one centerline that represents each carriageway.
- **Exposure:** The presence of infrastructure in places and settings where it could be adversely affected by hazards and threats, for example, a road in a floodplain.<sup>1</sup>
- Hazards and Stressors: Stresses on transportation system performance and condition. Whether such impacts occur today (e.g., riverine flooding that closes major highways) or whether they are part of a long- term trend (e.g., sea level rise). The terms are used interchangeably to refer to impacts originating primarily from natural causes (e.g., flooding or wildfire hazards).
- **Resilience:** The characteristic of a system that allows it to absorb, recover from, or more successfully adapt to adverse events.
- **Risk:** "A combination of the likelihood that an asset will experience a particular climate impact and the severity or consequence of that impact."<sup>2</sup>
- Sensitivity: Per the Federal Highway Administration, "refers to how an asset or system responds to, or is affected by, exposure to a climate change stressor. A highly sensitive asset will experience a large degree of impact if the climate varies even a small amount, where as a less sensitive asset could withstand high levels of climate variation before exhibiting any response."<sup>3</sup>
- Uncertainty: The degree to which a future condition or system performance cannot be forecasted. Both human-caused and natural disruptions, especially for longer-term climate changes, are uncertain events (as no one knows for sure exactly when and where and with what intensity they will occur). Sensitivity tests using multiple plausible scenarios of future conditions can help identify the range of uncertainty and its implications. This approach is used routinely when working with climate projections to help understand the range of possible conditions given different future greenhouse gas emission scenarios.

https://www.fhwa.dot.gov/environment/sustainability/resilience/adaptation\_framework/climate\_adaptation.pdf <sup>3</sup> Ibid.





 <sup>&</sup>lt;sup>1</sup> This definition is adopted from the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report. 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
 <sup>2</sup> FHWA. 2017. "Vulnerability Assessment and Adaptation Framework: Third Edition." Retrieved September 25, 2020 from

• Vulnerability: Per the Federal Highway Administration, "the degree to which a system is susceptible to or unable to cope with adverse effects of climate change or extreme weather events."<sup>4</sup>

<sup>&</sup>lt;sup>4</sup> FHWA. 2014. "FHWA Order 5520. "Transportation System Preparedness and Resilience to Climate Change and Extreme Weather Events." Dec. 15. Retrieved June 30, 2020 from <u>https://www.fhwa.dot.gov/legsregs/directives/orders/5520.cfm</u>



# 1. INTRODUCTION

California's climate is changing. Temperatures are warming, sea levels are rising, wet years are becoming wetter, dry years are becoming drier, and wildfires are becoming more intense. The State of California attributes these extreme weather conditions to the unprecedented amounts of greenhouse gases in the atmosphere. Given that global emissions of these gases continue at record rates, further changes in California's climate are, unfortunately, very likely.

The hazards brought on by climate change pose a serious threat to California's transportation infrastructure. District 5 is already experiencing the impacts of climate change as higher than anticipated sea levels and extreme flood events damage bridges and flood roadways, rapidly moving wildfires present profound challenges to timely evacuations, and higher than anticipated temperatures can cause pavement damage over broad areas. The district is already experiencing cliff erosion impacts

along State Route 1 (SR 1) and is faced with identifying adaptation responses within the coastal zone. The most recent example of this occurred on February 1, 2021 when the Rat Creek Mudslide closed approximately 23 miles of SR 1. The area lost approximately 125,000 acres due to the Dolan Fire in August 2020. The burn areas left barren hillsides, which reached critical saturation due to heavy rains and caused a mudslide to washout both northbound and southbound lanes of SR 1 at Rat Creek. The damage also left a 150foot chasm in SR 1 at Rat Creek. As Caltrans' assets near the end of their design life, some may need to be redesigned or adapted to meet new and increasingly severe weather conditions.



RAT CREEK MUDSLIDE CAUSES 150-CHASM SR 1 MONTEREY COUNTY

New assets will need to be put in place with future climate projections in mind, to ensure that the State Highway System continues to support the safety and economic vitality of California communities.

Recognizing this, Caltrans has initiated a major agency-wide effort to adapt its infrastructure so that it can withstand future conditions. The effort began by determining which assets are most likely to be adversely impacted by climate change in each Caltrans district. That assessment, described in the Caltrans Climate Change Vulnerability Assessment Report for District 5, identified stretches of the State Highway System within the district that are exposed to different climate stressors. This Adaptation Priorities Report picks up where the vulnerability assessment left off and considers the implications of those impacts on Caltrans and the traveling public, so that facilities with the greatest potential risk receive the highest priority for adaptation. District 5 anticipates that planning for, and adapting to, climate change will continue to evolve subsequent to this report's release as more data and experience is gained.



## 1.1. Purpose of Report

The purpose of this report is to prioritize the order in which assets found to be exposed to climate hazards will undergo detailed asset-level climate assessments. These detailed assessments can also be conducted at the corridor level, especially where stretches of roadway are exposed to climate hazards or where groups of high priority assets are near one another. Since there are many potentially exposed assets in the district, detailed assessments will need to be done sequentially according to their priority level. The prioritization considers, amongst other things, the timing of the climate impacts, their severity and extensiveness, the condition of each asset (a measure of the sensitivity of the asset to damage), the number of system users affected, and the level of network redundancy, or available detour routes, in the area. Prioritization scores are generated for each potentially exposed asset based on these factors and used to rank them.

## 1.2. Report Organization

The main feature of this report is the prioritized list of potentially exposed assets within District 5. Per above, this information will inform the timing of the detailed adaptation assessments of each asset, which is the next phase of Caltrans' adaptation work. The final prioritized list of assets for District 5 can be found in Chapter 4 of this document. The interim chapters provide important background information on the prioritization process. For example, those interested in learning more about Caltrans' overall adaptation efforts, and how the prioritization fits into that, should refer to Chapter 2. Likewise, those who are interested in learning more about how the prioritization was determined should refer to Chapter 3.



# 2. CALTRANS' CLIMATE ADAPTATION FRAMEWORK

Enhancing Caltrans' capability to consider adaptation in all its activities requires an agency-wide perspective and a multi-step process to make Caltrans more resilient to future climate changes. The process for doing so will take place over many years and will, undoubtedly, evolve over time as everyone learns more about climate hazards, better data is collected, and experience shows which techniques are most effective. Researchers have just started examining what steps an overarching adaptation framework for a department of transportation should entail. Figure 1 provides a graphical illustration of one such path called the Framework for Enhancing Agency Resiliency to Natural and Anthropogenic Hazards and Threats (FEAR-NAHT).<sup>5</sup> This framework, developed through the National Cooperative Highway Research program (NCHRP), has been adopted by Caltrans as part of its long-term plan for incorporating adaptation into its activities (hereafter referred to as the Caltrans Climate Adaptation Framework or "Framework"). In addition, information developed by local and regional agencies through adaptation planning studies and other analysis also provides critical input for Caltrans.

Steps 1 through 4 of the Framework represent activities that are currently underway at Caltrans Headquarters to effectively manage its new climate adaptation program and develop policies that will help jumpstart adaptation actions throughout the organization. Step 1, *Assess Current Practice*, and Step 4, *Implement Early Wins*, are both addressed within a document called the Caltrans Climate Adaptation Strategy Report. The Adaptation Strategy Report undertook a comprehensive review of all climate adaptation policies and activities currently in place or underway at Caltrans. The report includes numerous "early wins" that can be taken in the near-term to enhance agency resiliency. These early win strategies are easily implementable, programmatic changes. For example, setting policies, procedures,



#### COVER OF THE CALTRANS CLIMATE CHANGE VULNERABILITY ASSESSMENT SUMMARY REPORT FOR DISTRICT 5

or changing agency guidance. Several of these strategies also touch on elements of Step 2, *Organize for Success*, and Step 3, *Develop an External Communications Strategy and Plan*. In addition to this, a comprehensive adaptation communications strategy and plan for climate change is being developed as part of a Caltrans pilot project with the Federal Highway Administration.

Step 5, Understand the Hazards and Threats, is the first step where detailed technical analyses are performed, and in this case, identify assets potentially exposed to various climate stressors. This step has been completed for a subset of the assets and hazards in District and the results are presented in the Caltrans Climate Change Vulnerability Assessment Report for District 5. The

exposure information generated in the Vulnerability Assessment Report is used as an input to this study.

<sup>&</sup>lt;sup>5</sup> This framework and related guidance for state DOTs is being developed as part of NCHRP 20-117, Deploying Transportation Resilience Practices in State DOTs (expected completion in early 2021).





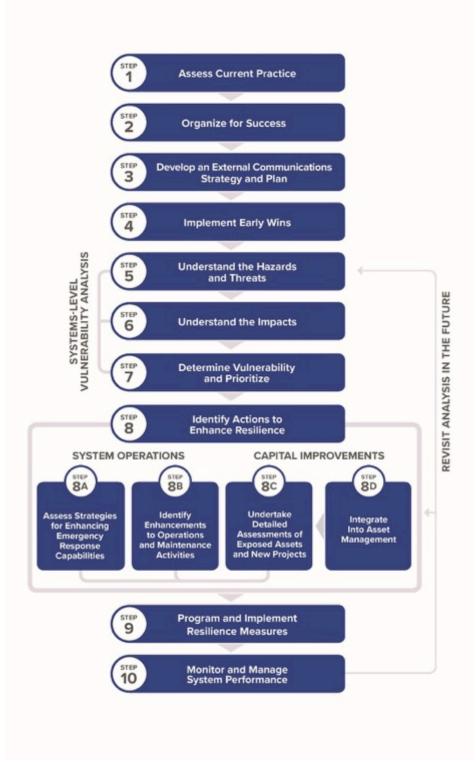



FIGURE 1: CALTRANS' CLIMATE ADAPTATION FRAMEWORK (FEAR NAHT FRAMEWORK)



Caltrans Adaptation Priorities Report – District 5

The work undertaken for this study, the District 5 Adaptation Priorities Report, covers both Steps 6 and 7 in the Framework. Step 6, *Understand the Impacts*, is focused on the implications of the exposure identified in Step 5. This includes understanding the sensitivity of the asset to damage from the climate stressor(s) it is potentially exposed to and understanding the criticality of the asset to the functioning of the transportation network and the communities it serves. Developing an understanding of these considerations is part of the prioritization methodology described in the next chapter.

Step 7, *Determine Vulnerability and Prioritize*, focuses on creating and implementing a prioritization approach that considers both the nature of the exposure identified in Step 5 (its severity, extensiveness, and timing) and the consequence information developed in Step 6. The goal of the prioritization is to identify which assets should undergo detailed adaptation assessments first, because resource constraints will prevent all assets from undergoing detailed study simultaneously.

After Step 7, the Framework divides into two parallel tracks, one focused on operational measures to enhance resiliency and the consideration of adaptation (Steps 8A and 8B) and the other on identifying adaptation-enhancing capital improvement projects (Steps 8C and 8D). Collectively, these represent the next steps that should be undertaken using the information from this report. On the operations track, the results of this assessment should be reviewed for opportunities to enhance emergency response (Step 8A) and operations and maintenance (Step 8C). Caltrans' next step on the capital improvement track should be to undertake detailed assessments of the exposed facilities (Step 8C). The prioritization information generated as part of this assessment should also be integrated into the state's asset management system (Step 8D). All projects recommended through the asset management process should also undergo detailed adaptation assessments (hence the arrow from Step 8D to 8C).

Thus, there will be two parallel pathways for existing assets to get to detailed facility level adaptation assessments. The first is through this prioritization analysis, which is driven primarily by the exposure to climate hazards with asset condition as a secondary consideration. The second is through the existing asset management process, which is driven primarily by asset condition and will have vulnerability to climate hazards as a secondary consideration.

The detailed adaptation assessments in Step 8C will involve engineering-based analyses to verify asset exposure to pertinent climate hazards (some exposed assets featured in this report will not be exposed after closer inspection). Then, if exposure is verified, Step 8C includes the development and evaluation of adaptive measures to mitigate the risk. The highest priority assets from this study will be evaluated first and lower priority assets will be evaluated later. Once specific adaptation measures have been identified, be they operational measures or capital improvements, these projects can then be programmed (Step 9). Step 10 then focuses on continuous monitoring of system performance to track progress towards enhancing resiliency. Note the feedback loops from Step 10 to Steps 5 and 8. The arrow back to Step 5 indicates that the exposure analysis should be revisited in the future as new climate projections are developed. The arrow back to Step 8 indicates how one can learn from the performance indicators and use this data to modify the actions being undertaken to enhance resilience.



5

## 3. PRIORITIZATION METHODOLOGY

## 3.1. General Description of the Methodology

The methodology used to prioritize assets exposed to climate hazards draws upon both technical analyses and the on-the-ground knowledge of district staff. The technical analysis component was undertaken first to provide an initial indication of adaptation priorities. These initial priorities were then reviewed with district staff at a workshop and, if necessary, adjusted to reflect local knowledge and recommendations. These adjustments are embedded in the final priorities shown in Chapter 4.

With respect to the technical analysis, there are a few different approaches for prioritizing assets based on their vulnerability to climate hazards. The approach selected for this study is known as an "indicators approach." The indicators approach involves collecting data on multiple variables that are determined to be important factors for prioritization. These are then put on a common scale, weighted, and used to create a score for each asset. The scores collectively account for all the variables of interest and can be ranked to determine priorities.

It is important to note that, since the prioritization process is focused on determining the order in which detailed adaptation assessments are conducted; only assets that are determined potentially exposed to a climate hazard are included in this analysis. Assets that were determined to have no exposure to the hazards studied in the Caltrans Climate Change Vulnerability Assessment are not included in this study.

The remainder of this chapter describes the prioritization methodology in detail. Section 3.2 begins by describing the asset types and hazards studied. Next, Section 3.3 discusses the



RAT CREEK MUDSLIDE DEBRIS FLOW SR 1 IN MONTEREY COUNTY

individual prioritization metrics (or factors) that were used in the technical analysis. Following this, Section 3.4 describes how those individual factors were brought together into an initial prioritization score for each asset. Lastly, Section 3.5 describes how the initial prioritization was adjusted with input from district staff.

It is important to note the limitations to such a prioritization assessment, which is an indicator-based scoring approach. The prioritization assessment was conducted statewide for all Caltrans districts and therefore the data applied needed to be available statewide, which limited the ability to incorporate regional data. Assessments at a statewide scale can overlook site-specific context, for assets themselves, the broader transportation network and those that use it. The detailed asset-level assessments which would come next for high priority assets would provide an opportunity to use



regional or local datasets and identify and respond to important site-specific considerations, including community needs (especially for disadvantaged or disproportionately vulnerable groups), stakeholder goals and requirements, environmental and natural resource impacts, safety concerns, bike and pedestrian access, co-benefits such as habitat preservation, and more. These detailed asset-level assessments are recommended, in part, so this information is not overlooked when Caltrans moves forward with adaptation investments. These details are simply not possible to fully grasp at the statewide scale. This asset prioritization exercise is intended to identify top priority locations to respond to climate change risks and develop responses through more detailed assessments.

## 3.2. Asset Types and Hazards Studied

Caltrans is responsible for maintaining dozens of different asset types (bridges, culverts, roadway pavement, buildings, etc.). Each of these asset types is uniquely vulnerable to a different set of climate stressors. Resource constraints only allowed this study to investigate a subset of the asset types owned by Caltrans in District 5 and, for those, only a subset of the climate stressors that could impact them. For example, wooden guardrail posts are another State Highway System asset damaged by wildfire and should be replaced with metal posts in wildfire exposure areas. But for this assessment Caltrans focused on small culvert vulnerability to wildfire. Additional exposure and prioritization analyses are needed in the future to gain a fuller understanding of Caltrans' adaptation needs. Caltrans may flag other assets that would be vulnerable or high priority by identifying neighboring high priority assets identified in this analysis, or by using the data generated in this assessment to conduct further asset studies and prioritization.

The subset of asset types and hazards included in this study generally mirror those that were included in the District 5 Climate Change Vulnerability Assessment Report. As in the district vulnerability assessment, assets on the State Highway System were the primary focus for this prioritization analysis. That said, exposure to two additional hazards was included as part of this study: (1) riverine flooding impacts to bridges and culverts and (2) temperature impacts to pavement binder grade. Table 1 shows all the asset types included in this study for District 5 and marks with an "X" the hazards that were evaluated for each in the analysis.

|                             | Sea Level<br>Rise | Storm Surge | Coastal Cliff<br>Retreat | Wildfire | Temperature | Riverine<br>Flooding |
|-----------------------------|-------------------|-------------|--------------------------|----------|-------------|----------------------|
| Pavement Binder Grade       |                   |             |                          |          | х           |                      |
| At-Grade Roadways           | Х                 | Х           | Х                        |          |             |                      |
| Bridges                     | Х                 | Х           | Х                        |          |             | х                    |
| Large Culverts <sup>6</sup> | Х                 | Х           | Х                        |          |             | х                    |
| Small Culverts <sup>7</sup> | Х                 | Х           | Х                        | Х        |             | Х                    |

#### TABLE 1: ASSET-HAZARD COMBINATIONS STUDIED

<sup>&</sup>lt;sup>7</sup> Culverts less than 20 feet in width.





G Caltrans

<sup>&</sup>lt;sup>6</sup> Culverts 20 feet or greater in width.

The various asset-hazard combinations include:

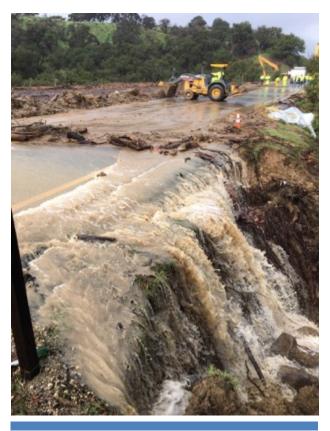
• Pavement binder grade exposure to temperature changes: Binder can be thought of as the glue that holds the various aggregate materials in asphalt together. Binder is sensitive to temperature. If temperatures become too hot, the binder can become pliable and deform under the weight of traffic. On the other hand, if temperatures are too cold, the binder can

shrink causing cracking of the pavement. There are various types (grades) of binder, each suited to a different temperature regime. This study considered how climate change will influence high and low temperatures and how this, in turn, could affect pavement binder grade performance.

Assumptions were made that (1) all roadways are currently (or could be in the future) asphalt and (2) the binder grade currently in place on each segment<sup>8</sup> of roadway matches the specifications in the Caltrans Highway Design Manual. From here, the



EXTREME HEAT CAUSES PAVEMENT DAMAGE, SR 58 IN SAN LUIS OBISPO COUNTY


allowable temperature ranges of each binder grade were compared to projected temperatures prior to 2010, 2010-2039, 2040-2069, or 2070-2099. If the temperature parameters exceeded the design tolerance of the assumed binder grade, that segment of roadway was deemed potentially exposed.

• Bridge exposure to riverine flooding: Bridges are sensitive to higher flood levels and river flows. With climate change, large precipitation events are generally expected to become more intense in District 5 leading to higher flows in rivers and streams. These higher flows could exceed the design tolerances of bridges. In addition, wildfires are also expected to become more prevalent in District 5 with climate change. After a wildfire burns, the ground can become hard and less capable of absorbing water. As a result, flood flows and debris flows can increase substantially in the aftermath of a fire, which could further exacerbate the risks to bridges. To better understand the threat posed to bridges in District 5, a flood exposure index was developed and calculated for each bridge that crosses a river or stream. The index considered both the changes in precipitation and wildfire likelihood in the area draining to the bridge in the early, mid, and late century timeframes. The index also considers the capacity of the bridge to handle higher flows using waterway adequacy information from the National Bridge Inventory (NBI). A higher score on the index indicates bridges at relatively greater risk due to a combination of higher projected flows and lower capacity.

<sup>&</sup>lt;sup>8</sup> Roadway are segmented at intersections with other roads.



- Large culvert exposure to riverine flooding: A distinction is made in the analysis between large and small culverts due to different data being available for each. Large culverts are included in the NBI and are generally 20 feet or greater in width. Small culverts are generally shorter than 20 feet in width and covered through a different inventory/inspection program. Large culverts, like bridges, are sensitive to increased flood flows. Thus, a flood exposure index was calculated for each large culvert in the same manner as was done for bridges.
- Small culvert exposure to riverine flooding: Small culverts (those less than 20 feet in width) are, like bridges and large culverts, also sensitive to higher flood flows. Hence, a flood exposure index like the one for bridges and large culverts was calculated for this asset type. The one difference is that the capacity component of the index for small culverts used the actual dimensions



FLOODING DUE TO DEBRIS CLOGGED CULVERT SR 154 IN SANTA BARBARA COUNTY

of the culvert, information that was not available for bridges and large culverts. Although the actual dimensions of small culverts were available, due to resource and data constraints, no hydraulic analyses were performed to determine overtopping potential. Instead, the size was simply used as a factor in the riverine flood exposure index.

- Small culvert exposure to wildfire: In addition to the higher post-fire flood flows captured in the flood exposure analysis, culverts can also be sensitive to the direct impacts of fire on the structure. Certain culvert materials (e.g. wood and plastic) can easily burn or be deformed during a fire. Thus, an assessment was made to determine the likelihood of a wildfire directly impacting each small culvert in the early, mid, and late century timeframes. This analysis was only conducted for small culverts because information on culvert construction materials was not available for large culverts.
- At-grade roadway exposure to sea level rise: Sea level rise, caused by the warming of ocean waters and the melting of land-based glaciers, is a prominent hazard brought on by climate change. In low-lying coastal areas, at-grade roads (defined here as those portions of the road network that are not elevated on a bridge) may become subject to regular inundation at high tides as sea levels rise. In low-lying areas like those around Moss Landing (Monterey County) at-grade roads may become subject to total inundation as sea levels rise. Sea level rise will lead to frequent road closures that disrupt travel and accessibility. In some locations with regular inundation, premature degradation of the pavement may also occur.



- Bridge exposure to sea level rise: There are several ways in which sea level rise may adversely affect bridges. For very low bridges, a rise in sea levels may result in water overtopping the deck and impeding travel. It is important to recognize, however, that serious impacts to bridges can still occur from sea level rise even if water does not overtop the deck. For example, on some bridge designs, if sea levels rise just enough to result in waves contacting the bottom of the deck, the uplifting forces may be enough to separate the deck from the rest of the structure. Even bridges whose decks are well above projected water levels may be impacted by sea level rise. For example, waves may contact piers at a higher elevation than they were designed for leading to more rapid corrosion of bridge components and unexpected strain being put on the bridge structure. The bridge abutments may also be adversely impacted by waves regularly hitting higher than initially designed and eroding the approach embankments. Furthermore, the navigability of shipping channels or deltas may be impeded by reduced ship clearances under bridges as sea levels rise.
- Large and small culvert exposure to sea level rise: Culverts are primarily used to convey streams and stormwater underneath roadways. Some are also used in tidally influenced environments. If sea levels rise enough for sea water to reach the culvert, this can change the hydraulic performance of the culvert leading to more frequent overtopping of the roadway. For culverts that were not designed for a tidal setting, the frequent unanticipated presence of saltwater can also lead to corrosion and other maintenance issues that may decrease the anticipated useful life of the asset.
- At-grade roadway exposure to storm surge: Storm surge refers to the elevating of coastal waters during major storm events. When strong winds blow onshore during such events, this can cause the water to pile up and reach levels much greater than during the normal tidal cycle. Sea level rise can cause the water to reach even higher during major storm events and increase

the frequency of inundation. Inundation of at-grade roadways from storm surge may require the road to be closed, disrupting travel. Also, the surge and associated wave action often associated with storm events can cause erosion of the roadway embankment. King Tides, while not storm related, further contribute to roadway exposure.

 Bridge exposure to storm surge: Storm surge presents many threats to bridges that may not have been fully anticipated if sea level rise was not considered during the design. Some low bridges may be overtopped by the surge and others may be affected by uplifting forces from wave



SEA LEVEL RISE AT SR 1 BRIDGE AT MOSS LANDING BRIDGE OVER ELKHORN SLOUGH IN MONTEREY COUNTY



action hitting the bottom of the deck. Either situation is likely to lead to the closure of the bridge and introduce the potential for serious structural damage. Even if the water is not high enough to reach the bridge deck, the elevated water levels and associated wave action can cause erosion around the bridge approaches. Furthermore, if the surge approaches or recedes at a high enough velocity, scouring of soils can occur around bridge piers and abutments weakening the structure and potentially compromising the bridge's integrity. This is a particularly acute threat for surge impacted bridges built over other roadways or railroads (as opposed to over water) because scour may not have been considered during their initial designs. This assessment focused on the 100-year storm surge event combined with sea level rise, but even regular tidal events including the King Tide can cause these impacts. A King Tide is an exceptionally high tidal event caused by the Earth's alignments with the sun and moon. District 5 is already experiencing damages from the King Tide in Moss Landing, which is expected to worsen as sea levels rise.

- Large and small culvert exposure to storm surge: Storm surge can overtop culverts impeding travel. If the velocity of the surge is great enough, then a culvert can also be damaged by the hydraulic forcing of excessive water through too small an opening. Water overtopping the roadway embankment on top of the culvert may also cause erosion resulting in damages to the roadway and the culvert itself.
- At-grade roadway exposure to coastal cliff retreat: Cliff retreat refers to the erosion of coastal cliff faces. This process can be accelerated by sea level rise since higher water levels may mean more frequent instances of wave action reaching the base of the cliff and causing erosion. At-grade roadways that are immediately along the coast can be a total loss if erosion encroaches upon them. Caltrans has realigned several roads already, often at significant expense, to avoid retreating coastal cliff faces.
- Bridge exposure to coastal cliff retreat: Any bridges in the vicinity of coastal cliff faces are at risk of a total loss should the cliff retreat towards the bridge abutment. Should the abutment of the bridge be compromised by erosion, the structural stability of the bridge will be lost and the bridge no longer usable.
- Large and small culvert exposure to coastal cliff retreat: As with bridges and at-grade roadways, any culverts along a segment of road exposed to coastal cliff retreat are at risk of becoming a total loss. The erosion might compromise their stability causing them, and the roadway above them, to fall away.

## 3.3. Prioritization Metrics

Metrics are the individual variables used to calculate a prioritization score for each asset. These can be thought of as the individual factors that, collectively, help determine the asset's priority for adaptation. Each of the asset-hazard combinations described in the previous section has its own unique set of factors that are used in the prioritization. The metrics were selected based on their relevancy to each asset-hazard combination and data availability. For example, the condition rating of a culvert is a very relevant metric for prioritizing culverts exposed to riverine flooding, however, it is not at all relevant to prioritizing bridges exposed to the same hazard. Table 2 provides an overview of all the metrics



included in this study and denotes with an "X" their application to the various asset-hazard combinations studied.



#### TABLE 2: METRICS INCLUDED FOR EACH ASSET-HAZARD COMBINATION STUDIED

|                                                                                                                                                                                            |                      | Sea Le  | vel Rise          |                   |                      | Storm   | n Surge           |                   |                      | Coastal C | liff Retreat      |                   | Wildfire          | Tempera-<br>ture            | R       | iverine Floodi    | ng                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|-------------------|-------------------|----------------------|---------|-------------------|-------------------|----------------------|-----------|-------------------|-------------------|-------------------|-----------------------------|---------|-------------------|-------------------|
| Metrics                                                                                                                                                                                    | At-Grade<br>Roadways | Bridges | Large<br>Culverts | Small<br>Culverts | At-Grade<br>Roadways | Bridges | Large<br>Culverts | Small<br>Culverts | At-Grade<br>Roadways | Bridges   | Large<br>Culverts | Small<br>Culverts | Small<br>Culverts | Pavement<br>Binder<br>Grade | Bridges | Large<br>Culverts | Small<br>Culverts |
| Exposure                                                                                                                                                                                   |                      |         |                   |                   |                      |         |                   |                   |                      |           |                   |                   |                   |                             |         |                   |                   |
| Past natural hazard impacts                                                                                                                                                                | Х                    | Х       | Х                 | х                 | Х                    | Х       | Х                 | Х                 | Х                    | Х         | Х                 | Х                 | Х                 |                             | Х       | Х                 | Х                 |
| Lowest impactful sea level rise (SLR) increment                                                                                                                                            | Х                    | х       | х                 | х                 |                      |         |                   |                   |                      |           |                   |                   |                   |                             |         |                   |                   |
| Percent of road segment exposed to 6.6 or 7 ft. of SLR <sup>9</sup>                                                                                                                        | Х                    |         |                   |                   |                      |         |                   |                   |                      |           |                   |                   |                   |                             |         |                   |                   |
| Lowest impactful SLR increment with 100-year storm surge                                                                                                                                   |                      |         |                   |                   | Х                    | Х       | х                 | х                 |                      |           |                   |                   |                   |                             |         |                   |                   |
| Percent of road segment exposed to a 100-year storm with 4.6 ft. or 6.6. ft. of SLR <sup>10</sup>                                                                                          |                      |         |                   |                   | х                    |         |                   |                   |                      |           |                   |                   |                   |                             |         |                   |                   |
| Lowest SLR increment that results in damage from coastal cliff retreat                                                                                                                     |                      |         |                   |                   |                      |         |                   |                   | х                    | х         | х                 | x                 |                   |                             |         |                   |                   |
| Percent of road segment exposed to coastal cliff retreat<br>under 6.6 ft. of SLR                                                                                                           |                      |         |                   |                   |                      |         |                   |                   | х                    |           |                   |                   |                   |                             |         |                   |                   |
| Initial timeframe for elevated level of concern for wildfire                                                                                                                               |                      |         |                   |                   |                      |         |                   |                   |                      |           |                   |                   | х                 |                             |         |                   |                   |
| Highest projected wildfire level of concern                                                                                                                                                |                      |         |                   |                   |                      |         |                   |                   |                      |           |                   |                   | Х                 |                             |         |                   |                   |
| Initial timeframe when asphalt binder grade needs to change                                                                                                                                |                      |         |                   |                   |                      |         |                   |                   |                      |           |                   |                   |                   | х                           |         |                   |                   |
| Maximum riverine flooding exposure score for the 2010-<br>2039 timeframe                                                                                                                   |                      |         |                   |                   |                      |         |                   |                   |                      |           |                   |                   |                   |                             | х       | х                 | х                 |
| Maximum riverine flooding exposure score                                                                                                                                                   |                      |         |                   |                   |                      |         |                   |                   |                      |           |                   |                   |                   |                             | Х       | Х                 | Х                 |
| Consequences                                                                                                                                                                               |                      |         |                   |                   |                      |         |                   |                   |                      |           |                   |                   |                   |                             |         |                   |                   |
| Bridge substructure condition rating                                                                                                                                                       |                      |         |                   |                   |                      | Х       |                   |                   |                      |           |                   |                   |                   |                             | Х       |                   |                   |
| Channel and channel protection condition rating                                                                                                                                            |                      |         |                   |                   |                      |         |                   |                   |                      |           |                   |                   |                   |                             | Х       | Х                 |                   |
| Culvert condition rating                                                                                                                                                                   |                      |         |                   |                   |                      |         | х                 | х                 |                      |           |                   |                   |                   |                             |         | Х                 | Х                 |
| Culvert material                                                                                                                                                                           |                      |         |                   | х                 |                      |         |                   |                   |                      |           |                   |                   | Х                 |                             |         |                   |                   |
| Scour rating                                                                                                                                                                               |                      |         |                   |                   |                      | Х       |                   |                   |                      |           |                   |                   |                   |                             | Х       |                   |                   |
| Average annual daily traffic (AADT)                                                                                                                                                        | Х                    | х       | х                 | х                 | Х                    | Х       | х                 | х                 | х                    | х         | х                 | х                 | Х                 | х                           | Х       | х                 | Х                 |
| Average annual daily truck traffic (AADTT)                                                                                                                                                 | Х                    | х       | х                 | х                 | Х                    | Х       | х                 | х                 | х                    | х         | х                 | х                 | х                 | х                           | Х       | Х                 | х                 |
| Incremental travel distance to detour around the asset                                                                                                                                     |                      |         |                   |                   |                      |         |                   |                   |                      |           |                   |                   | х                 |                             | Х       | х                 | х                 |
| Incremental travel distance to detour around the asset for the lowest impactful SLR increment                                                                                              | х                    | х       | x                 | х                 | x                    | х       | x                 | х                 | x                    | х         | x                 | x                 |                   |                             |         |                   |                   |
| Incremental travel distance to detour around the asset<br>under the maximum increment of SLR (6.6 or 7 ft. of SLR<br>alone and 4.6 or 6.6 ft. of SLR with a 100-year storm). <sup>11</sup> | x                    | х       | x                 | х                 | x                    | х       | x                 | х                 | x                    | х         | x                 | x                 |                   |                             |         |                   |                   |

<sup>&</sup>lt;sup>9</sup> The high SLR increment used varies depending on location in District 5 due to the use of two different SLR models (US Geological Survey (USGS) and National Oceanic and Atmospheric Administration (NOAA)). Santa Cruz, San Luis Obispo, and Santa Barbara Counties used the USGS model and the associated high 6.6 ft. increment was applied for this metric. Monterey County used the NOAA model and the associated high 7 ft. increment was applied for this metric. See the sections below for more detail on models applied.

ara Counties used the USGS model and the associated high 6.6 ft. increment ne USGS model and the associated high 6.6 ft. increment was applied for this me flood extents. In the detour analysis, if a road was exposed to sea level



<sup>&</sup>lt;sup>10</sup> The high SLR increment used varies depending on location in District 5 due to the use of two different sea level rise and storm surge models (US Geological Survey (USGS) and UC Berkeley). Santa Cruz, San Luis Obispo, and Santa Barbara Counties used the USGS model and the associated high 6.6 ft. increment was applied for this metric. Monterey County used the UC Berkeley sea level rise and surge model and the associated high 4.6 ft. increment was applied for this metric. See the sections below for more detail on models applied.

<sup>&</sup>lt;sup>11</sup> Sea level rise, storm surge, and cliff retreat datasets were applied when calculating detour routes. Data applied came from different models, which use different models, which use different models, which use different models and assumptions. As such, the model results did not match up across the same flood extents. In the detour analysis, if a road was exposed to sea level rise but not surge due to differing model extents, then the detour would assume the roadway was exposed to sea level rise AND surge. See the sections below for more detail on the models applied.

The metrics included in this study fall into two categories: exposure metrics and consequence metrics. Exposure metrics capture the extensiveness, severity, and timing of a hazard's projected impact on an asset. Assets that have more extensive, more severe, and sooner exposure are given a higher priority. Consequence metrics provide an indication of how sensitive an exposed asset is to damage using information on the asset's condition. Consequence metrics also indicate how sensitive the overall transportation network may be to the loss of that asset should it be taken out of service by a hazard. The poorer the initial condition of the potentially exposed asset and the more critical it is to the functioning of the transportation network, the higher the priority given. The specific metrics that are included within each of these categories are described in the sections that follow.

#### 3.3.1. Exposure Metrics

The following metrics were used to assess asset exposure in District 5:

Past natural hazard impacts: Assets that have experienced sea level rise, storm surge, cliff retreat, flood, or firerelated impacts in the past are likely to experience more issues in the future as climate changes and should be prioritized. To obtain information on past impacts, District 5 maintenance staff were surveyed and asked to identify any at-grade roadways, bridges, large culverts, or small culverts that had experienced sea level rise, storm surge, or coastal cliff retreat issues in the past. Staff was also asked to document past riverine flooding impacts for all these asset types except at-grade roadways. In addition, staff



#### DAMAGE TORO CANYON CREEK BRIDGE SR 192 IN SANTA BARBARA COUNTY

was also asked if any small culverts were damaged directly by fire and replaced with culverts of the same material. Any asset that was identified as previously impacted by coastal hazards, riverine flooding, or fire was flagged, and that asset was given a higher priority for adaptation.

Lowest impactful sea level rise increment: Assets that are likely to be impacted by sea level rise sooner should receive higher priority for detailed facility level assessments. To consider this in the asset scoring, a metric was developed that captured the lowest (first) increment of sea level rise<sup>12</sup> to potentially impact each at-grade roadway, bridge<sup>13</sup>, large culvert, and small culvert. This metric made use of the sea level rise data used in the District 5 Climate Change Vulnerability Assessment. Sea level rise data came from two sources: the United States

<sup>&</sup>lt;sup>13</sup> For bridges already over coastal waters or channels, potential impacts were assumed to occur at the lowest available increment of sea level rise. No analyses were performed to compare the elevations of the bottoms of the bridge decks to the underlying water elevations. The analysis was set up this way in recognition of the impacts possible at bridges from sea level rise before water touches the deck (i.e., enhanced corrosion and structural stability, erosion, and navigability concerns).



<sup>&</sup>lt;sup>12</sup> Sea level rise areas hydrologically connected to the sea and hydrologically disconnected low-lying areas potentially vulnerable to sea level rise inundation were both used for this assessment.

Geological Survey's (USGS) Coastal Storm Modeling System (CoSMoS) and a model developed by the National Oceanic and Atmospheric Administration (NOAA) Office for Coastal Management.<sup>14</sup> The CoSMoS data was applied as the primary source for coastal hazards in this assessment, but CoSMoS sea level rise data was not available in Monterey County and the NOAA data was used there instead. It is important to note that the Coastal Resilience Monterey Bay modeling is also available for Monterey Bay. This modeling effort was completed through a large investment of state resources (including from the Coastal Conservancy) to develop a more dynamic model for the Monterey Bay region and the resulting model is used by local stakeholders. The NOAA data was used instead of the Coastal Resilience Monterey Bay modeling due to the nature of this assessment and the need to use statewide data sources.<sup>15</sup>

CoSMoS sea level rise data used was for an annual flooding event under sea level rise increments of 0.0, 0.8, 1.6, 2.5, 3.3, 4.1, 4.9, 5.7, and 6.6 feet. NOAA GIS shapefiles were used for sea level rise in one-foot increments from 1 to 10 feet above mean higher high water (MHHW).<sup>16</sup> For this metric, the lower the sea level rise increment that first impacts the asset studied, the higher priority it received.

• Percent of road segment exposed to 6.6 or 7 ft. of sea level rise: For at-grade roadway segments<sup>17</sup>, not only is the timing of sea level rise impacts an important factor in prioritization, but also the extensiveness of the impacts. All else being equal, a segment of road that is impacted over a large proportion of its length should receive higher priority than one impacted over only a small proportion. The 6.6 feet increment from the CoSMoS model was used for this metric in Santa Cruz, San Luis Obispo, and Santa Barbara Counties. The 7 feet increment from the NOAA sea level rise model was used for this metric in Monterey County. These heights provide an indicator of potential impacts at the end of the century under very high sea level rise scenarios.

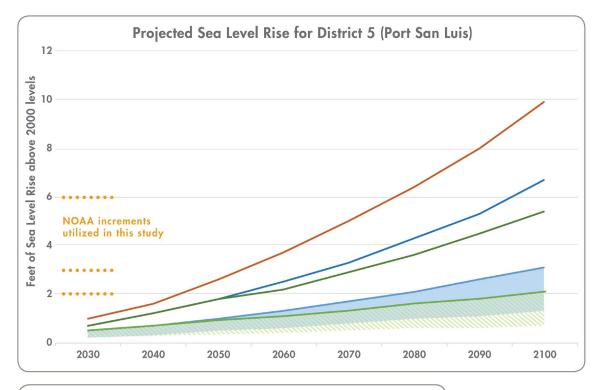
Figure 2 from the District 5 Climate Change Vulnerability Assessment provides a summary of projected sea level rise for the Port San Luis tide gauge in San Luis Obispo County. The figure demonstrates how greatly sea level rise projections diverge after mid-century under different scenario probabilities and emission concentrations. Approximately 7 feet of sea level rise is expected to occur in Port San Luis by 2080 under the extreme H++ scenario, by 2110 under a 0.5% probability scenario with high emissions, and by 2150 under a 5% probability change with high emissions.<sup>18</sup>

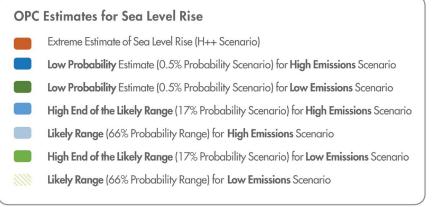
15

<sup>&</sup>lt;sup>18</sup> See the Ocean Protection Council California Sea Level Rise Guidance (2018 Update) for sea level rise projections: <u>https://opc.ca.gov/webmaster/ftp/pdf/agenda\_items/20180314/Item3\_Exhibit-A\_OPC\_SLR\_Guidance-rd3.pdf</u>









<sup>&</sup>lt;sup>14</sup> NOAA, Sea Level Rise Viewer, Accessed December 24, 2020 from <u>https://coast.noaa.gov/slr/</u>

 $<sup>^{\</sup>rm 15}$  The NOAA model is also used in other districts instead of CoSMoS.

<sup>&</sup>lt;sup>16</sup> See the District 5 Climate Change Vulnerability Assessment Summary or Technical Reports for more information on the models used: <u>https://dot.ca.gov/programs/transportation-planning/2019-climate-change-vulnerability-assessments</u>

<sup>&</sup>lt;sup>17</sup> At-grade roadways are segmented at intersections with other roads thereby matching the segmentation used for the pavement binder grade analysis.





#### FIGURE 2: OCEAN PROTECTION COUNCIL SEA LEVEL RISE PROJECTIONS FOR PORT SAN LUIS



Lowest impactful sea level rise increment with 100-year storm surge: As with sea level rise, assets that are likely to be impacted by storm surge sooner should receive higher priority for detailed facility level assessments. To factor this into the analysis, this metric captures the lowest (first) sea level rise increment at which the 100-year storm surge could potentially impact each at-grade roadway, bridge<sup>19</sup>, large culvert, and small culvert. Again, the CoSMoS model was used across most coastal District 5 counties. The UC Berkeley CalFloD-3D model was used for this exercise in Monterey County, as the CoSMoS sea level rise and storm surge model results were not available there. These are the same datasets used in the District 5 Climate Change Vulnerability Assessment storm surge assessment.<sup>20</sup> USGS CoSMoS storm surge data at increments of 0.0, 0.8, 1.6, 2.5, 3.3, 4.1, 4.9, 5.7, and 6.6 feet was used for the analysis. CalFloD-3D modeled a more limited set of future sea level rise increments than the CoSMoS model. The analysis used sea level rise heights of 0.0, 1.6, 3.3, and 4.6 feet with a 100-year storm event. The lower the sea level rise increment that storm surge first impacts the asset, the higher priority it received.



#### BIXBY CREEK BRIDGE ALONG SR 1 IN MONTEREY COUNTY

• Percent of road segment exposed to a 100-year storm with 4.6 or 6.6 feet of sea level rise: This metric measures the proportion of each at-grade roadway segment exposed to a 100-year storm surge. As with the sea level rise length metric, 6.6 feet of sea level rise was used for counties where the CoSMoS model was available (Santa Cruz, San Luis Obispo, and Santa Barbara). The highest CalFloD-3D model sea level rise and storm surge increment of 4.6 feet was applied in Monterey County. All else being equal, the greater the proportion of roadway length exposed to storm surge, the higher the priority of that segment.

<sup>&</sup>lt;sup>20</sup> See the District 5 Climate Change Vulnerability Assessment Summary or Technical Reports for more information on the model used: <u>https://dot.ca.gov/programs/transportation-planning/2019-climate-change-vulnerability-assessments</u>





<sup>&</sup>lt;sup>19</sup> As with sea level rise, no analyses were performed to compare the elevations of the bottoms of the bridge decks to the underlying water elevations. The analysis was set up this way in recognition of the impacts possible at bridges from sea level rise before water touches the deck (i.e., enhanced corrosion and structural stability, erosion, and navigability concerns).

- Lowest SLR increment that results in damage from coastal cliff retreat: At-grade roadways, bridges, large culverts, and small culverts that are exposed to coastal cliff retreat sooner should receive higher priority for facility level adaptation assessments. This metric was included to capture the timing of impacts. As in the District 5 Caltrans Climate Change Vulnerability Assessment, this study relied upon coastal cliff retreat data from the USGS CoSMoS model.<sup>21</sup> CoSMoS data was used for sea level rise increments of 0.0, 0.8, 1.6, 2.5, 3.3, 4.1, 4.9, 5.7, and 6.6 feet. The "Do Not Hold the Line" cliff retreat scenario was used from the CoSMoS model, which assumes that coastal protections like sea walls and rip rap are not used to slow retreat.
- Percent of road segment exposed to coastal cliff retreat under 6.6 feet of sea level rise: This metric captures the proportion of each at-grade roadway segment that is exposed to coastal cliff retreat. The USGS CoSMoS model was applied for 6.6 feet of sea level rise in order to provide an indicator of potential impacts at the end of the century under a high greenhouse gas emissions scenario. The greater the proportion of roadway length exposed to coastal cliff retreat, the higher the priority of that segment.
- Initial timeframe for elevated level of concern from wildfire: Assets that are more likely to be impacted by wildfire sooner should be prioritized first. Using the future wildfire projections developed for the District 5 Climate Change Vulnerability Assessment, the initial timeframe (2010-2039, 2040-2069, 2070-2099, or Beyond 2099) for heightened wildfire risk was determined for each small culvert.<sup>22</sup> The most recent timeframe across the range of available climate scenarios was chosen. Assets that were impacted sooner were given a higher priority for adaptation.
- **Highest projected wildfire level of concern:** Assets that are exposed to a greater wildfire risk should be prioritized. The wildfire modeling conducted for the District 5 Climate Change Vulnerability Assessment classified fire risk into five levels of concern (very low, low, moderate, high, and very high) at various future time periods. Using this data, the highest level of concern was determined for each small culvert between now and 2100 and across all climate scenarios. Assets with higher levels of concern were given a higher priority for adaptation.<sup>23</sup>
- Initial timeframe when asphalt binder grade needs to change: Roadway segments that are more likely to need binder grade changes sooner should be prioritized. Using the assumptions and data from the pavement binder grade exposure analysis described above, the initial timeframe (prior to 2010, 2010-2039, 2040-2069, or 2070-2099) for binder grade change was determined. Roadway segments that were found to need binder grade changes sooner were given a higher priority for detailed adaptation assessments.
- Maximum riverine flooding exposure score for the 2010-2039 timeframe: Assets that have relatively higher exposure to riverine flooding in the near-term should be prioritized. Using the riverine flood exposure index values calculated using the process described above, the highest score for the near-term (2010-2039) period was determined for each bridge, large culvert, and

<sup>23</sup> Ibid.



<sup>&</sup>lt;sup>21</sup> See the District 5 Climate Change Vulnerability Assessment Summary or Technical Reports for more information on the model used: https://dot.ca.gov/programs/transportation-planning/2019-climate-change-vulnerability-assessments

<sup>&</sup>lt;sup>22</sup> See the District 5 Climate Change Vulnerability Assessment Summary or Technical Reports for more information on the model used: https://dot.ca.gov/programs/transportation-planning/2019-climate-change-vulnerability-assessments

small culvert considering all climate scenarios and the range of outputs from all climate and wildfire models. Assets with the highest overall riverine flooding scores in this initial period received a higher priority for adaptation.

• Maximum riverine flooding exposure score: In addition to understanding the most pressing near-term needs for dealing with riverine flooding, assets that have relatively higher exposure to riverine flooding at any point over their lifespans should also be prioritized. To calculate this metric, the highest riverine flooding exposure score was determined for each asset considering all time periods (from now through 2100), all climate scenarios, and all climate and wildfire models. Assets with the highest overall riverine flooding scores received a higher priority for adaptation.

#### 3.3.2. Consequence Metrics

The following metrics were used to understand the consequences of each asset's exposure, considering both asset sensitivity to damage and network sensitivity to loss of the asset:

- Bridge substructure condition rating: Poor bridge substructure condition can contribute to failure during riverine flooding and storm surge events. The NBI assigns a substructure condition rating to each bridge. Values range from nine to two with lower values indicating poorer condition. Bridges with poor substructure condition ratings were given higher priority for adaptation assessments.
- Channel and channel protection condition rating: Poor channel conditions or inadequate channel protection measures can contribute to failure during riverine flooding events. The NBI assigns a channel and channel protection condition rating to each bridge and large culvert. Values range from nine to two with lower values indicating poorer condition. Bridges and large culverts with poor channel or channel protection ratings were given higher priority for adaptation assessments.
- **Culvert condition rating:** Poor culvert condition can contribute to failure during storm surge and riverine flooding events. The NBI assigns a culvert condition rating to each large culvert. Values range from nine to two with lower values indicating poorer condition. Caltrans has developed their own culvert condition rating system for small culverts. Possible ratings in the Caltrans system include good, fair, critical, and poor. Large and small culverts with poorer condition ratings in either system were prioritized.
- Culvert material: Culvert material determines the sensitivity of culverts to direct damage from wildfires and material degradation due to sea level rise. Caltrans includes material data in its databases on small culverts (no equivalent information exists for large culverts). Possible culvert materials include HDPE (high density polyethylene [plastic]), PVC (polyvinyl chloride [plastic]), corrugated steel pipe, composite, wood, masonry, and concrete. HDPE, PVC, corrugated steel pipe, composite, and wood culverts are all more sensitive to wildfire and any small culverts made from these materials that are exposed to an elevated risk from wildfire were prioritized for adaptation. Likewise, corrugated steel pipe and concrete are more sensitive to regular saltwater inundation and any small culverts made from these materials that are exposed to sea level rise were assigned a higher priority.



- Scour rating: Scour is a condition where water has eroded the soil around bridge piers and abutments. Excessive scour of bridge foundations makes bridges more prone to failure, especially during storm surge and riverine flooding events. The NBI assigns a scour condition rating to each bridge. Values range from eight to two with lower values indicating greater scour concern. Bridges with lower scour values (higher scour concern) were given higher priority for adaptation assessments.
- Average annual daily traffic (AADT): AADT is a measure of the average traffic volume on a roadway. The consequences of weather and climate hazard-related



DAMAGE TO TORO CREEK BRIDGE CAUSES DETOURS SR 192 IN SANTA BARBARA COUNTY

failures/disruptions/maintenance are greater for assets that convey a higher volume of traffic. Disruptions on higher volume roads affect a greater proportion of the traveling public and there is a greater chance of congestion ripple effects throughout the network because alternate routes are less likely to be able to absorb the diverted traffic. AADT data was obtained from Caltrans databases and assigned to all the asset types included in this study. Exposed assets with higher AADT values were given greater priority for adaptation.

- Average annual daily truck traffic (AADTT): AADTT is a measure of the average truck volumes on a roadway. Efficient goods movement is important for maintaining economic resiliency and for providing relief supplies after a disaster. The consequences of weather and climate hazardrelated failures/disruptions/maintenance are greater for assets that are a critical link in supply chains. AADTT data was obtained from Caltrans databases and assigned to all the asset types included in this study. Potentially exposed assets with higher AADTT values were given greater priority for adaptation.
- Incremental travel distance to detour around the asset: This metric measures the degree of network redundancy around each asset. A detour routing tool was developed for this project that can find the shortest path detour around a segment of road, bridge, large culvert, or small culvert and calculate the additional travel distance that would be required to take that detour.<sup>24</sup> A simplified version of the tool was run for each of the bridge and culvert assets studied that were exposed to riverine flooding. The tool did not consider whether the detour routes would be passible during a flood event.<sup>25</sup> Assets that had very long detour routes were given greater priority for adaptation.

<sup>&</sup>lt;sup>24</sup> The detour routes for this and other related metrics in this study did not allow unpaved roads to be used as detours. That said, there are some errors in the database regarding paving status such that it is possible that unpaved roads may be shown as detour routes in some cases.
<sup>25</sup> The exposure of detour routes to flooding was not able to be determined within the resources of this project since no future riverine flooding floodplains with climate change were available at the time of publication.



**\\S**[]

- Incremental travel distance to detour around the asset for the lowest impactful SLR
  - **increment:** A more complex version of the detour routing tool was used to determine the shortest detour for the lowest impactful sea level rise increment that would result in sea level rise, storm surge, and coastal cliff retreat affecting each asset. This provides an indication of the initial network redundancy issues that may be created by impacts in coastal areas. For these hazards, the detour tool considered the inundation/erosion throughout the roadway network for each increment of sea level rise evaluated. This ensured that detours were not routed onto roads that would also be inundated or eroded under the same amount of sea level rise.<sup>26</sup> In other words, when run for assets exposed to sea level rise or coastal cliff retreat, the detour routing algorithm ensured that no road affected by either sea level rise or coastal cliff retreat at that same increment of sea level rise could be considered a detour route. When run for assets exposed to storm surge, the detour routing algorithm ensured that no road affected by either sea level rise could be considered a detour route. As with the riverine flooding detours, assets that had very long detour routes were given greater priority for adaptation.
- Incremental travel distance to detour around the asset under the maximum extent of SLR (6.6 of SLR and 4.6 feet of SLR with a 100-year storm): This metric captures the level of network redundancy around exposed at-grade roadways, bridges, large culverts, and small culverts under high sea level rise scenarios. To calculate the results for this metric, different coastal hazard models used in this prioritization assessment were applied. 6.6 feet of sea level rise from the CoSMoS model was used for cliff retreat across the District 5 coastline. The CoSMoS model and 6.6 feet increment was also used in Santa Cruz, San Luis Obispo, and Santa Barbara Counties when evaluating detours around sea level rise and storm surge inundation. The NOAA and UC Berkeley CalFloD-3D models were used for calculating detours in Monterey County; the 7 feet increment was applied from the NOAA model and the 4.6 feet with a 100-year storm scenario was applied from the CalFloD-3D model. The detour values for this metric were calculated the same way as was done for the lowest impactful sea level rise increment detour metrics described above. Likewise, assets that had very long detour routes under this sea level rise increment were given greater priority for adaptation.

## 3.4. Calculation of Initial Prioritization Scores

Once all the metrics had been gathered/developed, the next step was to combine them and calculate an initial prioritization score for each asset. Calculating prioritization scores is a multi-step process that was conducted using Microsoft Excel. The primary steps are as follows:

<sup>&</sup>lt;sup>26</sup> An exception was made for Caltrans bridges impacted by sea level rise or storm surge within District 5. These assets were assumed to remain passible for such hazards. This assumption was made because, as noted above, exposure for bridges was assumed to occur for sea level rise and storm surge even if the deck was never touched by water (to reflect concerns over corrosion, navigability, etc.). If the deck was not touched by water, it is likely that the bridge would remain open as a detour route and adaptation/repair work could be done while the asset was still in service. Since most Caltrans bridges shown as exposed in the analysis would not actually be touched by water, it was assumed all would remain passible under these hazards lest excessively long and inaccurate detours be generated. That said, the detour metrics will be inaccurate for the few cases where detour routes traverse a Caltrans bridge would remain open and return a shorter detour length than would be the case. Note that this exception does not apply to non-Caltrans owned bridges. All non-Caltrans bridges were assumed to be impassible as a detour route if inundation was shown to be underneath them for any of the sea level rise or storm surge scenarios.





- 1. Scale the raw metrics: Several of the metrics described in the previous section have different units of measurement. For example, the AADT metric is measured in vehicles per day whereas the incremental travel time to detour around the asset is measured in minutes. There is a need to put each metric on a common scale to be able to integrate them into one scoring system. For this study, it was decided to use a scale ranging from zero to 100 with zero indicating a value for a metric that would result in the lowest possible priority level and 100 indicating a value for a metric that would result in the highest possible priority level. The districtwide minimum and maximum values for each metric were used to set that metric's zero and 100 values. The past weather/fire impacts metric (which had binary values) was assigned a zero if the condition was false (i.e., there were no previous weather/fire impacts reported) and 100 if the condition was true. Categorized or incremental values, like the various condition rating metrics or the sea level rise increments, were generally parsed out evenly between zero and 100 (e.g., if there were seven condition rating values, the minimum and maximum values were coded as zero and 100, respectively, with the five remaining categories assigned values at intervals of 20). The remaining metrics with continuous values were allowed to fall at their proportional location within the re-scaled zero to 100 range.
- 2. Apply weights: Some metrics have been determined by Caltrans to be more important than others for determining priorities. Therefore, the relative importance of each metric was adjusted by multiplying the scaled score by a weighting factor. Metrics deemed more important to prioritization were multiplied by a larger weight. For consistency, Caltrans Headquarters staff harmonized the weights to be used in all districts based on national best practices and input from the districts. Table 3 shows the weighting schema applied to the asset-hazard combinations in District 5. The weights are percentage based and add to 100% for all the metrics within a given asset-hazard combination (column).

In general, higher weights were assigned to the future exposure metrics (including those considering both the hazard timing and severity) as they are the primary drivers of adaptation need. This helps ensure adaptations are considered proactively before the hazards affect the assets. It also focuses the first detailed assessments on those assets that are projected most severely affected by climate change.



#### TABLE 3: WEIGHTS BY METRIC FOR EACH ASSET-HAZARD COMBINATION STUDIED

|                                                                                                                                                                                            |                      | Percentage Weights by Asset Class |                      |                   |                      |      |                                  |                      |         |                   |                   |                   |                             |         |                   |                   |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|----------------------|-------------------|----------------------|------|----------------------------------|----------------------|---------|-------------------|-------------------|-------------------|-----------------------------|---------|-------------------|-------------------|-------|
|                                                                                                                                                                                            | Sea Level Rise       |                                   |                      | Storm Surge       |                      |      | Cliff Retreat                    |                      |         | Wildfire          | Tempera-<br>ture  | •                 |                             |         |                   |                   |       |
| Metric                                                                                                                                                                                     | At-Grade<br>Roadways | Bridges                           | Large<br>es Culverts | Small<br>Culverts | At-Grade<br>Roadways |      | Large Small<br>Culverts Culverts | At-Grade<br>Roadways | Bridges | Large<br>Culverts | Small<br>Culverts | Small<br>Culverts | Pavement<br>Binder<br>Grade | Bridges | Large<br>Culverts | Small<br>Culverts |       |
| Exposure                                                                                                                                                                                   |                      |                                   |                      |                   |                      |      |                                  |                      |         |                   |                   |                   |                             |         |                   |                   |       |
| Past natural hazard impacts                                                                                                                                                                | 20%                  | 20%                               | 20%                  | 20%               | 20%                  | 20%  | 20%                              | 20%                  | 20%     | 20%               | 20%               | 20%               | 20%                         | -       | 20%               | 20%               | 20%   |
| Lowest impactful sea level rise (SLR) increment                                                                                                                                            | 22.5%                | 45%                               | 45%                  | 40%               | -                    | -    | -                                | -                    | -       | -                 | -                 | -                 | -                           | -       | -                 | -                 | -     |
| Percent of road segment exposed to 6.6 or 7 ft. of SLR <sup>27</sup>                                                                                                                       | 22.5%                | -                                 | -                    | -                 | -                    | -    | -                                | -                    | -       | -                 | -                 | -                 | -                           | -       | -                 | -                 | -     |
| Lowest impactful SLR increment with 100-year storm surge                                                                                                                                   | -                    | -                                 | -                    | -                 | 22.5%                | 45%  | 45%                              | 45%                  | -       | -                 | -                 | -                 | -                           | -       | -                 | -                 | -     |
| Percent of road segment exposed to a 100-year storm with 4.6 ft. or 6.6. ft. of SLR <sup>28</sup>                                                                                          | -                    | -                                 | -                    | -                 | 22.5%                | -    | -                                | -                    | -       | -                 | -                 | -                 | -                           | -       | -                 | -                 | -     |
| Lowest SLR increment that results in damage from coastal cliff retreat                                                                                                                     | -                    | -                                 | -                    | -                 | -                    | -    | -                                | -                    | 22.5%   | 45%               | 45%               | 45%               | -                           | -       | -                 | -                 | -     |
| Percent of road segment exposed to coastal cliff retreat under 6.6 ft. of SLR                                                                                                              | -                    | -                                 | -                    | -                 | -                    | -    | -                                | -                    | 22.5%   | -                 | -                 | -                 | -                           | -       | -                 | -                 | -     |
| Initial timeframe for elevated level of concern for wildfire                                                                                                                               | -                    | -                                 | -                    | -                 | -                    | -    | -                                | -                    | -       | -                 | -                 | -                 | 17.5%                       | -       | -                 | -                 | -     |
| Highest projected wildfire level of concern                                                                                                                                                | -                    | -                                 | -                    | -                 | -                    | -    | -                                | -                    | -       | -                 | -                 | -                 | 17.5%                       | -       | -                 | -                 | -     |
| Initial timeframe when asphalt binder grade needs to change                                                                                                                                | -                    | -                                 | -                    | -                 | -                    | -    | -                                | -                    | -       | -                 | -                 | -                 | -                           | 60%     | -                 | -                 | -     |
| Maximum riverine flooding exposure score for the 2010-<br>2039 timeframe                                                                                                                   | -                    | -                                 | -                    | -                 | -                    | -    | -                                | -                    | -       | -                 | -                 | -                 | -                           | -       | 22.5%             | 22.5%             | 22.5% |
| Maximum riverine flooding exposure score                                                                                                                                                   | -                    | -                                 | -                    | -                 | -                    | -    | -                                | -                    | -       | -                 | -                 | -                 | -                           | -       | 22.5%             | 22.5%             | 22.5% |
| Consequences                                                                                                                                                                               |                      |                                   |                      | •                 |                      |      |                                  |                      |         | •                 |                   | •                 |                             |         |                   |                   |       |
| Bridge substructure condition rating                                                                                                                                                       | -                    | -                                 | -                    | -                 | -                    | 1.5% | -                                | -                    | -       | -                 | -                 | -                 | -                           | -       | 1%                | -                 | -     |
| Channel and channel protection condition rating                                                                                                                                            | -                    | -                                 | -                    | -                 | -                    | - /  | -                                | -                    | -       | -                 | -                 | -                 | -                           | -       | 2.5%              | 2.5%              | -     |
| Culvert condition rating                                                                                                                                                                   | -                    | -                                 | -                    | -                 | - /                  | -    | 5%                               | 5%                   | -       | -                 | -                 | -                 | -                           | -       | -                 | 2.5%              | 5%    |
| Culvert material                                                                                                                                                                           | -                    | -                                 | -                    | 15%               | -/                   | -    | -                                | -                    | -       | -                 | -                 | -                 | 20%                         | -       | -                 | -                 | -     |
| Scour rating                                                                                                                                                                               | -                    | -                                 | -                    | -                 | _                    | 8.5% | -                                | -                    | -       | -                 | -                 | -                 | -                           | -       | 6.5%              | -                 | -     |
| Average annual daily traffic (AADT)                                                                                                                                                        | 10%                  | 10%                               | 10%                  | 7%                | 10%                  | 7%   | 7%                               | 7%                   | 10%     | 10%               | 10%               | 10%               | 7%                          | 13%     | 7%                | 10%               | 10%   |
| Average annual daily truck traffic (AADTT)                                                                                                                                                 | 5%                   | 5%                                | 5%                   | 3%                | 5%                   | 3%   | 3%                               | 3%                   | 5%      | 5%                | 5%                | 5%                | 3%                          | 27%     | 3%                | 5%                | 5%    |
| Incremental travel distance to detour around the asset                                                                                                                                     | -                    | -                                 | -                    | /-                | -                    | -    | -                                | -                    | -       | -                 | -                 | -                 | 15%                         | -       | 15%               | 15%               | 15%   |
| Incremental travel distance to detour around the asset for the lowest impactful SLR increment                                                                                              | 10%                  | 10%                               | 10%                  | 7.5%              | 10%                  | 7.5% | 10%                              | 10%                  | 10%     | 10%               | 10%               | 10%               | -                           | -       | -                 | -                 | -     |
| Incremental travel distance to detour around the asset<br>under the maximum increment of SLR (6.6 or 7 ft. of SLR<br>alone and 4.6 or 6.6 ft. of SLR with a 100-year storm). <sup>29</sup> | 10%                  | 10%                               | 10%                  | 7.5%              | 10%                  | 7.5% | 10%                              | 10%                  | 10%     | 10%               | 10%               | 10%               | -                           | -       | -                 | -                 | -     |
| TOTAL                                                                                                                                                                                      | 100%                 | 100%                              | 100%                 | 100%              | 100%                 | 100% | 100%                             | 100%                 | 100%    | 100%              | 100%              | 100%              | 100%                        | 100%    | 100%              | 100%              | 100%  |

<sup>&</sup>lt;sup>27</sup> The high SLR increment used varies depending on location in District 5 due to the use of two different SLR models (US Geological Survey (USGS) and National Oceanic and Atmospheric Administration (NOAA)). Santa Cruz, San Luis Obispo, and Santa Barbara Counties used the USGS model and the associated high 6.6 ft. increment was applied for this metric. Monterey County used the NOAA model and the associated high 7 ft. increment was applied for this metric. See the sections below for more detail on models applied.

ara Counties used the USGS model and the associated high 6.6 ft. increment ne USGS model and the associated high 6.6 ft. increment was applied for this me flood extents. In the detour analysis, if a road was exposed to sea level



<sup>&</sup>lt;sup>28</sup> The high SLR increment used varies depending on location in District 5 due to the use of two different sea level rise and storm surge models (US Geological Survey (USGS) and UC Berkeley). Santa Cruz, San Luis Obispo, and Santa Barbara Counties used the USGS model and the associated high 6.6 ft. increment was applied for this metric. Monterey County used the UC Berkeley sea level rise and surge model and the associated high 4.6 ft. increment was applied for this metric. See the sections below for more detail on models applied.

<sup>&</sup>lt;sup>29</sup> Sea level rise, storm surge, and cliff retreat datasets were applied when calculating detour routes. Data applied came from different models, which use different models, which use different models, which use different models are posed to sea level rise but not surge due to differing model extents, then the detour would assume the roadway was exposed to sea level rise AND surge. See the sections below for more detail on the models applied.

Amongst the consequence metrics, more weight is given to the AADT and detour route variables relative to the condition rating related variables (bridge substructure condition rating, channel and channel protection condition rating, culvert condition rating, and scour rating). The logic for this is as follows. First, except for the scour rating, the connection between asset condition and asset failure during a hazard event is not always straightforward. Where there is less confidence in a metric, it is weighted less.<sup>30</sup> Second, other prioritization systems used by Caltrans, namely the asset management system, focus on condition to prioritize assets. Thus, poor condition Framework shown in Figure 1 will also undergo detailed adaptation assessments before upgrades are made. There is little value in duplicating that prioritization system for this report; instead this effort puts more priority on assets based on their exposure to climate change-related hazards. Lastly, the traffic volume and detour length variables are the primary measures by which impacts to users of the system are captured and, given the importance of mobility to the functioning of the state, were weighted higher.<sup>31</sup>

An exception to some of the logic noted above can be found with small culvert exposure to wildfire and sea level rise. For these assets, nearly as much weight is given to the culvert material variable as to the AADT and detour route variables collectively. This is because the very nature of the threat to small culverts from wildfire and sea level rise is highly related to the material of the culvert. For example, if the culvert is plastic or wood, it is much more susceptible to fire damage than, say, a concrete culvert. Since they are less likely to be adversely affected by fire in the first place, one would not want to give high priority to concrete culverts for wildfire just because they convey a high AADT or have long detour routes. That is why more weight is placed on the material metric for this asset-hazard combination.

- 3. **Calculate prioritization scores for each hazard**: After the weights were applied, the next step was to calculate prioritization scores for each individual hazard. This was done by first summing the products of the weights and scaled values for all the metrics relevant to the particular asset-hazard combination being studied (i.e., summing up the products for each column in Table 3. Since there are different numbers of metrics used to calculate the score for each asset-hazard combination, these values were then re-scaled to range from zero to 100 with zero representing the lowest priority asset and 100 the highest priority asset. These interim scores provide useful information for understanding asset vulnerability to each specific hazard.
- 4. Calculate cross-hazard prioritization scores: While the prioritization scores for each hazard provide useful information, they do not provide the full picture on the threats posed to each asset. It was decided that the final scores used as the basis for prioritization need to look holistically across all the hazards analyzed. This cross-hazard perspective provides a better view of the collective threats faced by each asset and a better basis for prioritization. To calculate

<sup>&</sup>lt;sup>31</sup> Within the traffic volume related metrics, note that slightly more weight is given to AADT as opposed to truck AADT given that most traffic on a roadway is non-truck. Thus, it was reasoned that the total volume should factor in somewhat more heavily than the truck volume. One exception to this was for temperature impacts to pavement. This asset-hazard combination is unique in that the traffic volume information is not just an indicator of how many users may be affected by necessary pavement repairs but also an indicator of how much damage may occur to the pavement should temperatures exceed binder grade design thresholds. Given that, for this asset-hazard combination, more weight is given to truck volumes since trucks do disproportionately more damage to temperature-weakened pavement.



<sup>&</sup>lt;sup>30</sup> Note that the scour rating metric is weighted somewhat higher than the other condition related assets because of its more direct connection to asset failure.

the cross-hazard scores, the scores for each hazard analyzed for the asset were summed. These were then re-scaled yet again to a zero to 100 scale since different asset types have different numbers of hazards. As before, the higher the score, the higher the adaptation priority of that asset. These cross-hazard scores represent the final scores calculated for each asset during the technical assessment portion of the methodology.

5. Assign priority levels: The final step in the technical assessment was to group together assets into different priority levels based on their cross-hazard scores. This was done to make the outputs more oriented to future actions, decrease the tendency to read too much into minor differences in the cross-hazard scores, and better facilitate dialogue at the workshop with District 5 staff. Five priority levels were developed (Priority 1, 2, 3, 4, and 5) and assets were assigned to those groups on a district-wide basis. An equal number of assets were assigned to each priority level to help facilitate administration of the asset (or corridor) level adaptation assessments that will follow this study.

### 3.5. Adjustments to Prioritization

A preliminary set of prioritization scores was calculated for District 5 bridges, culverts, and roadways. A workshop was held with the district to explain the scoring methodology and go over the preliminary results. District 5 staff, including those from Planning, Asset Management, Maintenance, Design (e.g., Hydraulics) reviewed the preliminary prioritization results and decided to adjust some of the asset priorities. This district input is necessary as district staff have a more in-depth knowledge about their assets and statewide datasets can have errors. District 5 identified that some of the assets studied and prioritized are being replaced, including San Lorenzo River Bridge and Kings Creek Bridge, making them lower priority once they are replaced. These bridges are flagged in Section 4 below. The district also lowered the priorities of several other bridges because they have already been replaced, including:

- 51 0110 Romero Canyon Creek Bridge (05-SB-192-10.96) replaced with 51 0357 in 2019.
- 51 0052L/R Carpinteria Creek Left and Right Bridges (05-SB-101-2.44-CARP) replaced with 51 0342 in 2020.
- 51 0108 Montecito Creek Bridge (05-SB-192-8.12) replaced with 51 0355 in 2020.
- 51 0112 Toro Canyon Creek Bridge (05-SB-192-12.49) replaced with 51 0359 in 2019.
- 51 0113 Arroyo Parida Bridge (05-SB-192-15.52) replaced with 51 0360 in 2019.
- 49 0001L/R San Marcos Creek Bridges (05-SLO-101-63.57) replaced with 49 0263L/R under 05-0G0404.
- 49 0091 Trout Creek Bridge (05-SLO-058-3.08) replacement currently under construction under EA 05-0L723.

The priority on Salsipuedes Creek Bridge (05-SB-001-15.61) was also lowered because of a recent scour improvement project. Alternatively, the Nojoqui Creek Bridges were both adjusted to Priority 1 as the bridge piles are heavily corroded.





## 4. DISTRICT ADAPTATION PRIORITIES

This chapter presents Caltrans' priorities for undertaking detailed adaptation assessments of assets exposed to climate change in District 5. The material presented in this chapter reflects the results of the technical analysis and the coordination with District 5 staff described in the previous chapter. The information is broken out by asset type with priorities for bridges discussed in the first section, followed by those for large culverts, small culverts, and roadways.

## 4.1. Bridges

A total of 251 bridges were assessed for vulnerability to riverine flooding, sea level rise, storm surge, and cliff retreat associated with climate change. All these bridges should eventually undergo detailed adaptation assessments. However, due to resource limitations, this will not be possible to do all at

once. Instead, the bridges will be analyzed over time according to the priorities presented here.

Figure 3 provides a map of all the bridges assessed in the district. The color of the points corresponds to the priority assigned to each bridge; darker red colors indicate higher priority assets. The map shows that high priority bridges are scattered throughout the district. District 5 has 50 Priority 1 bridges, located along State Routes (SR) 1, 46, 150, 156, 166, 183, 217, 236, and US 101. Several of these high priority bridges are located along the coastline and are subject to sea level rise, storm surge, and cliff retreat. The bridge on US 101 over Pismo Creek in San Luis Obispo County is the highest priority bridge as it has experienced past riverine



PFEIFFER CANYON BRIDGE OPENS AFTER REPAIRS, SR 1 IN MONTEREY COUNTY

flooding impacts, is exposed to near-term sea level rise and storm surge and received a high riverine flood exposure score. The bridges over the Pico Creek, Arroyo de la Cruz, and Arroyo Laguna on SR 1, also in San Luis Obispo County, are also high priority as they have long detours, high traffic volumes, and are subject to near-term sea level rise and storm surge.

Table 4 presents a summary of all the Priority 1 bridges in District 5 sorted by their cross-hazard prioritization scores. A complete listing of all bridges ranked by their prioritization scores appears in Table 8 in the appendix.



| Priority | Bridge<br>Number | County <sup>32</sup> | Route  | Postmile | Feature Crossed                 | Cross-Hazard<br>Prioritization<br>Score | Priority<br>Override |
|----------|------------------|----------------------|--------|----------|---------------------------------|-----------------------------------------|----------------------|
| 1        | 49 0015L         | SLO                  | 101 SB | 16.4     | PISMO CR, N101-PRICE<br>OFF     | 100.00                                  |                      |
| 1        | 49 0239          | SLO                  | 1      | 54.8     | PICO CREEK                      | 92.90                                   |                      |
| 1        | 49 0056          | SLO                  | 1      | R66.87   | ARROYO DE LA CRUZ               | 86.72                                   |                      |
| 1        | 49 0053          | SLO                  | 1      | R59.89   | ARROYO LAGUNA                   | 84.02                                   |                      |
| 1        | 44 0069L         | MON                  | 1 SB   | R101.98  | PAJARO RIVER                    | 81.17                                   |                      |
| 1        | 44 0069R         | MON                  | 1 NB   | R101.98  | PAJARO RIVER                    | 81.03                                   |                      |
| 1        | 36 0065          | SCR                  | 1      | 36.3     | WADDELL CREEK                   | 80.13                                   |                      |
| 1        | 36 0031          | SCR                  | 1      | 31.55    | SCOTT CREEK                     | 79.95                                   |                      |
| 1        | 49 0015R         | SLO                  | 101 NB | 16.4     | PISMO CR, N101-PRICE<br>OFF     | 79.93                                   |                      |
| 1        | 49 0048          | SLO                  | 1      | 56.34    | LITTLE PICO CREEK               | 77.39                                   |                      |
| 1        | 36 0011          | SCR                  | 1      | 10.01    | APTOS CRK & SPRECKELS<br>DR     | 74.40                                   |                      |
| 1        | 49 0181          | SLO                  | 1      | 30       | MORRO CREEK                     | 70.64                                   |                      |
| 1        | 49 0055          | SLO                  | 1      | 71.34    | SAN CARPOFORO CREEK             | 70.38                                   |                      |
| 1        | 44 0219          | MON                  | 1      | T91.99   | TEMBLADERO SLOUGH               | 70.12                                   |                      |
| 1        | 49 0046          | SLO                  | 1      | 52.92    | SAN SIMEON CREEK                | 68.40                                   |                      |
| 1        | 44 0216R         | MON                  | 1 NB   | R89.19   | SALINAS RIVER                   | 67.90                                   |                      |
| 1        | 51 0161          | SB                   | 217    | 0.72     | GOLETA SLOUGH                   | 67.14                                   |                      |
| 1        | 44 0074          | MON                  | 1      | 96.44    | ELKHORN SLOUGH                  | 66.70                                   |                      |
| 1        | 51 0217          | SB                   | 217    | 1.02     | SAN JOSE CREEK                  | 66.61                                   |                      |
| 1        | 49 0186          | SLO                  | 1      | 49.89    | SANTA ROSA CREEK                | 63.15                                   |                      |
| 1        | 44 0216L         | MON                  | 1 SB   | R89.18   | SALINAS RIVER                   | 63.15                                   |                      |
| 1        | 36 0071R         | SCR                  | 1 NB   | 17.41    | SAN LORENZO RIVER <sup>33</sup> | 62.15                                   |                      |
| 1        | 49 0010          | SLO                  | 1      | 15.27    | VILLA CREEK                     | 61.86                                   |                      |
| 1        | 36 0071L         | SCR                  | 1 SB   | 17.41    | SAN LORENZO RIVER <sup>33</sup> | 61.48                                   |                      |
| 1        | 49 0199          | SLO                  | 1      | R36.15   | CAYUCOS CREEK & ROAD            | 61.08                                   |                      |
| 1        | 51 0273L         | SB                   | 101 SB | 13.49    | GARDEN STREET                   | 60.75                                   |                      |
| 1        | 51 0273R         | SB                   | 101 NB | 13.49    | GARDEN STREET                   | 60.55                                   |                      |
| 1        | 36 0013          | SCR                  | 1      | 13.31    | SOQUEL CREEK, WHARF<br>RD       | 58.96                                   |                      |
| 1        | 49 0068L         | SLO                  | 1 SB   | 32.61    | TORO CREEK                      | 57.36                                   |                      |
| 1        | 44 0186R         | MON                  | 156 EB | R.9      | TEMBLADERO SLOUGH               | 54.95                                   |                      |
| 1        | 49 0068R         | SLO                  | 1 NB   | 32.61    | TORO CREEK                      | 53.38                                   |                      |
| 1        | 44 0014          | MON                  | 1      | 71.18    | SAN JOSE CREEK                  | 52.85                                   |                      |
| 1        | 49 0249          | SLO                  | 1      | 50.07    | SANTA ROSA CREEK                | 52.46                                   |                      |
| 1        | 44 0265          | MON                  | 1      | 72.28    | CARMEL RIVER                    | 48.73                                   |                      |

#### TABLE 4: PRIORITY 1 BRIDGES

<sup>32</sup> MON = Monterey, SB = Santa Barbara, SBT = San Benito, SCR = Santa Cruz, SLO = San Luis Obispo

<sup>33</sup> The San Lorenzo Bridge was assessed according to its current design. District 5 notes that the San Lorenzo River bridges are being redesigned and will be replaced in the near future.

**G Caltrans** (15)



| Priority | Bridge<br>Number | County <sup>32</sup> | Route  | Postmile | Feature Crossed      | Cross-Hazard<br>Prioritization<br>Score | Priority<br>Override |
|----------|------------------|----------------------|--------|----------|----------------------|-----------------------------------------|----------------------|
| 1        | 44 0244          | MON                  | 1      | 7.24     | HILLSIDE ABOVE OCEAN | 38.47                                   |                      |
| 1        | 51 0142          | SB                   | 150    | 2.19     | RINCON CREEK         | 38.47                                   |                      |
| 1        | 44 0056          | MON                  | 1      | 28.09    | BIG CREEK            | 36.42                                   |                      |
| 1        | 44 0036          | MON                  | 1      | 60.05    | ROCKY CREEK          | 36.01                                   |                      |
| 1        | 51 0036          | SB                   | 166    | 64.19    | BRANCH CANYON        | 35.80                                   |                      |
| 1        | 49 0036          | SLO                  | 46     | 54.77    | CHOLAME CREEK        | 34.96                                   |                      |
| 1        | 44 0269          | MON                  | 1      | 21.3     | HILLSIDE ABOVE OCEAN | 33.58                                   |                      |
| 1        | 44 0186L         | MON                  | 156 WB | R.9      | TEMBLADERO SLOUGH    | 33.25                                   |                      |
| 1        | 36 0006          | SCR                  | 236    | 4.27     | BOULDER CREEK        | 32.10                                   |                      |
| 1        | 44 0020          | MON                  | 1      | 56.1     | LITTLE SUR RIVER     | 30.93                                   |                      |
| 1        | 49 0002L         | SLO                  | 101 SB | 49.64    | PASO ROBLES CREEK    | 29.62                                   |                      |
| 1        | 36 0090R         | SCR                  | 1 NB   | R1.35    | WATSONVILLE SLOUGH   | 28.97                                   |                      |
| 1        | 36 0090L         | SCR                  | 1 SB   | R1.35    | WATSONVILLE SLOUGH   | 28.64                                   |                      |
| 1        | 44 0024          | MON                  | 183    | R8.11    | TEMBLADERO SLOUGH    | 28.07                                   |                      |
| 1        | 44 0018          | MON                  | 1      | 62.97    | GARRAPATA CREEK      | 27.96                                   |                      |
| 1        | 43 0010          | SBT                  | 101    | 4.93     | SAN JUAN CREEK       | 27.93                                   |                      |
| 1        | 51 0075R         | SB                   | 101 NB | 55       | NOJOQUI CREEK        | 23.95                                   | Yes                  |
| 1        | 51 0075L         | SB                   | 101 SB | 55       | NOJOQUI CREEK        | 16.53                                   | Yes                  |

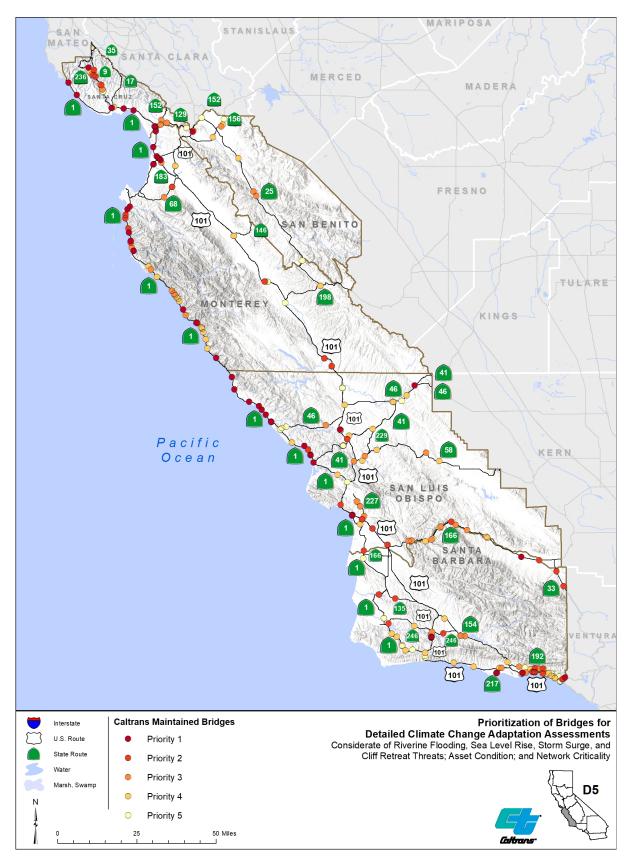



FIGURE 3: PRIORITIZATION OF BRIDGES FOR DETAILED ADAPTATION ASSESSMENTS



## 4.2. Large Culverts

A total of 21 large culverts were assessed for vulnerability to sea level rise, storm surge, coastal cliff retreat, and more severe riverine flooding associated with climate change. Figure 4 provides a map of all the large culverts potentially exposed to hazards in the district and colored by their priority level. There are four large culverts with the highest priority rating in District 5. The highest priority culvert is on SR 41 over the W Branch of Huer Huero Creek in San Luis Obispo County, where it is exposed to changes in Huer Huero Creek flows associated with climate change.

Table 5 presents the final cross-hazard prioritization scores for the Priority 1 W Branch Huer Huero Creek, Salisbury Canyon, Winchester Creek, and Salsipuedes Creek large culverts. A complete listing of all large culverts ranked by their prioritization scores appears in Table 9 in the appendix.

| Priority | Culvert System<br>Number | County <sup>34</sup> | Route | Postmile | Feature Crossed         | Cross-Hazard<br>Prioritization<br>Score |
|----------|--------------------------|----------------------|-------|----------|-------------------------|-----------------------------------------|
| 1        | 49 0222                  | SLO                  | 41    | 27.74    | W BRANCH HUER HUERO CRK | 100.00                                  |
| 1        | 51 0065                  | 1 0065 SB            |       | 64.76    | SALISBURY CANYON        | 63.65                                   |
| 1        | 51 0149                  | SB                   | 101   | 27.16    | WINCHESTER CREEK        | 61.86                                   |
| 1        | 36 0002                  | SCR                  | 152   | R2.06    | SALSIPUEDES CREEK       | 51.11                                   |

#### TABLE 5: PRIORITY 1 LARGE CULVERTS

<sup>&</sup>lt;sup>34</sup> SB = Santa Barbara, SBT = San Benito, SCR = Santa Cruz, SLO = San Luis Obispo



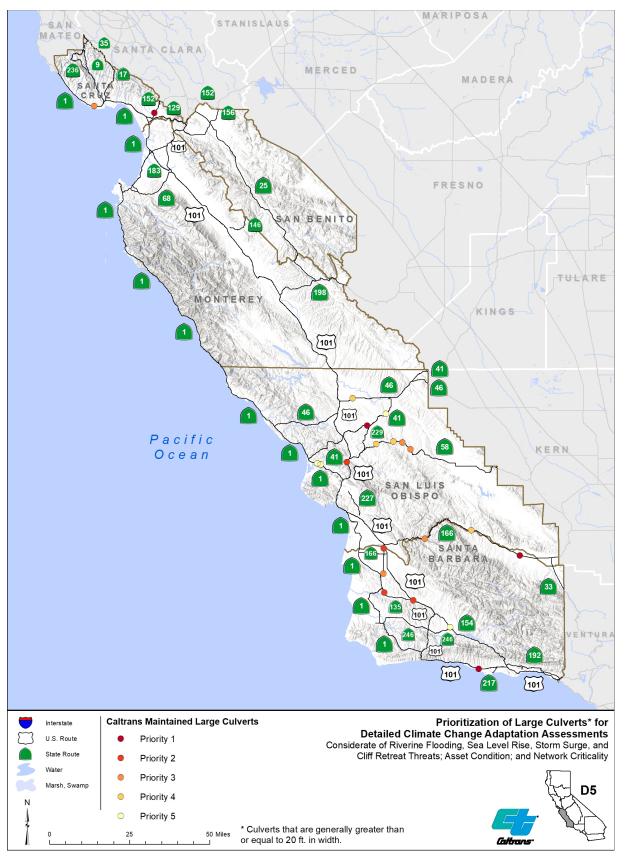



FIGURE 4: PRIORITIZATION OF LARGE CULVERTS FOR DETAILED ADAPTATION ASSESSMENTS

🗲 Caltrans

**\\**\|)



### 4.3. Small Culverts

A total of 766 small culverts were assessed for vulnerability to sea level rise, storm surge, coastal cliff retreat, wildfire, and riverine flooding associated with climate change. Figure 5 provides a map of all the small culverts evaluated for their exposure to these stressors and associated consequence metrics (asset condition, network redundancy) in the district. The small culverts are colored according to their priority level.



REPAIRS OVERTOPPING ROADWAY WITH TRACTORS ON SR 154 IN SANTA BARBARA COUNTY

There are 153 high priority small culverts in District 5. The map indicates many clusters of high priority small culverts throughout the district. Notable groupings of high priority culverts can be found along SR 1, 25, 46, 58, 68, 154, 166, and the US 101. The highest priority small culvert is on SR 1 in San Luis Obispo County, where it is exposed to nearterm sea level rise, storm surge, and cliff retreat. Many of the Priority 1 small culverts are exposed to coastal hazards, which contribute to their high cross-hazard prioritization scores. In addition, significant clusters of small culverts are inland, where they are exposed to wildfire and flooding, in addition to having limited detour routes.

Table 6 presents a summary of all the Priority 1 small culverts in District 5 sorted by their cross-hazard prioritization scores. A complete listing of all small culverts ranked by their prioritization scores appears in Table 10 in the appendix.

| Priority | Culvert System Number | County <sup>35</sup> |     | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-----|----------|--------------------------------------|
| 1        | 490010006248          | SLO                  | 1   | 62.48    | 100.00                               |
| 1        | 490010006541          | SLO                  | 1   | 65.41    | 93.82                                |
| 1        | 490010106006          | SLO                  | 1   | 60.06    | 73.71                                |
| 1        | 360010003709          | SCR                  | 1   | 37.09    | 65.53                                |
| 1        | 490010005762          | SLO                  | 1   | 57.62    | 62.93                                |
| 1        | 440010000794          | MON                  | 1   | 7.94     | 61.77                                |
| 1        | 360010003745          | SCR                  | 1   | 37.45    | 61.68                                |
| 1        | 440010002740          | MON                  | 1   | 27.4     | 56.01                                |
| 1        | 511010003524          | SB                   | 101 | 35.24    | 51.75                                |
| 1        | 440010006414          | MON                  | 1   | 64.14    | 51.49                                |
| 1        | 440010004863          | MON                  | 1   | 48.63    | 50.77                                |
| 1        | 440010003018          | MON                  | 1   | 30.18    | 50.30                                |

#### TABLE 6: PRIORITY 1 SMALL CULVERTS

<sup>35</sup> MON = Monterey, SB = Santa Barbara, SBT = San Benito, SCR = Santa Cruz, SLO = San Luis Obispo



| 1<br>1<br>1<br>1 | 440010006713<br>511010003568 | MON |     |       |       |
|------------------|------------------------------|-----|-----|-------|-------|
| 1                | 511010003568                 |     | 1   | 67.13 | 49.75 |
|                  |                              | SB  | 101 | 35.68 | 49.22 |
| 1                | 490010006203                 | SLO | 1   | 62.03 | 49.06 |
|                  | 490010006493                 | SLO | 1   | 64.93 | 48.60 |
| 1                | 440010000890                 | MON | 1   | 8.9   | 48.37 |
| 1                | 440010006672                 | MON | 1   | 66.72 | 47.63 |
| 1                | 440010000846                 | MON | 1   | 8.46  | 47.04 |
| 1                | 440010003584                 | MON | 1   | 35.84 | 45.94 |
| 1                | 490010005801                 | SLO | 1   | 58.01 | 45.84 |
| 1                | 440010009555                 | MON | 1   | 95.55 | 45.65 |
| 1                | 440010006485                 | MON | 1   | 64.85 | 45.38 |
| 1                | 440010006590                 | MON | 1   | 65.9  | 44.87 |
| 1                | 490010006476                 | SLO | 1   | 64.76 | 44.42 |
| 1                | 511540001917                 | SB  | 154 | 19.17 | 42.58 |
| 1                | 440010006619                 | MON | 1   | 66.19 | 41.69 |
| 1                | 440010006018                 | MON | 1   | 60.18 | 41.69 |
| 1                | 440010002512                 | MON | 1   | 25.12 | 41.54 |
| 1                | 440010000705                 | MON | 1   | 7.05  | 41.52 |
| 1                | 511546001991                 | SB  | 154 | 19.91 | 41.08 |
| 1                | 440010001710                 | MON | 1   | 17.1  | 40.83 |
| 1                | 440010004181                 | MON | 1   | 41.81 | 40.15 |
| 1                | 440010004088                 | MON | 1   | 40.88 | 39.76 |
| 1                | 440010001269                 | MON | 1   | 12.69 | 39.59 |
| 1                | 511540001894                 | SB  | 154 | 18.94 | 38.95 |
| 1                | 511540001777                 | SB  | 154 | 17.77 | 38.94 |
| 1                | 511540001736                 | SB  | 154 | 17.36 | 38.75 |
| 1                | 440010001777                 | MON | 1   | 17.77 | 38.62 |
| 1                | 440010004355                 | MON | 1   | 43.55 | 38.54 |
| 1                | 511540001685                 | SB  | 154 | 16.85 | 38.07 |
| 1                | 440010005055                 | MON | 1   | 50.55 | 37.95 |
| 1                | 440010007048                 | MON | 1   | 70.48 | 37.80 |
| 1                | 440010006763                 | MON | 1   | 67.63 | 37.61 |
| 1                | 440010006629                 | MON | 1   | 66.29 | 37.36 |
| 1                | 440010001986                 | MON | 1   | 19.86 | 35.73 |
| 1                | 512176000099                 | SB  | 217 | 0.99  | 35.28 |
| 1                | 440010005006                 | MON | 1   | 50.06 | 35.03 |
| 1                | 511546002570                 | SB  | 154 | 25.7  | 33.82 |
| 1                | 511016003393                 | SB  | 101 | 33.93 | 33.41 |
| 1                | 440010002330                 | MON | 1   | 23.3  | 32.29 |
| 1                | 440010006953                 | MON | 1   | 69.53 | 32.25 |
| 1                | 440010002694                 | MON | 1   | 26.94 | 32.04 |
| 1                | 491010103422                 | SLO | 101 | 34.22 | 31.96 |





| Priority | Culvert System Number | County <sup>35</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 1        | 511010004072          | SB                   | 101   | 40.72    | 31.55                                |
| 1        | 511544002676          | SB                   | 154   | 26.76    | 31.38                                |
| 1        | 491014003600          | SLO                  | 101   | 36       | 31.00                                |
| 1        | 511016001946          | SB                   | 101   | 19.46    | 30.74                                |
| 1        | 440010005127          | MON                  | 1     | 51.27    | 30.31                                |
| 1        | 490010006742          | SLO                  | 1     | 67.42    | 30.05                                |
| 1        | 440010002266          | MON                  | 1     | 22.66    | 29.89                                |
| 1        | 440010006333          | MON                  | 1     | 63.33    | 29.19                                |
| 1        | 440010006152          | MON                  | 1     | 61.52    | 29.14                                |
| 1        | 430250002140          | SBT                  | 25    | 21.4     | 29.13                                |
| 1        | 491010103407          | SLO                  | 101   | 34.07    | 29.07                                |
| 1        | 511664103561          | SB                   | 166   | 35.61    | 28.84                                |
| 1        | 490464004124          | SLO                  | 46    | 41.24    | 28.66                                |
| 1        | 511012004742          | SB                   | 101   | 47.42    | 28.44                                |
| 1        | 440010003680          | MON                  | 1     | 36.8     | 28.34                                |
| 1        | 511014001232          | SB                   | 101   | 12.32    | 28.27                                |
| 1        | 440010002218          | MON                  | 1     | 22.18    | 28.09                                |
| 1        | 440014003974          | MON                  | 1     | 39.74    | 28.09                                |
| 1        | 430254002713          | SBT                  | 25    | 27.13    | 28.07                                |
| 1        | 440010005673          | MON                  | 1     | 56.73    | 28.05                                |
| 1        | 491014003560          | SLO                  | 101   | 35.6     | 27.99                                |
| 1        | 491664001862          | SLO                  | 166   | 18.62    | 27.93                                |
| 1        | 511540001557          | SB                   | 154   | 15.57    | 27.90                                |
| 1        | 491664001904          | SLO                  | 166   | 19.04    | 27.84                                |
| 1        | 491664001548          | SLO                  | 166   | 15.48    | 27.61                                |
| 1        | 511540002200          | SB                   | 154   | 22       | 27.56                                |
| 1        | 491010103356          | SLO                  | 101   | 33.56    | 27.54                                |
| 1        | 491664001613          | SLO                  | 166   | 16.13    | 27.50                                |
| 1        | 490010006308          | SLO                  | 1     | 63.08    | 27.44                                |
| 1        | 491664004049          | SLO                  | 166   | 40.49    | 27.38                                |
| 1        | 490464100505          | SLO                  | 46    | 5.05     | 27.37                                |
| 1        | 491664004187          | SLO                  | 166   | 41.87    | 27.35                                |
| 1        | 511660102599          | SB                   | 166   | 25.99    | 27.35                                |
| 1        | 430250001405          | SBT                  | 25    | 14.05    | 27.34                                |
| 1        | 511016006305          | SB                   | 101   | 63.05    | 27.29                                |
| 1        | 440010006981          | MON                  | 1     | 69.81    | 27.27                                |
| 1        | 430254002656          | SBT                  | 25    | 26.56    | 27.21                                |
| 1        | 440010000636          | MON                  | 1     | 6.36     | 27.19                                |
| 1        | 440680000682          | MON                  | 68    | 6.82     | 26.92                                |
| 1        | 491660002309          | SLO                  | 166   | 23.09    | 26.82                                |
| 1        | 491010103391          | SLO                  | 101   | 33.91    | 26.79                                |
| 1        | 491010103356          | SLO                  | 101   | 33.56    | 26.76                                |



| Priority | Culvert System Number | County <sup>35</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 1        | 511664103540          | SB                   | 166   | 35.4     | 26.76                                |
| 1        | 430254002263          | SBT                  | 25    | 22.63    | 26.75                                |
| 1        | 490414003446          | SLO                  | 41    | 34.46    | 26.73                                |
| 1        | 511540002128          | SB                   | 154   | 21.28    | 26.72                                |
| 1        | 511010004417          | SB                   | 101   | 44.17    | 26.63                                |
| 1        | 511010003187          | SB                   | 101   | 31.87    | 26.58                                |
| 1        | 490580001229          | SLO                  | 58    | 12.29    | 26.55                                |
| 1        | 490580001266          | SLO                  | 58    | 12.66    | 26.52                                |
| 1        | 491014003236          | SLO                  | 101   | 32.36    | 26.51                                |
| 1        | 440010107811          | MON                  | 1     | 78.11    | 26.48                                |
| 1        | 491664001962          | SLO                  | 166   | 19.62    | 26.36                                |
| 1        | 491664002032          | SLO                  | 166   | 20.32    | 26.30                                |
| 1        | 430254002605          | SBT                  | 25    | 26.05    | 26.30                                |
| 1        | 440010107811          | MON                  | 1     | 78.11    | 26.29                                |
| 1        | 490580002341          | SLO                  | 58    | 23.41    | 26.23                                |
| 1        | 491014003267          | SLO                  | 101   | 32.67    | 26.15                                |
| 1        | 440011207501          | MON                  | 1     | 75.01    | 26.10                                |
| 1        | 491664001503          | SLO                  | 166   | 15.03    | 26.04                                |
| 1        | 491664001595          | SLO                  | 166   | 15.95    | 26.03                                |
| 1        | 491010003745          | SLO                  | 101   | 37.45    | 25.98                                |
| 1        | 511660102730          | SB                   | 166   | 27.3     | 25.82                                |
| 1        | 491014003267          | SLO                  | 101   | 32.67    | 25.80                                |
| 1        | 511010002870          | SB                   | 101   | 28.7     | 25.76                                |
| 1        | 490460003984          | SLO                  | 46    | 39.84    | 25.68                                |
| 1        | 491018005413          | SLO                  | 101   | 54.13    | 25.63                                |
| 1        | 491010004143          | SLO                  | 101   | 41.43    | 25.61                                |
| 1        | 491664004293          | SLO                  | 166   | 42.93    | 25.61                                |
| 1        | 511016003669          | SB                   | 101   | 36.69    | 25.61                                |
| 1        | 490014001973          | SLO                  | 1     | 19.73    | 25.60                                |
| 1        | 511016002986          | SB                   | 101   | 29.86    | 25.59                                |
| 1        | 491014003990          | SLO                  | 101   | 39.9     | 25.56                                |
| 1        | 491014004020          | SLO                  | 101   | 40.2     | 25.56                                |
| 1        | 490584000274          | SLO                  | 58    | 2.74     | 25.46                                |
| 1        | 492290000386          | SLO                  | 229   | 3.86     | 25.33                                |
| 1        | 490584103498          | SLO                  | 58    | 34.98    | 25.31                                |
| 1        | 512464003280          | SB                   | 246   | 32.8     | 25.30                                |
| 1        | 491010003745          | SLO                  | 101   | 37.45    | 25.22                                |
| 1        | 490414003388          | SLO                  | 41    | 33.88    | 25.20                                |
| 1        | 430250001578          | SBT                  | 25    | 15.78    | 25.19                                |
| 1        | 490414003349          | SLO                  | 41    | 33.49    | 25.18                                |
| 1        | 490464100374          | SLO                  | 46    | 3.74     | 25.13                                |
| 1        | 490464100640          | SLO                  | 46    | 6.4      | 25.09                                |





| Priority | Culvert System Number | County <sup>35</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 1        | 430254002746          | SBT                  | 25    | 27.46    | 25.04                                |
| 1        | 490464100510          | SLO                  | 46    | 5.1      | 24.95                                |
| 1        | 490580003662          | SLO                  | 58    | 36.62    | 24.94                                |
| 1        | 440014003786          | MON                  | 1     | 37.86    | 24.94                                |
| 1        | 440680001056          | MON                  | 68    | 10.56    | 24.93                                |
| 1        | 490584003689          | SLO                  | 58    | 36.89    | 24.92                                |
| 1        | 490464100315          | SLO                  | 46    | 3.15     | 24.92                                |
| 1        | 430254000730          | SBT                  | 25    | 7.3      | 24.83                                |
| 1        | 430250002799          | SBT                  | 25    | 27.99    | 24.81                                |
| 1        | 490010001473          | SLO                  | 1     | 14.73    | 24.77                                |
| 1        | 440016107738          | MON                  | 1     | 77.38    | 24.76                                |
| 1        | 440010004405          | MON                  | 1     | 44.05    | 24.70                                |
| 1        | 511660102887          | SB                   | 166   | 28.87    | 24.67                                |
| 1        | 510014102681          | SB                   | 1     | 26.81    | 24.65                                |
| 1        | 441010010095          | MON                  | 101   | 100.95   | 24.62                                |



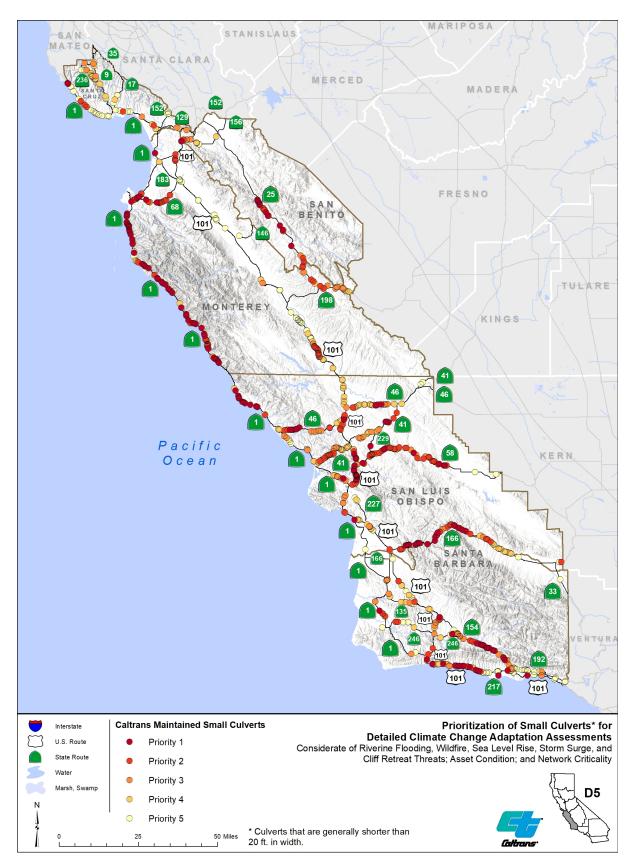



FIGURE 5: PRIORITIZATION OF SMALL CULVERTS FOR DETAILED ADAPTATION ASSESSMENTS



#### 4.4. Roadways

A total of 917 roadway segments were assessed for vulnerability to sea level rise, storm surge, coastal cliff retreat, and temperature changes that affect pavement performance. To make the analysis as detailed as possible, the original segments were short with beginning and end points at intersections with other streets (including smaller local streets) in the roadway network. Once the processing of vulnerability scores was complete, smaller segments sharing the same priority score as their neighbors on the same route were consolidated into longer segments to simplify the presentation of the results. This process



**REPAIRS AND CLEAN UP AFTER MUDSLIDE ON SR 1 IN MONTEREY COUNTY** 

brings the total prioritized roadway segments to 219.

Figure 6 provides a map of the entire prioritized roadway segments assessed in District 5. Each segment of roadway is colored by priority level. There are 49 highest priority roadways that are the SR 1, SR 46, SR 33, SR 58, SR 156, SR 166, SR 198, and US 101. These roadways are exposed to sea level rise, storm surge, and cliff retreat along the coast as well as temperature impacts to pavement binder grade along inland routes. The highest priority routes are SR 156, SR 1, and SR 166; these routes are also highly trafficked with long detour routes, which would present greater consequences to users if they were closed.

Table 7 presents a summary of all the Priority 1 roadways in District 5 sorted by their cross-hazard prioritization scores. A complete listing of all roadways ranked by their prioritization scores appears in Table 11 in the appendix.



| Priority | County <sup>36</sup> | Route | From Postmile / To Postmile | Carriageway <sup>37</sup> | Average Cross-Hazard<br>Prioritization Score <sup>38</sup> |
|----------|----------------------|-------|-----------------------------|---------------------------|------------------------------------------------------------|
| 1        | MON                  | 156   | 156 R0.339 / 156 R1.109     | Р                         | 59.84                                                      |
| 1        | SLO                  | 1     | 1 14.752 / 1 15.119         | S                         | 59.62                                                      |
| 1        | MON                  | 156   | 156 R0.342 / 156 R0.944     | S                         | 55.71                                                      |
| 1        | MON                  | 1     | 1 14.715 / 1 20.936         | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 2.82 / 1 13.699           | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 28.065 / 1 28.833         | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 51.175 / 1 52.409         | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 53.839 / 1 58.782         | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 63.071 / 1 63.071         | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 69.665 / 1 71.456         | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 171.74/173.143              | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 94.134 / 1 96.099         | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 96.36 / 1 97.562          | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 97.6 / 1 98.349           | Р                         | 53.18                                                      |
| 1        | SCR                  | 1     | 1 36.411 / 1 37.45          | Р                         | 53.18                                                      |
| 1        | SLO                  | 1     | 1 14.752 / 1 15.115         | Р                         | 53.18                                                      |
| 1        | SLO                  | 1     | 1 15.202 / 1 15.316         | Р                         | 53.18                                                      |
| 1        | SLO                  | 1     | 1 49.01 / 1 50.121          | Р                         | 53.18                                                      |
| 1        | SLO                  | 1     | 1 55.074 / 1 56.252         | Р                         | 53.18                                                      |
| 1        | SLO                  | 1     | 1 58.248 / 1 63.772         | Р                         | 53.18                                                      |
| 1        | SLO                  | 1     | 1 R65.218 / 1 R67.291       | Р                         | 53.18                                                      |
| 1        | SB                   | 166   | 166 64.421 / 166 73.008     | Р                         | 50.65                                                      |
| 1        | SB                   | 166   | 166 64.3 / 166 64.796       | S                         | 50.54                                                      |
| 1        | SB                   | 166   | 166 65.146 / 166 65.273     | S                         | 50.54                                                      |
| 1        | SB                   | 166   | 166 69.073 / 166 69.183     | S                         | 50.54                                                      |
| 1        | MON                  | 198   | 198 18.379 / 198 25.786     | Р                         | 50.47                                                      |
| 1        | VEN                  | 33    | 33 57.504 / 33 1.943        | Р                         | 50.47                                                      |
| 1        | SLO                  | 58    | 58 52.808 / KER 58 0.001    | Р                         | 50.44                                                      |
| 1        | SLO                  | 58    | 58 D1.351 / KER 58 2.7      | Р                         | 50.44                                                      |
| 1        | MON                  | 101   | 101 51.233 / 101 53.104     | S                         | 36.29                                                      |
| 1        | MON                  | 101   | 101 53.362 / 101 54.653     | S                         | 36.29                                                      |
| 1        | MON                  | 101   | 101 57.085 / 101 60.397     | S                         | 36.29                                                      |
| 1        | MON                  | 101   | 101 R7.955 / 101 R15.467    | S                         | 36.29                                                      |
| 1        | SB                   | 101   | 101 11.761 / 101 12.421     | S                         | 36.29                                                      |

#### TABLE 7: PRIORITY 1 ROADWAYS

<sup>&</sup>lt;sup>38</sup> The average of the cross-hazard prioritization scores amongst all the abutting small segments on the same route sharing a common priority level that were aggregated to form the longer segments listed in this table.





<sup>&</sup>lt;sup>36</sup> MON = Monterey, SB = Santa Barbara, SBT = San Benito, SCR = Santa Cruz, SLO = San Luis Obispo

<sup>&</sup>lt;sup>37</sup> Caltrans' alignment codes designate the carriageway on divided roadways: "P" always represents northbound or eastbound carriageways whereas "S" always represents southbound or westbound carriageways. Undivided roadways are always indicated with a "P".

| Priority | County <sup>36</sup> | Route | From Postmile / To Postmile | Carriageway <sup>37</sup> | Average Cross-Hazard<br>Prioritization Score <sup>38</sup> |
|----------|----------------------|-------|-----------------------------|---------------------------|------------------------------------------------------------|
| 1        | SB                   | 101   | 101 3.643 / 101 R5.3        | S                         | 36.29                                                      |
| 1        | SLO                  | 101   | 101 51.441 / 101 59.909     | S                         | 36.29                                                      |
| 1        | SLO                  | 101   | 101 63.74 / 101 67.282      | S                         | 36.29                                                      |
| 1        | MON                  | 101   | 101 51.225 / 101 53.105     | Р                         | 36.27                                                      |
| 1        | MON                  | 101   | 101 53.359 / 101 54.787     | Р                         | 36.27                                                      |
| 1        | MON                  | 101   | 101 57.079 / 101 60.399     | Р                         | 36.27                                                      |
| 1        | MON                  | 101   | 101 R8.168 / 101 R15.464    | Р                         | 36.27                                                      |
| 1        | SB                   | 101   | 101 12.014 / 101 12.136     | Р                         | 36.27                                                      |
| 1        | SB                   | 101   | 101 3.646 / 101 R5.297      | Р                         | 36.27                                                      |
| 1        | SLO                  | 101   | 101 51.456 / 101 59.909     | Р                         | 36.27                                                      |
| 1        | SLO                  | 101   | 101 63.738 / 101 67.241     | Р                         | 36.27                                                      |
| 1        | SLO                  | 46    | 46 29.761 / 46 40.883       | S                         | 34.74                                                      |
| 1        | SLO                  | 46    | 46 51.427 / 46 52.834       | S                         | 34.74                                                      |
| 1        | SLO                  | 46    | 46 29.761 / 46 40.623       | Р                         | 34.57                                                      |
| 1        | SLO                  | 46    | 46 50.852 / 46 55.106       | Р                         | 34.57                                                      |

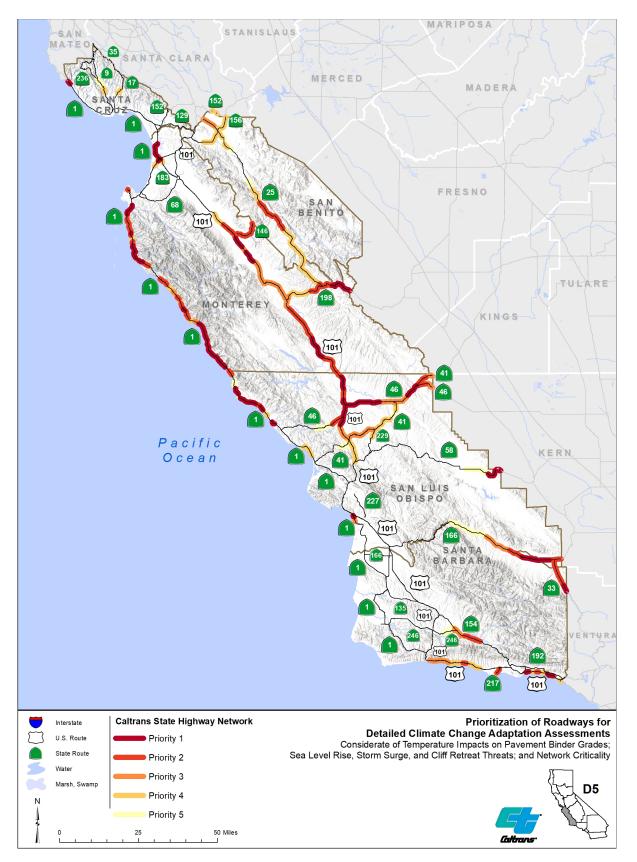



FIGURE 6: PRIORITIZATION OF ROADWAYS FOR DETAILED ADAPTATION ASSESSMENTS



## 5. NEXT STEPS

This report has identified the bridge, large culvert, small culvert, and roadway assets exposed to a variety of climate hazards in District 5 and assigned them priority levels for detailed assessments based on their vulnerability rating. Caltrans' next step will be to begin undertaking these detailed adaptation assessments for the identified assets starting with the highest priority (Priority 1) assets first and then proceeding to lower priority assets thereafter. These detailed adaptation assessments will take a closer look at the exposure to each asset using more localized climate projections and more detailed engineering analyses. If impacts are verified, Caltrans will develop and evaluate adaptation options for the asset to ensure that it is able to withstand future climate changes. Importantly, the detailed adaptation assessments will include coordination with key stakeholder groups whose actions affect or are affected by the asset and its adaptation. Local and regional agencies in District 5 are developing adaptation plans and Climate Action Plans, which can help further inform the more detailed adaptation analysis of the high priority assets. Some studies, including the Central Coast Highway 1 Climate Resiliency Study, conducted detailed analysis of the potential impacts of sea level rise. This is one of 11 Adaptation Planning Grant funded studies in District 5.



#### BIXBY CREEK BRIDGE, SR 1 IN MONTEREY COUNTY

Another next step will be to integrate the prioritization measures into the asset management system used in the district. This will ensure that climate change is a consideration in the identification of future projects alongside traditional asset condition metrics. As noted previously, assets identified for capital investments, especially those flagged as being a high priority for climate change, should then undergo detailed climate change assessments prior to project programming. For assets ending their useful life, an asset-level assessment could be incorporated into the planning and design of a replacement asset. Additionally, long-term maintenance plays an important part in managing and protecting these assets.



**\\S**[)

When conducting facility level assessments, the district should consider any potential changes to longterm scheduled maintenance needed to preserve chosen adaptation strategies. Operations and maintenance strategies can also be evaluated instead, or in addition to, design changes. When evaluating the cost effectiveness of different adaptation strategies, operations and maintenance responses may be more cost-effective for assets with shorter useful lives, or assets nearing the end of their useful life.



#### VIEW OF MONTECITO DEBRIS FLOW FROM THE OLIVE MILL OVERCROSSING US 101 IN SANTA BARBARA COUNTY

In addition, district staff can use the results of this study as a tool to facilitate discussions with various important stakeholders in the district about addressing climate change and its impacts. This may include state and federal environmental agencies regional transportation authorities, universities or academic partners, and others. Multi-agency stakeholder coordination and involvement of the private sector is also essential because the impacts from climate change, and ability to effectively address those impacts, cross both jurisdictional and ownership boundaries. For example, Caltrans could increase the size of a culvert to accommodate higher stormwater and debris flows while the more cost-effective solution may be better land management in the adjacent drainage area. The approach to climate change cannot just be Caltrans-centric. A common framework across all state agencies and key stakeholders must be established for truly effective long-term solutions to be achieved.



Caltrans District 5 has already begun funding and working with cities and counties on updating planning efforts in coastal areas and community plans to reflect increasing climate impacts and extreme weather conditions. Plans such as the Monterey County Local Coastal Program, Moss Landing Community Plan<sup>39</sup>, and the corresponding Coastal Implementation Plan are currently being updated to improve and enhance the coastal community while conserving natural and cultural resources and providing public access and public recreation opportunities.<sup>40</sup> This plan is being prepared with the input and assistance from the community, stakeholders, planning, and environmental consultants and associated agencies. Santa Barbara County is similarly planning for future changes to Goleta Beach County Park in relation to sea level rise, coastal erosion, and the potential need to redesign, relocate, or remove park facilities due to sea level rise and storm-related projected increasing damage to the park overtime. The Goleta Beach Adaptive Plan Update and SR 217 Plan outlines the protection of essential local- and regional-serving utilities, State Route 217, regional access to UCSB, California Coastal Trail/Obern Regional Bike Path, and the Santa Barbara Airport.<sup>41</sup> In 2018 the City of Morro Bay prepared the Sea Level Rise Adaptation Strategy Report, which investigated the potential impacts of sea level rise on a 1,700-foot stretch of SR 1 in the northern portion of the city.<sup>42</sup>

Caltrans District 5 looks forward to continuing on-the-ground climate adaptation planning efforts and undertaking its own asset-level adaptation assessments of vulnerable assets or corridors on the State Highway System. These detailed assessments at priority locations will lead to actionable adaptation strategies that improve the State Highway System.

<sup>&</sup>lt;sup>42</sup> City of Morro Bay, Sea Level Rise Adaptation Strategy Report, <u>http://www.morro-bay.ca.us/DocumentCenter/View/11753/Sea-Level-Rise-Adaptation-Report-January-2018</u>



<sup>&</sup>lt;sup>39</sup> Moss Landing Community Plan, Draft November 2020, https://www.co.monterey.ca.us/home/showpublisheddocument?id=97823

<sup>&</sup>lt;sup>40</sup> County of Monterey, Resource Management Agency, Planning "Ordinances and Plans Under Development,"

https://www.co.monterey.ca.us/government/departments-i-z/resource-management-agency-rma-/planning/ordinances-plans-underdevelopment

<sup>&</sup>lt;sup>41</sup> Santa Barbara County Parks, https://www.countyofsb.org/parks/home.c

# 6. APPENDIX

TABLE 8: PRIORITIZATION OF BRIDGES FOR DETAILED CLIMATE CHANGE ADAPTATION ASSESSMENTS

| Priority | Bridge<br>Number | County <sup>43</sup> | Route  | Postmile | Feature Crossed                 | Cross-Hazard<br>Prioritization<br>Score | Priority<br>Override |
|----------|------------------|----------------------|--------|----------|---------------------------------|-----------------------------------------|----------------------|
| 1        | 49 0015L         | SLO                  | 101 SB | 16.4     | PISMO CR, N101-PRICE<br>OFF     | 100.00                                  |                      |
| 1        | 49 0239          | SLO                  | 1      | 54.8     | PICO CREEK                      | 92.90                                   |                      |
| 1        | 49 0056          | SLO                  | 1      | R66.87   | ARROYO DE LA CRUZ               | 86.72                                   |                      |
| 1        | 49 0053          | SLO                  | 1      | R59.89   | ARROYO LAGUNA                   | 84.02                                   |                      |
| 1        | 44 0069L         | MON                  | 1 SB   | R101.98  | PAJARO RIVER                    | 81.17                                   |                      |
| 1        | 44 0069R         | MON                  | 1 NB   | R101.98  | PAJARO RIVER                    | 81.03                                   |                      |
| 1        | 36 0065          | SCR                  | 1      | 36.3     | WADDELL CREEK                   | 80.13                                   |                      |
| 1        | 36 0031          | SCR                  | 1      | 31.55    | SCOTT CREEK                     | 79.95                                   |                      |
| 1        | 49 0015R         | SLO                  | 101 NB | 16.4     | PISMO CR, N101-PRICE<br>OFF     | 79.93                                   |                      |
| 1        | 49 0048          | SLO                  | 1      | 56.34    | LITTLE PICO CREEK               | 77.39                                   |                      |
| 1        | 36 0011          | SCR                  | 1      | 10.01    | APTOS CRK & SPRECKELS<br>DR     | 74.40                                   |                      |
| 1        | 49 0181          | SLO                  | 1      | 30       | MORRO CREEK                     | 70.64                                   |                      |
| 1        | 49 0055          | SLO                  | 1      | 71.34    | SAN CARPOFORO CREEK             | 70.38                                   |                      |
| 1        | 44 0219          | MON                  | 1      | T91.99   | TEMBLADERO SLOUGH               | 70.12                                   |                      |
| 1        | 49 0046          | SLO                  | 1      | 52.92    | SAN SIMEON CREEK                | 68.40                                   |                      |
| 1        | 44 0216R         | MON                  | 1 NB   | R89.19   | SALINAS RIVER                   | 67.90                                   |                      |
| 1        | 51 0161          | SB                   | 217    | 0.72     | GOLETA SLOUGH                   | 67.14                                   |                      |
| 1        | 44 0074          | MON                  | 1      | 96.44    | ELKHORN SLOUGH                  | 66.70                                   |                      |
| 1        | 51 0217          | SB                   | 217    | 1.02     | SAN JOSE CREEK                  | 66.61                                   |                      |
| 1        | 49 0186          | SLO                  | 1      | 49.89    | SANTA ROSA CREEK                | 63.15                                   |                      |
| 1        | 44 0216L         | MON                  | 1 SB   | R89.18   | SALINAS RIVER                   | 63.15                                   |                      |
| 1        | 36 0071R         | SCR                  | 1 NB   | 17.41    | SAN LORENZO RIVER <sup>44</sup> | 62.15                                   |                      |
| 1        | 49 0010          | SLO                  | 1      | 15.27    | VILLA CREEK                     | 61.86                                   |                      |
| 1        | 36 0071L         | SCR                  | 1 SB   | 17.41    | SAN LORENZO RIVER <sup>44</sup> | 61.48                                   |                      |
| 1        | 49 0199          | SLO                  | 1      | R36.15   | CAYUCOS CREEK & ROAD            | 61.08                                   |                      |
| 1        | 51 0273L         | SB                   | 101 SB | 13.49    | GARDEN STREET                   | 60.75                                   |                      |
| 1        | 51 0273R         | SB                   | 101 NB | 13.49    | GARDEN STREET                   | 60.55                                   |                      |
| 1        | 36 0013          | SCR                  | 1      | 13.31    | SOQUEL CREEK, WHARF<br>RD       | 58.96                                   |                      |
| 1        | 49 0068L         | SLO                  | 1 SB   | 32.61    | TORO CREEK                      | 57.36                                   |                      |
| 1        | 44 0186R         | MON                  | 156 EB | R.9      | TEMBLADERO SLOUGH               | 54.95                                   |                      |
| 1        | 49 0068R         | SLO                  | 1 NB   | 32.61    | TORO CREEK                      | 53.38                                   |                      |
| 1        | 44 0014          | MON                  | 1      | 71.18    | SAN JOSE CREEK                  | 52.85                                   |                      |

<sup>43</sup> MON = Monterey, SB = Santa Barbara, SBT = San Benito, SCR = Santa Cruz, SLO = San Luis Obispo

<sup>44</sup> The San Lorenzo Bridge was assessed according to its current design. District 5 notes that the San Lorenzo River bridges are being redesigned and will be replaced in the near future.





| Priority | Bridge<br>Number | County <sup>43</sup> | Route     | Postmile | Feature Crossed           | Cross-Hazard<br>Prioritization<br>Score | Priority<br>Override |
|----------|------------------|----------------------|-----------|----------|---------------------------|-----------------------------------------|----------------------|
| 1        | 49 0249          | SLO                  | 1         | 50.07    | SANTA ROSA CREEK          | 52.46                                   |                      |
| 1        | 44 0265          | MON                  | 1         | 72.28    | CARMEL RIVER              | 48.73                                   |                      |
| 1        | 44 0244          | MON                  | 1         | 7.24     | HILLSIDE ABOVE OCEAN      | 38.47                                   |                      |
| 1        | 51 0142          | SB                   | 150       | 2.19     | RINCON CREEK              | 38.47                                   |                      |
| 1        | 44 0056          | MON                  | 1         | 28.09    | BIG CREEK                 | 36.42                                   |                      |
| 1        | 44 0036          | MON                  | 1         | 60.05    | ROCKY CREEK               | 36.01                                   |                      |
| 1        | 51 0036          | SB                   | 166       | 64.19    | BRANCH CANYON             | 35.80                                   |                      |
| 1        | 49 0036          | SLO                  | 46        | 54.77    | CHOLAME CREEK             | 34.96                                   |                      |
| 1        | 44 0269          | MON                  | 1         | 21.3     | HILLSIDE ABOVE OCEAN      | 33.58                                   |                      |
| 1        | 44 0186L         | MON                  | 156<br>WB | R.9      | TEMBLADERO SLOUGH         | 33.25                                   |                      |
| 1        | 36 0006          | SCR                  | 236       | 4.27     | BOULDER CREEK             | 32.10                                   |                      |
| 1        | 44 0020          | MON                  | 1         | 56.1     | LITTLE SUR RIVER          | 30.93                                   |                      |
| 1        | 49 0002L         | SLO                  | 101 SB    | 49.64    | PASO ROBLES CREEK         | 29.62                                   |                      |
| 1        | 36 0090R         | SCR                  | 1 NB      | R1.35    | WATSONVILLE SLOUGH        | 28.97                                   |                      |
| 1        | 36 0090L         | SCR                  | 1 SB      | R1.35    | WATSONVILLE SLOUGH        | 28.64                                   |                      |
| 1        | 44 0024          | MON                  | 183       | R8.11    | TEMBLADERO SLOUGH         | 28.07                                   |                      |
| 1        | 44 0018          | MON                  | 1         | 62.97    | GARRAPATA CREEK           | 27.96                                   |                      |
| 1        | 43 0010          | SBT                  | 101       | 4.93     | SAN JUAN CREEK            | 27.93                                   |                      |
| 1        | 51 0075R         | SB                   | 101 NB    | 55       | NOJOQUI CREEK             | 23.95                                   | Yes                  |
| 1        | 51 0075L         | SB                   | 101 SB    | 55       | NOJOQUI CREEK             | 16.53                                   | Yes                  |
| 2        | 51 0144          | SB                   | 33        | 1.84     | QUATAL CANYON             | 25.89                                   |                      |
| 2        | 51 0317          | SB                   | 150       | R1.55    | RINCON CREEK              | 25.67                                   |                      |
| 2        | 49 0175R         | SLO                  | 101 NB    | 13.02    | ARROYO GRANDE CREEK       | 25.20                                   |                      |
| 2        | 49 0175L         | SLO                  | 101 SB    | 13.02    | ARROYO GRANDE CREEK       | 24.91                                   |                      |
| 2        | 51 0006          | SB                   | 135       | R7.22    | SAN ANTONIO CREEK         | 24.89                                   |                      |
| 2        | 51 0133          | SB                   | 101       | 9.66     | OAK CREEK                 | 24.24                                   |                      |
| 2        | 51 0128          | SB                   | 246       | 9.82     | SANTA YNEZ RIVER          | 24.04                                   |                      |
| 2        | 44 0019          | MON                  | 1         | 59.37    | BIXBY CREEK               | 23.89                                   |                      |
| 2        | 51 0041          | SB                   | 166       | R34.95   | CUYAMA RIVER              | 23.80                                   |                      |
| 2        | 51 0109          | SB                   | 192       | R9.68    | SAN YSIDRO CREEK          | 23.65                                   |                      |
| 2        | 51 0316          | SB                   | 150       | 1.09     | RINCON CREEK              | 23.56                                   |                      |
| 2        | 49 0042          | SLO                  | 1         | 0.01     | SANTA MARIA RIVER         | 23.39                                   |                      |
| 2        | 36 0054          | SCR                  | 9         | 15.49    | KINGS CREEK <sup>45</sup> | 23.01                                   |                      |
| 2        | 49 0118R         | SLO                  | 101 NB    | 1.36     | NIPOMO CREEK              | 23.00                                   |                      |
| 2        | 44 0058          | MON                  | 1         | 20.95    | LIMEKILN CREEK            | 22.92                                   |                      |
| 2        | 49 0014R         | SLO                  | 101 NB    | R21.49   | SAN LUIS OBISPO CREEK     | 22.82                                   |                      |
| 2        | 51 0130          | SB                   | 246       | 30.32    | ALAMO PINTADO CREEK       | 22.62                                   |                      |
| 2        | 51 0053          | SB                   | 101       | 9.34     | ROMERO CREEK              | 22.57                                   |                      |

<sup>45</sup> The Kings Creek Bridge was assessed according to its current design. District 5 notes that the Kings Creek Bridge is being redesigned and will be replaced in the near future.



| Priority | Bridge<br>Number | County <sup>43</sup> | Route  | Postmile | Feature Crossed                 | Cross-Hazard<br>Prioritization<br>Score | Priority<br>Override |
|----------|------------------|----------------------|--------|----------|---------------------------------|-----------------------------------------|----------------------|
| 2        | 44 0141R         | MON                  | 101 NB | R6.66    | SAN ANTONIO RIVER &<br>DR       | 22.00                                   |                      |
| 2        | 51 0047          | SB                   | 101    | 9.56     | SAN YSIDRO CREEK                | 21.98                                   |                      |
| 2        | 44 0012          | MON                  | 1      | 64.33    | GRANITE CANYON                  | 21.95                                   |                      |
| 2        | 51 0187          | SB                   | 101    | 10.18    | MONTECITO CREEK                 | 21.93                                   |                      |
| 2        | 36 0051          | SCR                  | 9      | 13.11    | BOULDER CREEK                   | 21.91                                   |                      |
| 2        | 51 0066          | SB                   | 166    | R69.94   | CUYAMA RIVER                    | 21.91                                   |                      |
| 2        | 44 0141L         | MON                  | 101 SB | R6.66    | SAN ANTONIO RIVER &<br>DR       | 21.89                                   |                      |
| 2        | 51 0237R         | SB                   | 1 NB   | M33.1    | SAN ANTONIO CREEK               | 21.84                                   |                      |
| 2        | 44 0017          | MON                  | 1      | 67.85    | MALPASO CREEK                   | 21.77                                   |                      |
| 2        | 49 0018R         | SLO                  | 101 NB | 8.52     | LOS BERROS CREEK                | 21.49                                   |                      |
| 2        | 51 0145          | SB                   | 33     | 7.05     | BALLINGER CANYON                | 21.48                                   |                      |
| 2        | 51 0111          | SB                   | 192    | 12.14    | TORO CREEK                      | 21.39                                   |                      |
| 2        | 44 0139R         | MON                  | 101 NB | R2.43    | NACIMIENTO RIVER                | 21.21                                   |                      |
| 2        | 36 0048          | SCR                  | 9      | 9.33     | SAN LORENZO RIVER <sup>44</sup> | 21.11                                   |                      |
| 2        | 49 0118L         | SLO                  | 101 SB | 1.36     | NIPOMO CREEK                    | 20.91                                   |                      |
| 2        | 36 0010          | SCR                  | 236    | 1.03     | BOULDER CREEK                   | 20.76                                   |                      |
| 2        | 49 0018L         | SLO                  | 101 SB | 8.52     | LOS BERROS CREEK                | 19.94                                   |                      |
| 2        | 49 0070L         | SLO                  | 1 SB   | 34.46    | OLD CREEK                       | 19.79                                   |                      |
| 2        | 49 0151L         | SLO                  | 101 SB | 45.72    | ATASCADERO CREEK                | 19.73                                   |                      |
| 2        | 49 0151R         | SLO                  | 101 NB | 45.72    | ATASCADERO CREEK                | 19.71                                   |                      |
| 2        | 44 0040R         | MON                  | 68 EB  | R17.69   | SALINAS RIVER                   | 19.66                                   |                      |
| 2        | 51 0054R         | SB                   | 101 NB | R6.79    | TORO CREEK                      | 19.65                                   |                      |
| 2        | 44 0016          | MON                  | 1      | 69.02    | WILDCAT CREEK                   | 19.22                                   |                      |
| 2        | 51 0054L         | SB                   | 101 SB | R6.79    | TORO CREEK                      | 19.20                                   |                      |
| 2        | 44 0032R         | MON                  | 101 NB | R41.36R  | SALINAS RIVER                   | 18.99                                   |                      |
| 3        | 44 0032L         | MON                  | 101 SB | R41.36L  | SALINAS RIVER                   | 18.94                                   |                      |
| 3        | 51 0221R         | SB                   | 101 NB | R56.64   | SANTA YNEZ RIVER                | 18.87                                   |                      |
| 3        | 49 0110          | SLO                  | 227    | 1.43     | CORBETT CANYON CREEK            | 18.81                                   |                      |
| 3        | 43 0015          | SBT                  | 25     | R30.05   | SAN BENITO RIVER                | 17.93                                   |                      |
| 3        | 36 0050          | SCR                  | 9      | 9.85     | MARSHALL CREEK                  | 17.18                                   |                      |
| 3        | 43 0014          | SBT                  | 25     | 28.23    | WILLOW CREEK                    | 17.02                                   |                      |
| 3        | 49 0002R         | SLO                  | 101 NB | 49.64    | PASO ROBLES CREEK               | 16.71                                   |                      |
| 3        | 44 0267          | MON                  | 1      | 34.24    | BURNS CREEK                     | 16.31                                   |                      |
| 3        | 36 0040          | SCR                  | 129    | 2.56     | COWARD CREEK                    | 16.31                                   |                      |
| 3        | 36 0034          | SCR                  | 129    | 0.56     | SALSIPUEDES CREEK               | 16.04                                   |                      |
| 3        | 51 0237L         | SB                   | 1 SB   | M33.1    | SAN ANTONIO CREEK               | 15.81                                   |                      |
| 3        | 51 0121          | SB                   | 154    | R11.51   | SAN LUCAS CREEK                 | 15.49                                   |                      |
| 3        | 49 0070R         | SLO                  | 1 NB   | 34.46    | OLD CREEK                       | 15.29                                   |                      |
| 3        | 49 0204          | SLO                  | 227    | R7.34    | WEST CORRAL DE PIEDRA<br>CR     | 15.11                                   |                      |
| 3        | 51 0332          | SB                   | 101    | 12.3     | SYCAMORE CREEK                  | 14.89                                   |                      |





| Priority | Bridge<br>Number | County <sup>43</sup> | Route  | Postmile | Feature Crossed                 | Cross-Hazard<br>Prioritization<br>Score | Priority<br>Override |
|----------|------------------|----------------------|--------|----------|---------------------------------|-----------------------------------------|----------------------|
| 3        | 44 0040L         | MON                  | 68 WB  | R17.69   | SALINAS RIVER                   | 14.72                                   |                      |
| 3        | 44 0254          | MON                  | 1      | 57.59    | HILLSIDE                        | 14.65                                   |                      |
| 3        | 44 0295          | MON                  | 1      | 59.9     | HILLSIDE                        | 14.65                                   |                      |
| 3        | 51 0162L         | SB                   | 101 SB | 20.95    | MARIA YGNACIO CREEK             | 14.61                                   |                      |
| 3        | 36 0046          | SCR                  | 9      | 7.76     | SAN LORENZO RIVER <sup>44</sup> | 14.50                                   |                      |
| 3        | 36 0001          | SCR                  | 152    | 1.94     | CORRALITOS CREEK                | 14.41                                   |                      |
| 3        | 36 0009          | SCR                  | 236    | 1.61     | BOULDER CREEK                   | 14.37                                   |                      |
| 3        | 49 0179          | SLO                  | 166    | 17.73    | ALAMO CREEK                     | 14.20                                   |                      |
| 3        | 44 0139L         | MON                  | 101 SB | R2.43    | NACIMIENTO RIVER                | 13.95                                   |                      |
| 3        | 44 0023          | MON                  | 183    | R7.3     | ESPINOSA SLOUGH                 | 13.83                                   | /                    |
| 3        | 51 0105          | SB                   | 192    | 3.36     | MISSION CREEK                   | 13.58                                   |                      |
| 3        | 44 0251          | MON                  | 1      | 56.25    | HILLSIDE                        | 13.10                                   |                      |
| 3        | 51 0056          | SB                   | 166    | R24.99   | MIRANDA PINE CREEK              | 12.72                                   |                      |
| 3        | 49 0178          | SLO                  | 166    | 16.45    | HUASNA RIVER                    | 12.61                                   |                      |
| 3        | 44 0049          | MON                  | 1      | 35.35    | ANDERSON CANYON                 | 12.53                                   |                      |
| 3        | 51 0079          | SB                   | 154    | R10.12   | SANTA INEZ RIVER                | 12.48                                   |                      |
| 3        | 43 0045          | SBT                  | 156    | R13.43   | SANTA ANA CREEK                 | 12.41                                   |                      |
| 3        | 44 0051          | MON                  | 1      | R33.67   | BUCK CREEK                      | 12.40                                   |                      |
| 3        | 51 0042          | SB                   | 192    | 10.53    | BUENA VISTA CREEK               | 12.31                                   |                      |
| 3        | 49 0112          | SLO                  | 227    | 5.26     | EAST FORK PISMO CREEK           | 12.03                                   |                      |
| 3        | 49 0105          | SLO                  | 46     | R15.85   | JÁCK CREEK (PSO RBLS<br>CR)     | 11.97                                   |                      |
| 3        | 43 0004L         | SBT                  | 101 SB | 5.21     | SAN BENITO RIVER                | 11.69                                   |                      |
| 3        | 49 0153L         | SLO                  | 101 SB | 37.99    | SANTA MARGARITA<br>CREEK        | 11.29                                   |                      |
| 3        | 51 0219          | SB                   | 166    | R30.73   | CUYAMA RIVER                    | 11.06                                   |                      |
| 3        | 49 0257          | SLO                  | 166    | 40.11    | GIFFORD CREEK                   | 11.03                                   |                      |
| 3        | 44 0057          | MON                  | 1      | R25.89   | VICENTE CREEK                   | 10.91                                   |                      |
| 3        | 49 0041          | SLO                  | 166    | 44.26    | CARRIZO CREEK                   | 10.75                                   |                      |
| 3        | 44 0021          | MON                  | 1      | 46.6     | BIG SUR RIVER                   | 10.39                                   |                      |
| 3        | 49 0170          | SLO                  | 58     | R29.92   | NAVAJO CREEK                    | 10.35                                   |                      |
| 3        | 49 0237          | SLO                  | 58     | 4.89     | SALINAS RIVER                   | 10.29                                   |                      |
| 3        | 44 0264          | MON                  | 68     | 13.3     | EL TORRO CREEK                  | 10.27                                   |                      |
| 4        | 51 0095          | SB                   | 1      | 15.61    | SALSIPUEDES CREEK               | 24.55                                   | Yes                  |
| 4        | 51 0110          | SB                   | 192    | 10.96    | ROMERO CANYON CREEK             | 24.16                                   | Yes                  |
| 4        | 51 0052L         | SB                   | 101 SB | 2.44     | CARPINTERIA CREEK               | 23.56                                   | Yes                  |
| 4        | 51 0052R         | SB                   | 101 NB | 2.44     | CARPINTERIA CREEK               | 23.01                                   | Yes                  |
| 4        | 51 0108          | SB                   | 192    | 8.12     | MONTECITO CREEK                 | 19.74                                   | Yes                  |
| 4        | 51 0112          | SB                   | 192    | 12.49    | TORO CANYON CREEK               | 19.18                                   | Yes                  |
| 4        | 51 0113          | SB                   | 192    | 15.52    | ARROYO PARIDA                   | 15.58                                   | Yes                  |
| 4        | 49 0091          | SLO                  | 58     | 3.08     | TROUT CREEK                     | 10.23                                   | Yes                  |
| 4        | 49 0251          | SLO                  | 58     | 9.94     | MIDLE FORK HUER<br>HUERO CR     | 10.17                                   |                      |



| Priority | Bridge<br>Number | County <sup>43</sup> | Route  | Postmile | Feature Crossed             | Cross-Hazard<br>Prioritization<br>Score | Priority<br>Override |
|----------|------------------|----------------------|--------|----------|-----------------------------|-----------------------------------------|----------------------|
| 4        | 44 0054          | MON                  | 1      | 31.17    | DOLAN CREEK                 | 10.05                                   |                      |
| 4        | 44 0052          | MON                  | 1      | 32.81    | HOT SPRINGS CREEK           | 10.01                                   |                      |
| 4        | 51 0033L         | SB                   | 101 SB | 30.07    | DOS PUEBLOS CRK & CYN<br>RD | 9.79                                    |                      |
| 4        | 44 0061          | MON                  | 1      | 18.91    | KIRK CREEK                  | 9.48                                    |                      |
| 4        | 49 0180          | SLO                  | 166    | 22.86    | CUYAMA RIVER                | 9.44                                    |                      |
| 4        | 49 0043          | SLO                  | 166    | R51.02   | CUYAMA RIVER                | 9.17                                    |                      |
| 4        | 51 0233          | SB                   | 166    | R25.49   | ALISO CREEK                 | 9.14                                    |                      |
| 4        | 51 0059          | SB                   | 166    | R51.41   | COTTONWOOD CREEK            | 9.12                                    |                      |
| 4        | 36 0061          | SCR                  | 1      | 16.49    | CARBONERA CREEK             | 9.08                                    |                      |
| 4        | 44 0002L         | MON                  | 101 SB | 60.75    | SALINAS RIVER               | 8.98                                    |                      |
| 4        | 44 0053          | MON                  | 1      | 32.25    | LIME CREEK                  | 8.93                                    |                      |
| 4        | 51 0215R         | SB                   | 101 NB | R36.62   | REFUGIO ROAD                | 8.90                                    |                      |
| 4        | 44 0063          | MON                  | 1      | 17.32    | WILD CATTLE CREEK           | 8.90                                    |                      |
| 4        | 44 0068          | MON                  | 1      | 47.98    | JUAN HIGUERA CREEK          | 8.80                                    |                      |
| 4        | 44 0002R         | MON                  | 101 NB | 60.75    | SALINAS RIVER               | 8.71                                    |                      |
| 4        | 44 0035          | MON                  | 1      | 43.12    | CASTRO CANYON               | 8.68                                    |                      |
| 4        | 49 0073          | SLO                  | 1      | 40.29    | VILLA CREEK                 | 8.65                                    |                      |
| 4        | 43 0044          | SBT                  | 156    | R8.45    | SAN BENITO RIVER            | 8.58                                    |                      |
| 4        | 49 0019          | SLO                  | 1      | 10.94    | ARROYO GRANDE CREEK         | 8.57                                    |                      |
| 4        | 49 0219          | SLO                  | 41     | R16.94   | SALINAS R,UP<br>RR,SYCAMORE | 8.39                                    |                      |
| 4        | 51 0163L         | SB                   | 101 SB | 21.62    | SAN JOSE CREEK              | 7.75                                    |                      |
| 4        | 51 0076          | SB                   | 154    | R2.55    | ALAMO PINTADO CREEK         | 7.64                                    |                      |
| 4        | 51 0078          | SB                   | 154    | R9.97    | SANTA AGUEDA CREEK          | 7.60                                    |                      |
| 4        | 49 0098          | SLO                  | 58     | 35.49    | SAN JUAN CREEK              | 7.44                                    |                      |
| 4        | 51 0240R         | SB                   | 1 NB   | R.16     | GAVIOTA CREEK               | 7.42                                    |                      |
| 4        | 44 0064          | MON                  | 1      | 14.93    | PREWITT CREEK               | 7.35                                    |                      |
| 4        | 51 0139          | SB                   | 246    | R20.22   | SANTA ROSA CREEK            | 7.33                                    |                      |
| 4        | 51 0276R         | SB                   | 101 NB | 13.79    | STATE STREET                | 7.32                                    |                      |
| 4        | 51 0020R         | SB                   | 101 NB | 54.71    | NOJOQUI CREEK               | 7.27                                    |                      |
| 4        | 51 0276L         | SB                   | 101 SB | 13.79    | STATE STREET                | 7.27                                    |                      |
| 4        | 51 0094          | SB                   | 1      | 13.34    | EL JARO CREEK               | 7.20                                    |                      |
| 4        | 51 0074L         | SB                   | 101 SB | 54.85    | NOJOQUI CREEK               | 7.18                                    |                      |
| 4        | 49 0104          | SLO                  | 41     | 28.05    | HUER HUERO CREEK            | 7.18                                    |                      |
| 4        | 49 0264          | SLO                  | 41     | R41.7    | ESTRELLA RIVER              | 7.07                                    |                      |
| 4        | 44 0066          | MON                  | 1      | 11.67    | WILLOW CREEK                | 6.77                                    |                      |
| 4        | 43 0009          | SBT                  | 156    | R15.43   | TEQUISQUITA SLOUGH          | 6.49                                    |                      |
| 4        | 43 0017          | SBT                  | 25     | 42.42    | TRES PINOS CREEK            | 6.37                                    |                      |
| 4        | 51 0218          | SB                   | 166    | R30.37   | CUYAMA RIVER                | 6.34                                    |                      |
| 4        | 36 0007          | SCR                  | 236    | 2.86     | BOULDER CREEK               | 6.30                                    |                      |
| 4        | 49 0035          | SLO                  | 46     | 29.8     | SALINAS RIVER, RIVER RD     | 6.25                                    |                      |





| Priority | Bridge<br>Number | County <sup>43</sup> | Route                   | Postmile | Feature Crossed                 | Cross-Hazard<br>Prioritization<br>Score | Priority<br>Override |
|----------|------------------|----------------------|-------------------------|----------|---------------------------------|-----------------------------------------|----------------------|
| 4        | 49 0063          | SLO                  | 1                       | 21.14    | KERN AVE, CHORRO<br>CREEK       | 6.23                                    |                      |
| 4        | 51 0090          | SB                   | 1                       | R6.78    | EL JARO CREEK                   | 6.19                                    |                      |
| 4        | 51 0084          | SB                   | 154                     | 30.21    | SAN ANTONIO CREEK               | 6.17                                    |                      |
| 4        | 49 0265          | SLO                  | 41                      | R41.96   | MCMILLAN CANYON                 | 6.06                                    |                      |
|          | 44,0000          |                      |                         | 10.10    | CREEK                           | 5.04                                    |                      |
| 4        | 44 0062          | MON                  | 1                       | 18.46    | MILL CREEK                      | 5.94                                    |                      |
| 4        | 51 0050R         | SB                   | 101 NB                  | 3.77     | SANTA MONICA CREEK              | 5.90                                    |                      |
| 4        | 44 0030          | MON                  | 198                     | R13.77   | SAN LORENZO CREEK               | 5.83                                    |                      |
| 4        | 49 0029          | SLO                  | 46                      | 50.66    | CHOLAME CREEK                   | 5.79                                    |                      |
| 4        | 44 0175R         | MON                  | 101 NB                  | R91.29   | LITTLE BEAR CREEK               | 5.69                                    |                      |
| 5        | 49 0001L         | SLO                  | 101 SB                  | 63.57    | SAN MARCOS CREEK                | 11.10                                   | Yes                  |
| 5        | 49 0001R         | SLO                  | 101 NB                  | 63.57    | SAN MARCOS CREEK                | 10.99                                   | Yes                  |
| 5        | 44 0175L         | MON                  | 101 SB,<br>S 101<br>OFF | R91.27   | LITTLE BEAR CREEK               | 5.69                                    |                      |
| 5        | 49 0205          | SLO                  | 46                      | R.18     | PERRY CREEK                     | 5.67                                    |                      |
| 5        | 43 0001          | SBT                  | 25                      | 60.04    | PAJARO RIVER                    | 5.66                                    |                      |
| 5        | 51 0163R         | SB                   | 101 NB                  | 21.62    | SAN JOSE CREEK                  | 5.60                                    |                      |
| 5        | 51 0097R         | SB                   | 1 NB                    | 22.52    | SANTA YNEZ RIVER                | 5.59                                    |                      |
| 5        | 49 0003L         | SLO                  | 101 SB                  | 49.4     | GRAVES CREEK                    | 5.55                                    |                      |
| 5        | 49 0103          | SLO                  | 227                     | 7.1      | EAST CORRAL DE PIEDRA<br>CR     | 5.54                                    |                      |
| 5        | 44 0179R         | MON                  | 101 NB                  | R40.42   | SAN LORENZO CREEK               | 5.52                                    |                      |
| 5        | 51 0097L         | SB                   | 1 SB                    | 22.52    | SANTA YNEZ RIVER                | 5.48                                    |                      |
| 5        | 49 0153R         | SLO                  | 101 NB                  | 37.99    | SANTA MARGARITA<br>CREEK        | 5.47                                    |                      |
| 5        | 49 0003R         | SLO                  | 101 NB                  | 49.4     | GRAVES CREEK                    | 5.44                                    |                      |
| 5        | 51 0092          | SB                   | 1                       | 10.11    | YTIAS CREEK                     | 5.43                                    |                      |
| 5        | 44 0263          | MON                  | 25                      | 11.73    | LEWIS CREEK                     | 5.35                                    |                      |
| 5        | 44 0177L         | MON                  | 101 SB                  | R30.8    | SALINAS RIVER                   | 5.25                                    |                      |
| 5        | 49 0123          | SLO                  | 1                       | 17.05    | STENNER CREEK                   | 5.24                                    |                      |
| 5        | 36 0052          | SCR                  | 9                       | 13.61    | SAN LORENZO RIVER <sup>44</sup> | 5.23                                    |                      |
| 5        | 51 0018L         | SB                   | 101 SB                  | 56       | NOJOQUI CREEK                   | 5.22                                    |                      |
| 5        | 49 0206          | SLO                  | 46                      | R.89     | GREEN VALLEY CREEK              | 5.16                                    |                      |
| 5        | 51 0115          | SB                   | 192                     | R19.09   | CARPINTERIA CREEK               | 5.05                                    |                      |
| 5        | 51 0023L         | SB                   | 101 SB                  | 47.9     | GAVIOTA CREEK                   | 4.99                                    |                      |
| 5        | 49 0207          | SLO                  | 46                      | R2.32    | BRANCH GREEN VALLEY<br>CRK      | 4.76                                    |                      |
| 5        | 51 0051L         | SB                   | 101 SB                  | 3.3      | FRANKLIN CREEK                  | 4.74                                    |                      |
| 5        | 44 0290          | MON                  | 1                       | 21.5     | HILLSIDE                        | 4.71                                    |                      |
| 5        | 51 0051R         | SB                   | 101 NB                  | 3.3      | FRANKLIN CREEK                  | 4.68                                    |                      |
| 5        | 49 0095          | SLO                  | 46                      | 48.32    | CHOLAME CREEK                   | 4.59                                    |                      |
| 5        | 51 0229L         | SB                   | 101 SB                  | R.26     | UP RR & AMTRAK                  | 4.59                                    |                      |
| 5        | 51 0277L         | SB                   | 101 SB                  | 13.96    | MISSION CREEK                   | 4.57                                    |                      |



| Caltrans Ada | ptation | Priorities | Report - | District 5 |
|--------------|---------|------------|----------|------------|
|              |         |            |          |            |

| Priority | Bridge<br>Number | County <sup>43</sup> | Route  | Postmile | Feature Crossed                 | Cross-Hazard<br>Prioritization<br>Score | Priority<br>Override |
|----------|------------------|----------------------|--------|----------|---------------------------------|-----------------------------------------|----------------------|
| 5        | 51 0103          | SB                   | 1      | 47.91    | SOLOMON CANYON<br>CREEK         | 4.43                                    |                      |
| 5        | 36 0049          | SCR                  | 9      | 9.71     | SAN LORENZO RIVER <sup>44</sup> | 4.41                                    |                      |
| 5        | 51 0024L         | SB                   | 101 SB | 47.23    | GAVIOTA CREEK                   | 4.32                                    |                      |
| 5        | 51 0019R         | SB                   | 101 NB | 55.66    | NOJOQUI CREEK                   | 4.32                                    |                      |
| 5        | 51 0091          | SB                   | 1      | 9.89     | EL JARO CREEK                   | 4.15                                    |                      |
| 5        | 51 0018R         | SB                   | 101 NB | 56       | NOJOQUI CREEK                   | 4.08                                    |                      |
| 5        | 36 0045          | SCR                  | 9      | 7.01     | FALL CREEK                      | 3.82                                    |                      |
| 5        | 51 0150          | SB                   | 1      | R4.38    | EL JARO CREEK                   | 3.73                                    |                      |
| 5        | 51 0228R         | SB                   | 101 NB | R5.28    | SOUTH PADARO LANE               | 3.55                                    |                      |
| 5        | 51 0114          | SB                   | 192    | 16.57    | SANTA MONICA CANYON             | 3.51                                    |                      |
| 5        | 51 0228L         | SB                   | 101 SB | R5.28    | SOUTH PADARO LANE               | 3.50                                    |                      |
| 5        | 43 0012          | SBT                  | 156    | R17.28   | PACHECO CREEK                   | 2.98                                    |                      |
| 5        | 51 0106          | SB                   | 192    | 5.98     | SYCAMORE CANYON<br>CREEK        | 2.92                                    |                      |
| 5        | 49 0049          | SLO                  | 41     | 13.05    | ATASCADERO CREEK                | 2.67                                    |                      |
| 5        | 36 0088R         | SCR                  | 1 NB   | R1.59    | STRUVE SLOUGH                   | 2.66                                    |                      |
| 5        | 49 0050          | SLO                  | 41     | 13.18    | ATASCADERO CREEK                | 2.63                                    |                      |
| 5        | 49 0051          | SLO                  | 41     | 13.29    | ATASCADERO CREEK                | 2.62                                    |                      |
| 5        | 51 0049L         | SB                   | 101 SB | R5.63    | ARROYO PARIDA                   | 2.34                                    |                      |
| 5        | 36 0047          | SCR                  | 9      | 7.87     | SAN LORENZO RIVER <sup>44</sup> | 2.20                                    |                      |
| 5        | 43 0013          | SBT                  | 129    | 0.01     | PAJARO RIVER                    | 2.17                                    |                      |
| 5        | 51 0049R         | SB                   | 101 NB | R5.63    | ARROYO PARIDA                   | 1.82                                    |                      |
| 5        | 36 0088L         | SCR                  | 1 SB   | R1.59    | STRUVE SLOUGH                   | 0.00                                    |                      |
| 5        | 51 0229R         | SB                   | 101 NB | R.25     | UP RR & AMTRAK                  | 0.00                                    |                      |



| Priority | Culvert System<br>Number | County <sup>46</sup> | Route | Postmile | Feature Crossed          | Cross-Hazard<br>Prioritization Score |
|----------|--------------------------|----------------------|-------|----------|--------------------------|--------------------------------------|
| 1        | 49 0222                  | SLO                  | 41    | 27.74    | W BRANCH HUER HUERO CRK  | 100.00                               |
| 1        | 51 0065                  | SB                   | 166   | 64.76    | SALISBURY CANYON         | 63.65                                |
| 1        | 51 0149                  | SB                   | 101   | 27.16    | WINCHESTER CREEK         | 61.86                                |
| 1        | 36 0002                  | SCR                  | 152   | R2.06    | SALSIPUEDES CREEK        | 51.11                                |
| 2        | 51 0244                  | SB                   | 135   | M9.98    | HARRIS CANYON CREEK      | 44.92                                |
| 2        | 49 0007                  | SLO                  | 101   | 36.58    | SANTA MARGARITA CREEK    | 39.41                                |
| 2        | 51 0067                  | SB                   | 101   | 70.99    | SAN ANTONIO CREEK        | 34.16                                |
| 2        | 51 0238                  | SB                   | 135   | 17.55    | BRADLEY CHANNEL          | 32.23                                |
| 3        | 51 0251                  | SB                   | 135   | R10.37   | ORCUTT CREEK             | 29.78                                |
| 3        | 36 0080                  | SCR                  | 1     | 21.51    | MEDER CREEK              | 21.22                                |
| 3        | 51 0055                  | SB                   | 166   | R24.07   | BUCKHORN CREEK           | 18.81                                |
| 3        | 49 0169                  | SLO                  | 58    | 24.54    | CAMMATTI CREEK           | 18.71                                |
| 3        | 49 0168                  | SLO                  | 58    | 21       | FERNANDEZ CREEK          | 16.81                                |
| 4        | 49 0233                  | SLO                  | 166   | 46.84    | RED ROCK CANYON CREEK    | 16.03                                |
| 4        | 49 0172                  | SLO                  | 58    | 11.78    | EAST FORK HUER HUERO CRK | 15.79                                |
| 4        | 49 0167                  | SLO                  | 58    | 17.73    | INDIAN CREEK             | 10.24                                |
| 4        | 49 0138                  | SLO                  | 46    | 34.14    | DRY CREEK                | 7.96                                 |
| 5        | 49 0223                  | SLO                  | 41    | 35.82    | SHEDD CANYON             | 7.14                                 |
| 5        | 51 0267                  | SB                   | 154   | R6.94    | BRANCH COTA CREEK        | 4.39                                 |
| 5        | 49 0064                  | SLO                  | 1     | 25.71    | SAN LUISITO CREEK        | 1.69                                 |
| 5        | 49 0066                  | SLO                  | 1     | 26.86    | SAN BERNARDO CREEK       | 0.00                                 |

### TABLE 9: PRIORITIZATION OF LARGE CULVERTS FOR DETAILED CLIMATE CHANGE ADAPTATION ASSESSMENTS

<sup>46</sup> MON = Monterey, SB = Santa Barbara, SBT = San Benito, SCR = Santa Cruz, SLO = San Luis Obispo



| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 1        | 490010006248          | SLO                  | 1     | 62.48    | 100.00                               |
| 1        | 490010006541          | SLO                  | 1     | 65.41    | 93.82                                |
| 1        | 490010106006          | SLO                  | 1     | 60.06    | 73.71                                |
| 1        | 360010003709          | SCR                  | 1     | 37.09    | 65.53                                |
| 1        | 490010005762          | SLO                  | 1     | 57.62    | 62.93                                |
| 1        | 440010000794          | MON                  | 1     | 7.94     | 61.77                                |
| 1        | 360010003745          | SCR                  | 1     | 37.45    | 61.68                                |
| 1        | 440010002740          | MON                  | 1     | 27.4     | 56.01                                |
| 1        | 511010003524          | SB                   | 101   | 35.24    | 51.75                                |
| 1        | 440010006414          | MON                  | 1     | 64.14    | 51.49                                |
| 1        | 440010004863          | MON                  | 1     | 48.63    | 50.77                                |
| 1        | 440010003018          | MON                  | 1     | 30.18    | 50.30                                |
| 1        | 440010006713          | MON                  | 1     | 67.13    | 49.75                                |
| 1        | 511010003568          | SB                   | 101   | 35.68    | 49.22                                |
| 1        | 490010006203          | SLO                  | 1     | 62.03    | 49.06                                |
| 1        | 490010006493          | SLO                  | 1     | 64.93    | 48.60                                |
| 1        | 440010000890          | MON                  | 1     | 8.9      | 48.37                                |
| 1        | 440010006672          | MON                  | 1     | 66.72    | 47.63                                |
| 1        | 440010000846          | MON                  | 1     | 8.46     | 47.04                                |
| 1        | 440010003584          | MON                  | 1     | 35.84    | 45.94                                |
| 1        | 490010005801          | SLO                  | 1     | 58.01    | 45.84                                |
| 1        | 440010009555          | MON                  | 1     | 95.55    | 45.65                                |
| 1        | 440010006485          | MON                  | 1     | 64.85    | 45.38                                |
| 1        | 440010006590          | MON                  | 1     | 65.9     | 44.87                                |
| 1        | 490010006476          | SLO                  | 1     | 64.76    | 44.42                                |
| 1        | 511540001917          | SB                   | 154   | 19.17    | 42.58                                |
| 1        | 440010006619          | MON                  | 1     | 66.19    | 41.69                                |
| 1        | 440010006018          | MON                  | 1     | 60.18    | 41.69                                |
| 1        | 440010002512          | MON                  | 1     | 25.12    | 41.54                                |
| 1        | 440010000705          | MON                  | 1     | 7.05     | 41.52                                |
| 1        | 511546001991          | SB                   | 154   | 19.91    | 41.08                                |
| 1        | 440010001710          | MON                  | 1     | 17.1     | 40.83                                |
| 1        | 440010004181          | MON                  | 1     | 41.81    | 40.15                                |
| 1        | 440010004088          | MON                  | 1     | 40.88    | 39.76                                |
| 1        | 440010001269          | MON                  | 1     | 12.69    | 39.59                                |
| 1        | 511540001894          | SB                   | 154   | 18.94    | 38.95                                |
| 1        | 511540001777          | SB                   | 154   | 17.77    | 38.94                                |
| 1        | 511540001736          | SB                   | 154   | 17.36    | 38.75                                |

## TABLE 10: PRIORITIZATION OF SMALL CULVERTS FOR DETAILED CLIMATE CHANGE ADAPTATION ASSESSMENTS

<sup>47</sup> MON = Monterey, SB = Santa Barbara, SBT = San Benito, SCR = Santa Cruz, SLO = San Luis Obispo





| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 1        | 440010001777          | MON                  | 1     | 17.77    | 38.62                                |
| 1        | 440010004355          | MON                  | 1     | 43.55    | 38.54                                |
| 1        | 511540001685          | SB                   | 154   | 16.85    | 38.07                                |
| 1        | 440010005055          | MON                  | 1     | 50.55    | 37.95                                |
| 1        | 440010007048          | MON                  | 1     | 70.48    | 37.80                                |
| 1        | 440010006763          | MON                  | 1     | 67.63    | 37.61                                |
| 1        | 440010006629          | MON                  | 1     | 66.29    | 37.36                                |
| 1        | 440010001986          | MON                  | 1     | 19.86    | 35.73                                |
| 1        | 512176000099          | SB                   | 217   | 0.99     | 35.28                                |
| 1        | 440010005006          | MON                  | 1     | 50.06    | 35.03                                |
| 1        | 511546002570          | SB                   | 154   | 25.7     | 33.82                                |
| 1        | 511016003393          | SB                   | 101   | 33.93    | 33.41                                |
| 1        | 440010002330          | MON                  | 1     | 23.3     | 32.29                                |
| 1        | 440010006953          | MON                  | 1     | 69.53    | 32.25                                |
| 1        | 440010002694          | MON                  | 1     | 26.94    | 32.04                                |
| 1        | 491010103422          | SLO                  | 101   | 34.22    | 31.96                                |
| 1        | 511010004072          | SB                   | 101   | 40.72    | 31.55                                |
| 1        | 511544002676          | SB                   | 154   | 26.76    | 31.38                                |
| 1        | 491014003600          | SLO                  | 101   | 36       | 31.00                                |
| 1        | 511016001946          | SB                   | 101   | 19.46    | 30.74                                |
| 1        | 440010005127          | MON                  | 1     | 51.27    | 30.31                                |
| 1        | 490010006742          | SLO                  | 1     | 67.42    | 30.05                                |
| 1        | 440010002266          | MON                  | 1     | 22.66    | 29.89                                |
| 1        | 440010006333          | MON                  | 1     | 63.33    | 29.19                                |
| 1        | 440010006152          | MON                  | 1     | 61.52    | 29.14                                |
| 1        | 430250002140          | SBT                  | 25    | 21.4     | 29.13                                |
| 1        | 491010103407          | SLO                  | 101   | 34.07    | 29.07                                |
| 1        | 511664103561          | SB                   | 166   | 35.61    | 28.84                                |
| 1        | 490464004124          | SLO                  | 46    | 41.24    | 28.66                                |
| 1        | 511012004742          | SB                   | 101   | 47.42    | 28.44                                |
| 1        | 440010003680          | MON                  | 1     | 36.8     | 28.34                                |
| 1        | 511014001232          | SB                   | 101   | 12.32    | 28.27                                |
| 1        | 440010002218          | MON                  | 1     | 22.18    | 28.09                                |
| 1        | 440014003974          | MON                  | 1     | 39.74    | 28.09                                |
| 1        | 430254002713          | SBT                  | 25    | 27.13    | 28.07                                |
| 1        | 440010005673          | MON                  | 1     | 56.73    | 28.05                                |
| 1        | 491014003560          | SLO                  | 101   | 35.6     | 27.99                                |
| 1        | 491664001862          | SLO                  | 166   | 18.62    | 27.93                                |
| 1        | 511540001557          | SB                   | 154   | 15.57    | 27.90                                |
| 1        | 491664001904          | SLO                  | 166   | 19.04    | 27.84                                |
| 1        | 491664001548          | SLO                  | 166   | 15.48    | 27.61                                |
| 1        | 511540002200          | SB                   | 154   | 22       | 27.56                                |



| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 1        | 491010103356          | SLO                  | 101   | 33.56    | 27.54                                |
| 1        | 491664001613          | SLO                  | 166   | 16.13    | 27.50                                |
| 1        | 490010006308          | SLO                  | 1     | 63.08    | 27.44                                |
| 1        | 491664004049          | SLO                  | 166   | 40.49    | 27.38                                |
| 1        | 490464100505          | SLO                  | 46    | 5.05     | 27.37                                |
| 1        | 491664004187          | SLO                  | 166   | 41.87    | 27.35                                |
| 1        | 511660102599          | SB                   | 166   | 25.99    | 27.35                                |
| 1        | 430250001405          | SBT                  | 25    | 14.05    | 27.34                                |
| 1        | 511016006305          | SB                   | 101   | 63.05    | 27.29                                |
| 1        | 440010006981          | MON                  | 1     | 69.81    | 27.27                                |
| 1        | 430254002656          | SBT                  | 25    | 26.56    | 27.21                                |
| 1        | 440010000636          | MON                  | 1     | 6.36     | 27.19                                |
| 1        | 440680000682          | MON                  | 68    | 6.82     | 26.92                                |
| 1        | 491660002309          | SLO                  | 166   | 23.09    | 26.82                                |
| 1        | 491010103391          | SLO                  | 101   | 33.91    | 26.79                                |
| 1        | 491010103356          | SLO                  | 101   | 33.56    | 26.76                                |
| 1        | 511664103540          | SB                   | 166   | 35.4     | 26.76                                |
| 1        | 430254002263          | SBT                  | 25    | 22.63    | 26.75                                |
| 1        | 490414003446          | SLO                  | 41    | 34.46    | 26.73                                |
| 1        | 511540002128          | SB                   | 154   | 21.28    | 26.72                                |
| 1        | 511010004417          | SB                   | 101   | 44.17    | 26.63                                |
| 1        | 511010003187          | SB                   | 101   | 31.87    | 26.58                                |
| 1        | 490580001229          | SLO                  | 58    | 12.29    | 26.55                                |
| 1        | 490580001266          | SLO                  | 58    | 12.66    | 26.52                                |
| 1        | 491014003236          | SLO                  | 101   | 32.36    | 26.51                                |
| 1        | 440010107811          | MON                  | 1     | 78.11    | 26.48                                |
| 1        | 491664001962          | SLO                  | 166   | 19.62    | 26.36                                |
| 1        | 491664002032          | SLO                  | 166   | 20.32    | 26.30                                |
| 1        | 430254002605          | SBT                  | 25    | 26.05    | 26.30                                |
| 1        | 440010107811          | MON                  | 1     | 78.11    | 26.29                                |
| 1        | 490580002341          | SLO                  | 58    | 23.41    | 26.23                                |
| 1        | 491014003267          | SLO                  | 101   | 32.67    | 26.15                                |
| 1        | 440011207501          | MON                  | 1     | 75.01    | 26.10                                |
| 1        | 491664001503          | SLO                  | 166   | 15.03    | 26.04                                |
| 1        | 491664001595          | SLO                  | 166   | 15.95    | 26.03                                |
| 1        | 491010003745          | SLO                  | 101   | 37.45    | 25.98                                |
| 1        | 511660102730          | SB                   | 166   | 27.3     | 25.82                                |
| 1        | 491014003267          | SLO                  | 101   | 32.67    | 25.80                                |
| 1        | 511010002870          | SB                   | 101   | 28.7     | 25.76                                |
| 1        | 490460003984          | SLO                  | 46    | 39.84    | 25.68                                |
| 1        | 491018005413          | SLO                  | 101   | 54.13    | 25.63                                |
| 1        | 491010004143          | SLO                  | 101   | 41.43    | 25.61                                |





| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 1        | 491664004293          | SLO                  | 166   | 42.93    | 25.61                                |
| 1        | 511016003669          | SB                   | 101   | 36.69    | 25.61                                |
| 1        | 490014001973          | SLO                  | 1     | 19.73    | 25.60                                |
| 1        | 511016002986          | SB                   | 101   | 29.86    | 25.59                                |
| 1        | 491014003990          | SLO                  | 101   | 39.9     | 25.56                                |
| 1        | 491014004020          | SLO                  | 101   | 40.2     | 25.56                                |
| 1        | 490584000274          | SLO                  | 58    | 2.74     | 25.46                                |
| 1        | 492290000386          | SLO                  | 229   | 3.86     | 25.33                                |
| 1        | 490584103498          | SLO                  | 58    | 34.98    | 25.31                                |
| 1        | 512464003280          | SB                   | 246   | 32.8     | 25.30                                |
| 1        | 491010003745          | SLO                  | 101   | 37.45    | 25.22                                |
| 1        | 490414003388          | SLO                  | 41    | 33.88    | 25.20                                |
| 1        | 430250001578          | SBT                  | 25    | 15.78    | 25.19                                |
| 1        | 490414003349          | SLO                  | 41    | 33.49    | 25.18                                |
| 1        | 490464100374          | SLO                  | 46    | 3.74     | 25.13                                |
| 1        | 490464100640          | SLO                  | 46    | 6.4      | 25.09                                |
| 1        | 430254002746          | SBT                  | 25    | 27.46    | 25.04                                |
| 1        | 490464100510          | SLO                  | 46    | 5.1      | 24.95                                |
| 1        | 490580003662          | SLO                  | 58    | 36.62    | 24.94                                |
| 1        | 440014003786          | MON                  | 1     | 37.86    | 24.94                                |
| 1        | 440680001056          | MON                  | 68    | 10.56    | 24.93                                |
| 1        | 490584003689          | SLO                  | 58    | 36.89    | 24.92                                |
| 1        | 490464100315          | SLO                  | 46    | 3.15     | 24.92                                |
| 1        | 430254000730          | SBT                  | 25    | 7.3      | 24.83                                |
| 1        | 430250002799          | SBT                  | 25    | 27.99    | 24.81                                |
| 1        | 490010001473          | SLO                  | 1     | 14.73    | 24.77                                |
| 1        | 440016107738          | MON                  | 1     | 77.38    | 24.76                                |
| 1        | 440010004405          | MON                  | 1     | 44.05    | 24.70                                |
| 1        | 511660102887          | SB                   | 166   | 28.87    | 24.67                                |
| 1        | 510014102681          | SB                   | 1     | 26.81    | 24.65                                |
| 1        | 441010010095          | MON                  | 101   | 100.95   | 24.62                                |
| 2        | 490580001330          | SLO                  | 58    | 13.3     | 24.62                                |
| 2        | 511660102947          | SB                   | 166   | 29.47    | 24.61                                |
| 2        | 441014009352          | MON                  | 101   | 93.52    | 24.60                                |
| 2        | 490580000320          | SLO                  | 58    | 3.2      | 24.59                                |
| 2        | 441014010089          | MON                  | 101   | 100.89   | 24.59                                |
| 2        | 440010001291          | MON                  | 1     | 12.91    | 24.54                                |
| 2        | 430254002371          | SBT                  | 25    | 23.71    | 24.46                                |
| 2        | 430254002363          | SBT                  | 25    | 23.63    | 24.46                                |
| 2        | 430250002120          | SBT                  | 25    | 21.2     | 24.33                                |
| 2        | 440010005253          | MON                  | 1     | 52.53    | 24.33                                |
| 2        | 490410003889          | SLO                  | 41    | 38.89    | 24.28                                |



| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 2        | 430250001363          | SBT                  | 25    | 13.63    | 24.27                                |
| 2        | 490464101657          | SLO                  | 46    | 16.57    | 24.24                                |
| 2        | 491010003326          | SLO                  | 101   | 33.26    | 24.16                                |
| 2        | 360010002870          | SCR                  | 1     | 28.7     | 24.16                                |
| 2        | 511540001380          | SB                   | 154   | 13.8     | 24.15                                |
| 2        | 490464100363          | SLO                  | 46    | 3.63     | 24.12                                |
| 2        | 430254002449          | SBT                  | 25    | 24.49    | 24.08                                |
| 2        | 511010002910          | SB                   | 101   | 29.1     | 24.06                                |
| 2        | 511010002816          | SB                   | 101   | 28.16    | 24.04                                |
| 2        | 511540001302          | SB                   | 154   | 13.02    | 24.04                                |
| 2        | 511010002870          | SB                   | 101   | 28.7     | 23.98                                |
| 2        | 440010001376          | MON                  | 1     | 13.76    | 23.94                                |
| 2        | 491018005060          | SLO                  | 101   | 50.6     | 23.93                                |
| 2        | 440010001567          | MON                  | 1     | 15.67    | 23.85                                |
| 2        | 440010001358          | MON                  | 1     | 13.58    | 23.84                                |
| 2        | 440010001542          | MON                  | 1     | 15.42    | 23.82                                |
| 2        | 360010002763          | SCR                  | 1     | 27.63    | 23.74                                |
| 2        | 511660102829          | SB                   | 166   | 28.29    | 23.72                                |
| 2        | 440250000483          | MON                  | 25    | 4.83     | 23.70                                |
| 2        | 441016009559          | MON                  | 101   | 95.59    | 23.70                                |
| 2        | 491014005212          | SLO                  | 101   | 52.12    | 23.68                                |
| 2        | 490460004003          | SLO                  | 46    | 40.03    | 23.66                                |
| 2        | 490414000632          | SLO                  | 41    | 6.32     | 23.65                                |
| 2        | 491664004337          | SLO                  | 166   | 43.37    | 23.61                                |
| 2        | 490584001153          | SLO                  | 58    | 11.53    | 23.59                                |
| 2        | 491664004091          | SLO                  | 166   | 40.91    | 23.56                                |
| 2        | 510010102412          | SB                   | 1     | 24.12    | 23.47                                |
| 2        | 491664001301          | SLO                  | 166   | 13.01    | 23.43                                |
| 2        | 440680001089          | MON                  | 68    | 10.89    | 23.42                                |
| 2        | 440010001417          | MON                  | 1     | 14.17    | 23.42                                |
| 2        | 510010102552          | SB                   | 1     | 25.52    | 23.42                                |
| 2        | 440684000767          | MON                  | 68    | 7.67     | 23.41                                |
| 2        | 440250000113          | MON                  | 25    | 1.13     | 23.41                                |
| 2        | 490460003984          | SLO                  | 46    | 39.84    | 23.40                                |
| 2        | 510010102552          | SB                   | 1     | 25.52    | 23.40                                |
| 2        | 440250000387          | MON                  | 25    | 3.87     | 23.35                                |
| 2        | 511010104959          | SB                   | 101   | 49.59    | 23.31                                |
| 2        | 491018005557          | SLO                  | 101   | 55.57    | 23.31                                |
| 2        | 490580000855          | SLO                  | 58    | 8.55     | 23.30                                |
| 2        | 491014003021          | SLO                  | 101   | 30.21    | 23.28                                |
| 2        | 441984001442          | MON                  | 198   | 14.42    | 23.25                                |
| 2        | 490580000750          | SLO                  | 58    | 7.5      | 23.25                                |





| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 2        | 440014004550          | MON                  | 1     | 45.5     | 23.25                                |
| 2        | 441014101028          | MON                  | 101   | 10.28    | 23.21                                |
| 2        | 441014101056          | MON                  | 101   | 10.56    | 23.21                                |
| 2        | 511660103450          | SB                   | 166   | 34.5     | 23.19                                |
| 2        | 440680001150          | MON                  | 68    | 11.5     | 23.17                                |
| 2        | 490464100249          | SLO                  | 46    | 2.49     | 23.13                                |
| 2        | 511540001610          | SB                   | 154   | 16.1     | 23.09                                |
| 2        | 430254000056          | SBT                  | 25    | 0.56     | 23.08                                |
| 2        | 440010107650          | MON                  | 1     | 76.5     | 23.06                                |
| 2        | 440010107635          | MON                  | 1     | 76.35    | 22.99                                |
| 2        | 490584001040          | SLO                  | 58    | 10.4     | 22.96                                |
| 2        | 491016000081          | SLO                  | 101   | 0.81     | 22.94                                |
| 2        | 490464100423          | SLO                  | 46    | 4.23     | 22.91                                |
| 2        | 440016107934          | MON                  | 1     | 79.34    | 22.87                                |
| 2        | 490464100141          | SLO                  | 46    | 1.41     | 22.86                                |
| 2        | 491014003127          | SLO                  | 101   | 31.27    | 22.84                                |
| 2        | 510010102412          | SB                   | 1     | 24.12    | 22.83                                |
| 2        | 441016101101          | MON                  | 101   | 11.01    | 22.81                                |
| 2        | 490580001606          | SLO                  | 58    | 16.06    | 22.55                                |
| 2        | 430254000175          | SBT                  | 25    | 1.75     | 22.49                                |
| 2        | 441010009430          | MON                  | 101   | 94.3     | 22.49                                |
| 2        | 441014009380          | MON                  | 101   | 93.8     | 22.47                                |
| 2        | 511010005220          | SB                   | 101   | 52.2     | 22.47                                |
| 2        | 490580001464          | SLO                  | 58    | 14.64    | 22.41                                |
| 2        | 490580001577          | SLO                  | 58    | 15.77    | 22.38                                |
| 2        | 440684001193          | MON                  | 68    | 11.93    | 22.37                                |
| 2        | 490580000647          | SLO                  | 58    | 6.47     | 22.36                                |
| 2        | 491016101970          | SLO                  | 101   | 19.7     | 22.34                                |
| 2        | 511010002910          | SB                   | 101   | 29.1     | 22.33                                |
| 2        | 490414000226          | SLO                  | 41    | 2.26     | 22.31                                |
| 2        | 440686001565          | MON                  | 68    | 15.65    | 22.31                                |
| 2        | 490414000570          | SLO                  | 41    | 5.7      | 22.28                                |
| 2        | 490580003050          | SLO                  | 58    | 30.5     | 22.28                                |
| 2        | 490414000485          | SLO                  | 41    | 4.85     | 22.28                                |
| 2        | 490414000379          | SLO                  | 41    | 3.79     | 22.26                                |
| 2        | 490464101662          | SLO                  | 46    | 16.62    | 22.23                                |
| 2        | 440250001082          | MON                  | 25    | 10.82    | 22.22                                |
| 2        | 440250001041          | MON                  | 25    | 10.41    | 22.22                                |
| 2        | 492294000040          | SLO                  | 229   | 0.4      | 22.21                                |
| 2        | 441014101347          | MON                  | 101   | 13.47    | 22.19                                |
| 2        | 441014101290          | MON                  | 101   | 12.9     | 22.19                                |
| 2        | 441014101244          | MON                  | 101   | 12.44    | 22.18                                |



| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 2        | 441014101310          | MON                  | 101   | 13.1     | 22.18                                |
| 2        | 441014101192          | MON                  | 101   | 11.92    | 22.15                                |
| 2        | 440010002406          | MON                  | 1     | 24.06    | 22.08                                |
| 2        | 491664105090          | SLO                  | 166   | 50.9     | 22.08                                |
| 2        | 360010003016          | SCR                  | 1     | 30.16    | 22.05                                |
| 2        | 512460101376          | SB                   | 246   | 13.76    | 22.05                                |
| 2        | 511660102812          | SB                   | 166   | 28.12    | 22.03                                |
| 2        | 490410003671          | SLO                  | 41    | 36.71    | 22.00                                |
| 2        | 490414000587          | SLO                  | 41    | 5.87     | 22.00                                |
| 2        | 440686001565          | MON                  | 68    | 15.65    | 21.98                                |
| 2        | 512464101295          | SB                   | 246   | 12.95    | 21.98                                |
| 2        | 511660102800          | SB                   | 166   | 28       | 21.97                                |
| 2        | 490580003292          | SLO                  | 58    | 32.92    | 21.95                                |
| 2        | 490584003239          | SLO                  | 58    | 32.39    | 21.93                                |
| 2        | 511016006305          | SB                   | 101   | 63.05    | 21.93                                |
| 2        | 490464003204          | SLO                  | 46    | 32.04    | 21.93                                |
| 2        | 490464003204          | SLO                  | 46    | 32.04    | 21.93                                |
| 2        | 440010001428          | MON                  | 1     | 14.28    | 21.90                                |
| 2        | 490414000540          | SLO                  | 41    | 5.4      | 21.86                                |
| 2        | 440010001412          | MON                  | 1     | 14.12    | 21.86                                |
| 2        | 440680001116          | MON                  | 68    | 11.16    | 21.82                                |
| 2        | 440684001318          | MON                  | 68    | 13.18    | 21.78                                |
| 2        | 360016001400          | SCR                  | 1     | 14       | 21.77                                |
| 2        | 490584003313          | SLO                  | 58    | 33.13    | 21.75                                |
| 2        | 440016107730          | MON                  | 1     | 77.3     | 21.75                                |
| 2        | 360010100307          | SCR                  | 1     | 3.07     | 21.74                                |
| 2        | 490584001444          | SLO                  | 58    | 14.44    | 21.67                                |
| 2        | 490410000755          | SLO                  | 41    | 7.55     | 21.66                                |
| 2        | 511010003267          | SB                   | 101   | 32.67    | 21.65                                |
| 2        | 490580000769          | SLO                  | 58    | 7.69     | 21.65                                |
| 2        | 441014101102          | MON                  | 101   | 11.02    | 21.64                                |
| 2        | 511660103323          | SB                   | 166   | 33.23    | 21.62                                |
| 2        | 490584003456          | SLO                  | 58    | 34.56    | 21.59                                |
| 2        | 440010001609          | MON                  | 1     | 16.09    | 21.57                                |
| 2        | 490584002562          | SLO                  | 58    | 25.62    | 21.56                                |
| 2        | 491664001235          | SLO                  | 166   | 12.35    | 21.56                                |
| 2        | 491014005103          | SLO                  | 101   | 51.03    | 21.54                                |
| 2        | 490584003079          | SLO                  | 58    | 30.79    | 21.54                                |
| 2        | 490580000784          | SLO                  | 58    | 7.84     | 21.49                                |
| 2        | 491664005050          | SLO                  | 166   | 50.5     | 21.47                                |
| 2        | 491664001248          | SLO                  | 166   | 12.48    | 21.47                                |
| 2        | 490010005404          | SLO                  | 1     | 54.04    | 21.46                                |





| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 2        | 440680001366          | MON                  | 68    | 13.66    | 21.46                                |
| 2        | 490584002829          | SLO                  | 58    | 28.29    | 21.44                                |
| 2        | 511010006250          | SB                   | 101   | 62.5     | 21.44                                |
| 2        | 490330000463          | SLO                  | 33    | 4.63     | 21.43                                |
| 2        | 491664004490          | SLO                  | 166   | 44.9     | 21.41                                |
| 2        | 511660005228          | SB                   | 166   | 52.28    | 21.41                                |
| 2        | 431014000048          | SBT                  | 101   | 0.48     | 21.39                                |
| 2        | 511010008106          | SB                   | 101   | 81.06    | 21.38                                |
| 2        | 511664103429          | SB                   | 166   | 34.29    | 21.37                                |
| 2        | 490580001783          | SLO                  | 58    | 17.83    | 21.36                                |
| 2        | 490580003758          | SLO                  | 58    | 37.58    | 21.36                                |
| 2        | 511010007259          | SB                   | 101   | 72.59    | 21.34                                |
| 2        | 491018004233          | SLO                  | 101   | 42.33    | 21.33                                |
| 2        | 490584002026          | SLO                  | 58    | 20.26    | 21.33                                |
| 2        | 511018003269          | SB                   | 101   | 32.69    | 21.29                                |
| 2        | 511660102976          | SB                   | 166   | 29.76    | 21.26                                |
| 3        | 490414000448          | SLO                  | 41    | 4.48     | 21.23                                |
| 3        | 361294000563          | SCR                  | 129   | 5.63     | 21.20                                |
| 3        | 511352100919          | SB                   | 135   | 9.19     | 21.17                                |
| 3        | 430254000299          | SBT                  | 25    | 2.99     | 21.17                                |
| 3        | 431014000282          | SBT                  | 101   | 2.82     | 21.16                                |
| 3        | 511660103092          | SB                   | 166   | 30.92    | 21.12                                |
| 3        | 511540001496          | SB                   | 154   | 14.96    | 21.12                                |
| 3        | 440010006050          | MON                  | 1     | 60.5     | 21.08                                |
| 3        | 491018102569          | SLO                  | 101   | 25.69    | 21.05                                |
| 3        | 490464004255          | SLO                  | 46    | 42.55    | 21.03                                |
| 3        | 441984001636          | MON                  | 198   | 16.36    | 21.01                                |
| 3        | 511010008106          | SB                   | 101   | 81.06    | 21.01                                |
| 3        | 490014002038          | SLO                  | 1     | 20.38    | 21.00                                |
| 3        | 491018005255          | SLO                  | 101   | 52.55    | 20.98                                |
| 3        | 441014101356          | MON                  | 101   | 13.56    | 20.97                                |
| 3        | 441014101269          | MON                  | 101   | 12.69    | 20.96                                |
| 3        | 441014101356          | MON                  | 101   | 13.56    | 20.96                                |
| 3        | 490414000288          | SLO                  | 41    | 2.88     | 20.95                                |
| 3        | 441014101209          | MON                  | 101   | 12.09    | 20.95                                |
| 3        | 440016007589          | MON                  | 1     | 75.89    | 20.95                                |
| 3        | 441014101331          | MON                  | 101   | 13.31    | 20.95                                |
| 3        | 441014101269          | MON                  | 101   | 12.69    | 20.95                                |
| 3        | 440250000812          | MON                  | 25    | 8.12     | 20.95                                |
| 3        | 441014101209          | MON                  | 101   | 12.09    | 20.94                                |
| 3        | 441014101331          | MON                  | 101   | 13.31    | 20.94                                |
| 3        | 441014101320          | MON                  | 101   | 13.2     | 20.92                                |



| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 3        | 441014101320          | MON                  | 101   | 13.2     | 20.90                                |
| 3        | 490464004229          | SLO                  | 46    | 42.29    | 20.89                                |
| 3        | 511660103228          | SB                   | 166   | 32.28    | 20.88                                |
| 3        | 362360000620          | SCR                  | 236   | 6.2      | 20.88                                |
| 3        | 441014100997          | MON                  | 101   | 9.97     | 20.87                                |
| 3        | 441014100997          | MON                  | 101   | 9.97     | 20.87                                |
| 3        | 490414000201          | SLO                  | 41    | 2.01     | 20.79                                |
| 3        | 490584002042          | SLO                  | 58    | 20.42    | 20.77                                |
| 3        | 490414000134          | SLO                  | 41    | 1.34     | 20.76                                |
| 3        | 511540002379          | SB                   | 154   | 23.79    | 20.75                                |
| 3        | 491014102493          | SLO                  | 101   | 24.93    | 20.74                                |
| 3        | 490414000250          | SLO                  | 41    | 2.5      | 20.72                                |
| 3        | 440016107730          | MON                  | 1     | 77.3     | 20.70                                |
| 3        | 441018100967          | MON                  | 101   | 9.67     | 20.66                                |
| 3        | 510010100533          | SB                   | 1     | 5.33     | 20.64                                |
| 3        | 441018100967          | MON                  | 101   | 9.67     | 20.64                                |
| 3        | 441984001418          | MON                  | 198   | 14.18    | 20.60                                |
| 3        | 490410000920          | SLO                  | 41    | 9.2      | 20.58                                |
| 3        | 491014003127          | SLO                  | 101   | 31.27    | 20.56                                |
| 3        | 490410002717          | SLO                  | 41    | 27.17    | 20.56                                |
| 3        | 490464004335          | SLO                  | 46    | 43.35    | 20.54                                |
| 3        | 491664005033          | SLO                  | 166   | 50.33    | 20.52                                |
| 3        | 491014003192          | SLO                  | 101   | 31.92    | 20.51                                |
| 3        | 491014003192          | SLO                  | 101   | 31.92    | 20.51                                |
| 3        | 441980002022          | MON                  | 198   | 20.22    | 20.51                                |
| 3        | 441980002034          | MON                  | 198   | 20.34    | 20.50                                |
| 3        | 431012000152          | SBT                  | 101   | 1.52     | 20.48                                |
| 3        | 511014006209          | SB                   | 101   | 62.09    | 20.48                                |
| 3        | 490410002381          | SLO                  | 41    | 23.81    | 20.48                                |
| 3        | 511014006209          | SB                   | 101   | 62.09    | 20.47                                |
| 3        | 441980002285          | MON                  | 198   | 22.85    | 20.46                                |
| 3        | 361294000952          | SCR                  | 129   | 9.52     | 20.42                                |
| 3        | 491010000052          | SLO                  | 101   | 0.52     | 20.41                                |
| 3        | 511010006087          | SB                   | 101   | 60.87    | 20.39                                |
| 3        | 511010006087          | SB                   | 101   | 60.87    | 20.37                                |
| 3        | 441980001921          | MON                  | 198   | 19.21    | 20.37                                |
| 3        | 360090001439          | SCR                  | 9     | 14.39    | 20.35                                |
| 3        | 490584002199          | SLO                  | 58    | 21.99    | 20.34                                |
| 3        | 441980002300          | MON                  | 198   | 23       | 20.34                                |
| 3        | 491014003990          | SLO                  | 101   | 39.9     | 20.32                                |
| 3        | 491014004020          | SLO                  | 101   | 40.2     | 20.32                                |
| 3        |                       |                      |       |          |                                      |



| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 3        | 440684000813          | MON                  | 68    | 8.13     | 20.27                                |
| 3        | 511016104853          | SB                   | 101   | 48.53    | 20.26                                |
| 3        | 490580001612          | SLO                  | 58    | 16.12    | 20.26                                |
| 3        | 440680001248          | MON                  | 68    | 12.48    | 20.24                                |
| 3        | 491014102303          | SLO                  | 101   | 23.03    | 20.18                                |
| 3        | 490584001672          | SLO                  | 58    | 16.72    | 20.17                                |
| 3        | 490410002966          | SLO                  | 41    | 29.66    | 20.13                                |
| 3        | 441014101102          | MON                  | 101   | 11.02    | 20.11                                |
| 3        | 490584001448          | SLO                  | 58    | 14.48    | 20.11                                |
| 3        | 491664004923          | SLO                  | 166   | 49.23    | 20.08                                |
| 3        | 490414000512          | SLO                  | 41    | 5.12     | 20.08                                |
| 3        | 492290000009          | SLO                  | 229   | 0.09     | 20.08                                |
| 3        | 492290000001          | SLO                  | 229   | 0.01     | 20.06                                |
| 3        | 360016100767          | SCR                  | 1     | 7.67     | 20.04                                |
| 3        | 490460101030          | SLO                  | 46    | 10.3     | 19.97                                |
| 3        | 490584002008          | SLO                  | 58    | 20.08    | 19.97                                |
| 3        | 510010803047          | SB                   | 1     | 30.47    | 19.94                                |
| 3        | 510010803047          | SB                   | 1     | 30.47    | 19.94                                |
| 3        | 511010006250          | SB                   | 101   | 62.5     | 19.90                                |
| 3        | 441014101371          | MON                  | 101   | 13.71    | 19.89                                |
| 3        | 490464101370          | SLO                  | 46    | 13.7     | 19.87                                |
| 3        | 511354000307          | SB                   | 135   | 3.07     | 19.86                                |
| 3        | 490464101138          | SLO                  | 46    | 11.38    | 19.82                                |
| 3        | 511544003012          | SB                   | 154   | 30.12    | 19.77                                |
| 3        | 490464101270          | SLO                  | 46    | 12.7     | 19.75                                |
| 3        | 490580000953          | SLO                  | 58    | 9.53     | 19.74                                |
| 3        | 490410002271          | SLO                  | 41    | 22.71    | 19.62                                |
| 3        | 490584001752          | SLO                  | 58    | 17.52    | 19.54                                |
| 3        | 490584003327          | SLO                  | 58    | 33.27    | 19.52                                |
| 3        | 511540101058          | SB                   | 154   | 10.58    | 19.52                                |
| 3        | 511920001136          | SB                   | 192   | 11.36    | 19.45                                |
| 3        | 511546002560          | SB                   | 154   | 25.6     | 19.43                                |
| 3        | 491016102005          | SLO                  | 101   | 20.05    | 19.43                                |
| 3        | 490580000074          | SLO                  | 58    | 0.74     | 19.39                                |
| 3        | 490010103547          | SLO                  | 1     | 35.47    | 19.38                                |
| 3        | 490014004362          | SLO                  | 1     | 43.62    | 19.37                                |
| 3        | 490010002186          | SLO                  | 1     | 21.86    | 19.35                                |
| 3        | 490414001003          | SLO                  | 41    | 10.03    | 19.33                                |
| 3        | 440010005293          | MON                  | 1     | 52.93    | 19.28                                |
| 3        | 511014005974          | SB                   | 101   | 59.74    | 19.25                                |
| 3        | 490010002186          | SLO                  | 1     | 21.86    | 19.24                                |
| 3        | 490410000823          | SLO                  | 41    | 8.23     | 19.19                                |



| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 3        | 511350100956          | SB                   | 135   | 9.56     | 19.19                                |
| 3        | 511350100956          | SB                   | 135   | 9.56     | 19.19                                |
| 3        | 440010000946          | MON                  | 1     | 9.46     | 19.18                                |
| 3        | 490414002222          | SLO                  | 41    | 22.22    | 19.15                                |
| 3        | 490580002439          | SLO                  | 58    | 24.39    | 19.10                                |
| 3        | 490584002922          | SLO                  | 58    | 29.22    | 19.09                                |
| 3        | 491014005520          | SLO                  | 101   | 55.2     | 19.05                                |
| 3        | 512464102661          | SB                   | 246   | 26.61    | 19.05                                |
| 3        | 431012000157          | SBT                  | 101   | 1.57     | 19.04                                |
| 3        | 490464004019          | SLO                  | 46    | 40.19    | 19.02                                |
| 3        | 491014005438          | SLO                  | 101   | 54.38    | 19.02                                |
| 3        | 511544002767          | SB                   | 154   | 27.67    | 18.99                                |
| 3        | 441014104397          | MON                  | 101   | 43.97    | 18.99                                |
| 3        | 490010002194          | SLO                  | 1     | 21.94    | 18.97                                |
| 3        | 490580000048          | SLO                  | 58    | 0.48     | 18.96                                |
| 3        | 490460002997          | SLO                  | 46    | 29.97    | 18.96                                |
| 3        | 491014005520          | SLO                  | 101   | 55.2     | 18.94                                |
| 3        | 362364001328          | SCR                  | 236   | 13.28    | 18.94                                |
| 3        | 511924000000          | SB                   | 192   | 0        | 18.94                                |
| 3        | 490014001868          | SLO                  | 1     | 18.68    | 18.93                                |
| 3        | 511924000037          | SB                   | 192   | 0.37     | 18.93                                |
| 3        | 360090001858          | SCR                  | 9     | 18.58    | 18.92                                |
| 3        | 491014005438          | SLO                  | 101   | 54.38    | 18.92                                |
| 3        | 440016107934          | MON                  | 1     | 79.34    | 18.89                                |
| 3        | 491018005465          | SLO                  | 101   | 54.65    | 18.86                                |
| 3        | 491018005465          | SLO                  | 101   | 54.65    | 18.86                                |
| 3        | 441014101457          | MON                  | 101   | 14.57    | 18.84                                |
| 3        | 441014101457          | MON                  | 101   | 14.57    | 18.83                                |
| 3        | 511350100930          | SB                   | 135   | 9.3      | 18.82                                |
| 3        | 511016100779          | SB                   | 101   | 7.79     | 18.80                                |
| 3        | 511016100779          | SB                   | 101   | 7.79     | 18.80                                |
| 3        | 511548100813          | SB                   | 154   | 8.13     | 18.71                                |
| 3        | 440016107934          | MON                  | 1     | 79.34    | 18.71                                |
| 3        | 491018005255          | SLO                  | 101   | 52.55    | 18.70                                |
| 3        | 511544100895          | SB                   | 154   | 8.95     | 18.70                                |
| 3        | 491010001067          | SLO                  | 101   | 10.67    | 18.69                                |
| 3        | 511544100907          | SB                   | 154   | 9.07     | 18.69                                |
| 3        | 491014102303          | SLO                  | 101   | 23.03    | 18.67                                |
| 3        | 490014004457          | SLO                  | 1     | 44.57    | 18.67                                |
| 3        | 431014000048          | SBT                  | 101   | 0.48     | 18.66                                |
| 3        | 511350801113          | SB                   | 135   | 11.13    | 18.64                                |
| 3        | 511548100813          | SB                   | 154   | 8.13     | 18.64                                |





| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 3        | 511544100778          | SB                   | 154   | 7.78     | 18.59                                |
| 4        | 360014100173          | SCR                  | 1     | 1.73     | 18.58                                |
| 4        | 360014100173          | SCR                  | 1     | 1.73     | 18.58                                |
| 4        | 511010003430          | SB                   | 101   | 34.3     | 18.50                                |
| 4        | 441014104517          | MON                  | 101   | 45.17    | 18.48                                |
| 4        | 491018005131          | SLO                  | 101   | 51.31    | 18.48                                |
| 4        | 490410002909          | SLO                  | 41    | 29.09    | 18.46                                |
| 4        | 362364000072          | SCR                  | 236   | 0.72     | 18.45                                |
| 4        | 511544100071          | SB                   | 154   | 0.71     | 18.41                                |
| 4        | 431012000162          | SBT                  | 101   | 1.62     | 18.40                                |
| 4        | 490414000721          | SLO                  | 41    | 7.21     | 18.40                                |
| 4        | 491018005131          | SLO                  | 101   | 51.31    | 18.33                                |
| 4        | 431014000282          | SBT                  | 101   | 2.82     | 18.33                                |
| 4        | 512464003429          | SB                   | 246   | 34.29    | 18.32                                |
| 4        | 362364000228          | SCR                  | 236   | 2.28     | 18.25                                |
| 4        | 490414001233          | SLO                  | 41    | 12.33    | 18.23                                |
| 4        | 441014104397          | MON                  | 101   | 43.97    | 18.23                                |
| 4        | 490464003826          | SLO                  | 46    | 38.26    | 18.22                                |
| 4        | 491012001068          | SLO                  | 101   | 10.68    | 18.21                                |
| 4        | 490410001421          | SLO                  | 41    | 14.21    | 18.20                                |
| 4        | 490410002345          | SLO                  | 41    | 23.45    | 18.20                                |
| 4        | 490414001193          | SLO                  | 41    | 11.93    | 18.19                                |
| 4        | 360091201789          | SCR                  | 9     | 17.89    | 18.18                                |
| 4        | 490410001375          | SLO                  | 41    | 13.75    | 18.18                                |
| 4        | 490410002547          | SLO                  | 41    | 25.47    | 18.17                                |
| 4        | 441980002322          | MON                  | 198   | 23.22    | 18.10                                |
| 4        | 490014004712          | SLO                  | 1     | 47.12    | 18.10                                |
| 4        | 511010003981          | SB                   | 101   | 39.81    | 18.09                                |
| 4        | 362364000084          | SCR                  | 236   | 0.84     | 18.08                                |
| 4        | 490410001466          | SLO                  | 41    | 14.66    | 18.07                                |
| 4        | 440010003164          | MON                  | 1     | 31.64    | 18.05                                |
| 4        | 491018004288          | SLO                  | 101   | 42.88    | 18.02                                |
| 4        | 360174000352          | SCR                  | 17    | 3.52     | 18.02                                |
| 4        | 490414001086          | SLO                  | 41    | 10.86    | 18.01                                |
| 4        | 490410001072          | SLO                  | 41    | 10.72    | 17.96                                |
| 4        | 490464003853          | SLO                  | 46    | 38.53    | 17.96                                |
| 4        | 490460003763          | SLO                  | 46    | 37.63    | 17.95                                |
| 4        | 490464101215          | SLO                  | 46    | 12.15    | 17.93                                |
| 4        | 490014004434          | SLO                  | 1     | 44.34    | 17.93                                |
| 4        | 490410001421          | SLO                  | 41    | 14.21    | 17.91                                |
| 4        | 440010005338          | MON                  | 1     | 53.38    | 17.90                                |
| 4        | 490460003769          | SLO                  | 46    | 37.69    | 17.89                                |



| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 4        | 512460101938          | SB                   | 246   | 19.38    | 17.87                                |
| 4        | 491010003053          | SLO                  | 101   | 30.53    | 17.87                                |
| 4        | 360094001930          | SCR                  | 9     | 19.3     | 17.83                                |
| 4        | 512468002884          | SB                   | 246   | 28.84    | 17.82                                |
| 4        | 511010004377          | SB                   | 101   | 43.77    | 17.75                                |
| 4        | 431564000995          | SBT                  | 156   | 9.95     | 17.73                                |
| 4        | 491014003021          | SLO                  | 101   | 30.21    | 17.71                                |
| 4        | 511014005903          | SB                   | 101   | 59.03    | 17.69                                |
| 4        | 511544103055          | SB                   | 154   | 30.55    | 17.67                                |
| 4        | 490414001021          | SLO                  | 41    | 10.21    | 17.66                                |
| 4        | 511014005903          | SB                   | 101   | 59.03    | 17.63                                |
| 4        | 491014005925          | SLO                  | 101   | 59.25    | 17.63                                |
| 4        | 362360000342          | SCR                  | 236   | 3.42     | 17.63                                |
| 4        | 511014004217          | SB                   | 101   | 42.17    | 17.63                                |
| 4        | 441984002504          | MON                  | 198   | 25.04    | 17.62                                |
| 4        | 490010006827          | SLO                  | 1     | 68.27    | 17.61                                |
| 4        | 491018004288          | SLO                  | 101   | 42.88    | 17.60                                |
| 4        | 490464101946          | SLO                  | 46    | 19.46    | 17.59                                |
| 4        | 490464004551          | SLO                  | 46    | 45.51    | 17.56                                |
| 4        | 441980002186          | MON                  | 198   | 21.86    | 17.54                                |
| 4        | 441560100059          | MON                  | 156   | 0.59     | 17.53                                |
| 4        | 490460003595          | SLO                  | 46    | 35.95    | 17.53                                |
| 4        | 511354000431          | SB                   | 135   | 4.31     | 17.53                                |
| 4        | 511010003981          | SB                   | 101   | 39.81    | 17.50                                |
| 4        | 490010002274          | SLO                  | 1     | 22.74    | 17.49                                |
| 4        | 441014104516          | MON                  | 101   | 45.16    | 17.48                                |
| 4        | 440250000304          | MON                  | 25    | 3.04     | 17.45                                |
| 4        | 490460003442          | SLO                  | 46    | 34.42    | 17.45                                |
| 4        | 511660005638          | SB                   | 166   | 56.38    | 17.44                                |
| 4        | 491014006170          | SLO                  | 101   | 61.7     | 17.44                                |
| 4        | 490460003577          | SLO                  | 46    | 35.77    | 17.44                                |
| 4        | 362360000271          | SCR                  | 236   | 2.71     | 17.42                                |
| 4        | 511660005334          | SB                   | 166   | 53.34    | 17.36                                |
| 4        | 491016001516          | SLO                  | 101   | 15.16    | 17.34                                |
| 4        | 491016001516          | SLO                  | 101   | 15.16    | 17.29                                |
| 4        | 511350801113          | SB                   | 135   | 11.13    | 17.29                                |
| 4        | 511660006005          | SB                   | 166   | 60.05    | 17.23                                |
| 4        | 441560100059          | MON                  | 156   | 0.59     | 17.21                                |
| 4        | 511014007938          | SB                   | 101   | 79.38    | 17.17                                |
| 4        | 511660005776          | SB                   | 166   | 57.76    | 17.17                                |
| 4        | 490410002624          | SLO                  | 41    | 26.24    | 17.12                                |
| 4        | 441980002365          | MON                  | 198   | 23.65    | 17.11                                |





| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 4        | 490464004776          | SLO                  | 46    | 47.76    | 17.11                                |
| 4        | 490410002606          | SLO                  | 41    | 26.06    | 17.10                                |
| 4        | 511660005562          | SB                   | 166   | 55.62    | 17.09                                |
| 4        | 491016102005          | SLO                  | 101   | 20.05    | 17.08                                |
| 4        | 491014006024          | SLO                  | 101   | 60.24    | 17.07                                |
| 4        | 491016001472          | SLO                  | 101   | 14.72    | 17.05                                |
| 4        | 491016001472          | SLO                  | 101   | 14.72    | 17.05                                |
| 4        | 490460003254          | SLO                  | 46    | 32.54    | 17.03                                |
| 4        | 490414000410          | SLO                  | 41    | 4.1      | 17.00                                |
| 4        | 490460003373          | SLO                  | 46    | 33.73    | 16.98                                |
| 4        | 511660005582          | SB                   | 166   | 55.82    | 16.96                                |
| 4        | 511010003524          | SB                   | 101   | 35.24    | 16.96                                |
| 4        | 490414000985          | SLO                  | 41    | 9.85     | 16.94                                |
| 4        | 360094001139          | SCR                  | 9     | 11.39    | 16.91                                |
| 4        | 511660005967          | SB                   | 166   | 59.67    | 16.88                                |
| 4        | 490016103583          | SLO                  | 1     | 35.83    | 16.87                                |
| 4        | 511660005812          | SB                   | 166   | 58.12    | 16.82                                |
| 4        | 491016006454          | SLO                  | 101   | 64.54    | 16.81                                |
| 4        | 490460003294          | SLO                  | 46    | 32.94    | 16.80                                |
| 4        | 441014100283          | MON                  | 101   | 2.83     | 16.76                                |
| 4        | 490014004750          | SLO                  | 1     | 47.5     | 16.76                                |
| 4        | 511010007541          | SB                   | 101   | 75.41    | 16.76                                |
| 4        | 491018006722          | SLO                  | 101   | 67.22    | 16.76                                |
| 4        | 491014006451          | SLO                  | 101   | 64.51    | 16.76                                |
| 4        | 431560000215          | SBT                  | 156   | 2.15     | 16.75                                |
| 4        | 491664004803          | SLO                  | 166   | 48.03    | 16.70                                |
| 4        | 361294000617          | SCR                  | 129   | 6.17     | 16.69                                |
| 4        | 511660005276          | SB                   | 166   | 52.76    | 16.67                                |
| 4        | 441014100283          | MON                  | 101   | 2.83     | 16.64                                |
| 4        | 440250000844          | MON                  | 25    | 8.44     | 16.64                                |
| 4        | 490016103583          | SLO                  | 1     | 35.83    | 16.63                                |
| 4        | 490410002997          | SLO                  | 41    | 29.97    | 16.58                                |
| 4        | 490010002324          | SLO                  | 1     | 23.24    | 16.56                                |
| 4        | 511010006708          | SB                   | 101   | 67.08    | 16.50                                |
| 4        | 511014006752          | SB                   | 101   | 67.52    | 16.46                                |
| 4        | 490464102101          | SLO                  | 46    | 21.01    | 16.43                                |
| 4        | 441014100763          | MON                  | 101   | 7.63     | 16.38                                |
| 4        | 441014100763          | MON                  | 101   | 7.63     | 16.38                                |
| 4        | 491018006505          | SLO                  | 101   | 65.05    | 16.38                                |
| 4        | 511016003640          | SB                   | 101   | 36.4     | 16.35                                |
| 4        | 441980002431          | MON                  | 198   | 24.31    | 16.33                                |
| 4        | 491010000991          | SLO                  | 101   | 9.91     | 16.31                                |



| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 4        | 491010001060          | SLO                  | 101   | 10.6     | 16.29                                |
| 4        | 492276100900          | SLO                  | 227   | 9        | 16.27                                |
| 4        | 511350801021          | SB                   | 135   | 10.21    | 16.23                                |
| 4        | 362364000208          | SCR                  | 236   | 2.08     | 16.16                                |
| 4        | 490410001161          | SLO                  | 41    | 11.61    | 16.16                                |
| 4        | 491010001174          | SLO                  | 101   | 11.74    | 16.07                                |
| 4        | 441018100778          | MON                  | 101   | 7.78     | 16.07                                |
| 4        | 441018100778          | MON                  | 101   | 7.78     | 16.05                                |
| 4        | 491012000983          | SLO                  | 101   | 9.83     | 16.01                                |
| 4        | 441018101531          | MON                  | 101   | 15.31    | 16.01                                |
| 4        | 511010003873          | SB                   | 101   | 38.73    | 15.98                                |
| 4        | 491012001056          | SLO                  | 101   | 10.56    | 15.97                                |
| 4        | 491018006722          | SLO                  | 101   | 67.22    | 15.93                                |
| 4        | 490410002873          | SLO                  | 41    | 28.73    | 15.93                                |
| 4        | 490410002885          | SLO                  | 41    | 28.85    | 15.88                                |
| 4        | 511010007541          | SB                   | 101   | 75.41    | 15.77                                |
| 4        | 511016001901          | SB                   | 101   | 19.01    | 15.77                                |
| 4        | 490414000969          | SLO                  | 41    | 9.69     | 15.73                                |
| 4        | 360094000642          | SCR                  | 9     | 6.42     | 15.63                                |
| 4        | 511016003085          | SB                   | 101   | 30.85    | 15.63                                |
| 4        | 441014101828          | MON                  | 101   | 18.28    | 15.61                                |
| 4        | 490410000858          | SLO                  | 41    | 8.58     | 15.57                                |
| 4        | 431564000203          | SBT                  | 156   | 2.03     | 15.55                                |
| 4        | 431564000203          | SBT                  | 156   | 2.03     | 15.54                                |
| 4        | 490010003145          | SLO                  | 1     | 31.45    | 15.54                                |
| 4        | 490010003145          | SLO                  | 1     | 31.45    | 15.54                                |
| 4        | 360010100351          | SCR                  | 1     | 3.51     | 15.53                                |
| 4        | 490410000999          | SLO                  | 41    | 9.99     | 15.52                                |
| 4        | 511354000583          | SB                   | 135   | 5.83     | 15.48                                |
| 5        | 512464003221          | SB                   | 246   | 32.21    | 15.41                                |
| 5        | 511660005829          | SB                   | 166   | 58.29    | 15.36                                |
| 5        | 511012007705          | SB                   | 101   | 77.05    | 15.34                                |
| 5        | 490010004129          | SLO                  | 1     | 41.29    | 15.34                                |
| 5        | 511014007938          | SB                   | 101   | 79.38    | 15.34                                |
| 5        | 511660005848          | SB                   | 166   | 58.48    | 15.31                                |
| 5        | 512464003375          | SB                   | 246   | 33.75    | 15.27                                |
| 5        | 441014102490          | MON                  | 101   | 24.9     | 15.26                                |
| 5        | 490584004786          | SLO                  | 58    | 47.86    | 15.25                                |
| 5        | 491664004851          | SLO                  | 166   | 48.51    | 15.18                                |
| 5        | 511014006752          | SB                   | 101   | 67.52    | 15.18                                |
| 5        | 511660005427          | SB                   | 166   | 54.27    | 15.17                                |
| 5        | 511010004108          | SB                   | 101   | 41.08    | 15.13                                |





| Priority | Culvert System Number   | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-------------------------|----------------------|-------|----------|--------------------------------------|
| 5        | 511660005352            | SB                   | 166   | 53.52    | 15.11                                |
| 5        | 511010004173            | SB                   | 101   | 41.73    | 15.01                                |
| 5        | 361520000687            | SCR                  | 152   | 6.87     | 14.96                                |
| 5        | 511010004371            | SB                   | 101   | 43.71    | 14.95                                |
| 5        | 441014101657            | MON                  | 101   | 16.57    | 14.95                                |
| 5        | 492270100977            | SLO                  | 227   | 9.77     | 14.90                                |
| 5        | 511924000539            | SB                   | 192   | 5.39     | 14.89                                |
| 5        | 511350801021            | SB                   | 135   | 10.21    | 14.88                                |
| 5        | 511660005895            | SB                   | 166   | 58.95    | 14.81                                |
| 5        | 440010005513            | MON                  | 1     | 55.13    | 14.79                                |
| 5        | 440010005716            | MON                  | 1     | 57.16    | 14.72                                |
| 5        | 441014101934            | MON                  | 101   | 19.34    | 14.71                                |
| 5        | 362360000748            | SCR                  | 236   | 7.48     | 14.69                                |
| 5        | 441014101934            | MON                  | 101   | 19.34    | 14.67                                |
| 5        | 360094000594            | SCR                  | 9     | 5.94     | 14.65                                |
| 5        | 360010002189            | SCR                  | 1     | 21.89    | 14.56                                |
| 5        | 511010004417            | SB                   | 101   | 44.17    | 14.54                                |
| 5        | 490580005630            | SLO                  | 58    | 56.3     | 14.53                                |
| 5        | 492270100858            | SLO                  | 227   | 8.58     | 14.53                                |
| 5        | 360018001642            | SCR                  | 1     | 16.42    | 14.51                                |
| 5        | 360010002999            | SCR                  | 1     | 29.99    | 14.50                                |
| 5        | 441014102390            | MON                  | 101   | 23.9     | 14.38                                |
| 5        | 361520000598            | SCR                  | 152   | 5.98     | 14.21                                |
| 5        | 362360000851            | SCR                  | 236   | 8.51     | 14.21                                |
| 5        | 511010004108            | SB                   | 101   | 41.08    | 14.14                                |
| 5        | 431560000291            | SBT                  | 156   | 2.91     | 14.11                                |
| 5        | 360010100346            | SCR                  | 1     | 3.46     | 14.08                                |
| 5        | 441014101693            | MON                  | 101   | 16.93    | 14.07                                |
| 5        | 490414004650            | SLO                  | 41    | 46.5     | 14.06                                |
| 5        | 431560000291            | SBT                  | 156   | 2.91     | 14.03                                |
| 5        | 360010002304            | SCR                  | 1     | 23.04    | 14.02                                |
| 5        | 360094000545            | SCR                  | 9     | 5.45     | 14.01                                |
| 5        | 510010100385            | SB                   | 1     | 3.85     | 13.88                                |
| 5        | 441014102431            | MON                  | 101   | 24.31    | 13.86                                |
| 5        | 490410004553            | SLO                  | 41    | 45.53    | 13.86                                |
| 5        | 441014102431            | MON                  | 101   | 24.31    | 13.83                                |
| 5        | 441014102581            | MON                  | 101   | 25.81    | 13.80                                |
| 5        | 441014102490 MON 101    |                      | 24.9  | 13.77    |                                      |
| 5        | 441014102581 MON 101 25 |                      | 25.81 | 13.77    |                                      |
| 5        | 441014101640            | MON                  | 101   | 16.4     | 13.42                                |
| 5        | 441018102341            | MON                  | 101   | 23.41    | 13.40                                |
| 5        | 512464003322            | SB                   | 246   | 33.22    | 13.38                                |



| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 5        | 441014101657          | MON                  | 101   | 16.57    | 13.37                                |
| 5        | 441018102341          | MON                  | 101   | 23.41    | 13.37                                |
| 5        | 490010004200          | SLO                  | 1     | 42       | 13.07                                |
| 5        | 441016008622          | MON                  | 101   | 86.22    | 13.04                                |
| 5        | 511010004218          | SB                   | 101   | 42.18    | 13.02                                |
| 5        | 360010002385          | SCR                  | 1     | 23.85    | 12.92                                |
| 5        | 361520000560          | SCR                  | 152   | 5.6      | 12.74                                |
| 5        | 490330000399          | SLO                  | 33    | 3.99     | 12.33                                |
| 5        | 511010003430          | SB                   | 101   | 34.3     | 12.30                                |
| 5        | 511010003568          | SB                   | 101   | 35.68    | 12.20                                |
| 5        | 441464000215          | MON                  | 146   | 2.15     | 11.87                                |
| 5        | 511010004268          | SB                   | 101   | 42.68    | 11.65                                |
| 5        | 511664000890          | SB                   | 166   | 8.9      | 11.51                                |
| 5        | 490014004764          | SLO                  | 1     | 47.64    | 11.48                                |
| 5        | 360010002031          | SCR                  | 1     | 20.31    | 11.48                                |
| 5        | 360010003596          | SCR                  | 1     | 35.96    | 11.37                                |
| 5        | 511010004173          | SB                   | 101   | 41.73    | 11.21                                |
| 5        | 360094001090          | SCR                  | 9     | 10.9     | 11.20                                |
| 5        | 360170000249          | SCR                  | 17    | 2.49     | 11.13                                |
| 5        | 441014008717          | MON                  | 101   | 87.17    | 10.79                                |
| 5        | 511010002742          | SB                   | 101   | 27.42    | 10.69                                |
| 5        | 511010002742          | SB                   | 101   | 27.42    | 10.68                                |
| 5        | 511010007416          | SB                   | 101   | 74.16    | 10.38                                |
| 5        | 512464101539          | SB                   | 246   | 15.39    | 10.17                                |
| 5        | 511010000331          | SB                   | 101   | 3.31     | 10.17                                |
| 5        | 360010003125          | SCR                  | 1     | 31.25    | 10.14                                |
| 5        | 360016001250          | SCR                  | 1     | 12.5     | 10.06                                |
| 5        | 360010001504          | SCR                  | 1     | 15.04    | 10.04                                |
| 5        | 511010000331          | SB                   | 101   | 3.31     | 9.97                                 |
| 5        | 511016001015          | SB                   | 101   | 10.15    | 9.77                                 |
| 5        | 440010005364          | MON                  | 1     | 53.64    | 9.39                                 |
| 5        | 360010003415          | SCR                  | 1     | 34.15    | 9.36                                 |
| 5        | 441010006952          | MON                  | 101   | 69.52    | 9.34                                 |
| 5        | 511010007416          | SB                   | 101   | 74.16    | 9.27                                 |
| 5        | 511350000171          | SB                   | 135   | 1.71     | 9.21                                 |
| 5        | 511010007315          | SB                   | 101   | 73.15    | 9.11                                 |
| 5        | 511924000636          | SB                   | 192   | 6.36     | 8.89                                 |
| 5        | 511016001759          | SB                   | 101   | 17.59    | 8.89                                 |
| 5        | 511010007315          | SB                   | 101   | 73.15    | 8.89                                 |
| 5        | 511016001759          | SB                   | 101   | 17.59    | 8.83                                 |
| 5        | 511016001869          | SB                   | 101   | 18.69    | 8.75                                 |
| 5        | 511354000243          | SB                   | 135   | 2.43     | 8.69                                 |





| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 5        | 490464102062          | SLO                  | 46    | 20.62    | 8.68                                 |
| 5        | 511354000474          | SB                   | 135   | 4.74     | 8.68                                 |
| 5        | 441010007821          | MON                  | 101   | 78.21    | 8.60                                 |
| 5        | 441010007821          | MON                  | 101   | 78.21    | 8.60                                 |
| 5        | 511016001869          | SB                   | 101   | 18.69    | 8.57                                 |
| 5        | 441014008726          | MON                  | 101   | 87.26    | 8.55                                 |
| 5        | 511504000172          | SB                   | 150   | 1.72     | 8.43                                 |
| 5        | 360016001182          | SCR                  | 1     | 11.82    | 8.36                                 |
| 5        | 491010000905          | SLO                  | 101   | 9.05     | 8.36                                 |
| 5        | 511924000111          | SB                   | 192   | 1.11     | 8.33                                 |
| 5        | 491010000905          | SLO                  | 101   | 9.05     | 8.30                                 |
| 5        | 490010005440          | SLO                  | 1     | 54.4     | 8.17                                 |
| 5        | 441010006571          | MON                  | 101   | 65.71    | 8.16                                 |
| 5        | 440680002191          | MON                  | 68    | 21.91    | 7.78                                 |
| 5        | 511924000468          | SB                   | 192   | 4.68     | 7.39                                 |
| 5        | 441016007003          | MON                  | 101   | 70.03    | 7.10                                 |
| 5        | 511010002622          | SB                   | 101   | 26.22    | 7.08                                 |
| 5        | 441010007117          | MON                  | 101   | 71.17    | 7.04                                 |
| 5        | 511924001055          | SB                   | 192   | 10.55    | 6.90                                 |
| 5        | 490010004269          | SLO                  | 1     | 42.69    | 6.89                                 |
| 5        | 490010000132          | SLO                  | 1     | 1.32     | 6.88                                 |
| 5        | 511016002281          | SB                   | 101   | 22.81    | 6.81                                 |
| 5        | 511016002257          | SB                   | 101   | 22.57    | 6.64                                 |
| 5        | 441016007003          | MON                  | 101   | 70.03    | 6.60                                 |
| 5        | 511016002257          | SB                   | 101   | 22.57    | 6.55                                 |
| 5        | 441010103644          | MON                  | 101   | 36.44    | 6.52                                 |
| 5        | 511660006258          | SB                   | 166   | 62.58    | 6.39                                 |
| 5        | 511016002281          | SB                   | 101   | 22.81    | 6.26                                 |
| 5        | 360170000521          | SCR                  | 17    | 5.21     | 6.21                                 |
| 5        | 510330000536          | SB                   | 33    | 5.36     | 6.01                                 |
| 5        | 490414000075          | SLO                  | 41    | 0.75     | 5.90                                 |
| 5        | 490464102049          | SLO                  | 46    | 20.49    | 5.83                                 |
| 5        | 511920000626          | SB                   | 192   | 6.26     | 5.77                                 |
| 5        | 511924000198          | SB                   | 192   | 1.98     | 5.75                                 |
| 5        | 441014102823          | MON                  | 101   | 28.23    | 5.52                                 |
| 5        | 511924000133          | SB                   | 192   | 1.33     | 5.51                                 |
| 5        | 511920000383          | SB                   | 192   | 3.83     | 5.45                                 |
| 5        | 360170000521          | SCR                  | 17    | 5.21     | 5.06                                 |
| 5        | 511010002548          | SB                   | 101   | 25.48    | 5.03                                 |
| 5        | 441010103644          | MON                  | 101   | 36.44    | 5.01                                 |
| 5        | 512464101695          | SB                   | 246   | 16.95    | 4.85                                 |
| 5        | 511544103214          | SB                   | 154   | 32.14    | 4.65                                 |



## Caltrans Adaptation Priorities Report – District 5

| Priority | Culvert System Number | County <sup>47</sup> | Route | Postmile | Cross-Hazard<br>Prioritization Score |
|----------|-----------------------|----------------------|-------|----------|--------------------------------------|
| 5        | 511016003096          | SB                   | 101   | 30.96    | 4.53                                 |
| 5        | 511016003085          | SB                   | 101   | 30.85    | 4.51                                 |
| 5        | 511544100631          | SB                   | 154   | 6.31     | 4.47                                 |
| 5        | 511500000135          | SB                   | 150   | 1.35     | 4.04                                 |
| 5        | 511924000883          | SB                   | 192   | 8.83     | 4.00                                 |
| 5        | 491018006099          | SLO                  | 101   | 60.99    | 3.22                                 |
| 5        | 511924001743          | SB                   | 192   | 17.43    | 3.20                                 |
| 5        | 512460000856          | SB                   | 246   | 8.56     | 3.08                                 |
| 5        | 511924001744          | SB                   | 192   | 17.44    | 3.05                                 |
| 5        | 511014002629          | SB                   | 101   | 26.29    | 2.97                                 |
| 5        | 360010001986          | SCR                  | 1     | 19.86    | 2.90                                 |
| 5        | 360010002491          | SCR                  | 1     | 24.91    | 2.28                                 |
| 5        | 360010002433          | SCR                  | 1     | 24.33    | 1.87                                 |
| 5        | 360010002593          | SCR                  | 1     | 25.93    | 0.00                                 |



| TABLE 11: PRIORITIZATION OF ROADWAYS FOR       |  |
|------------------------------------------------|--|
| DETAILED CLIMATE CHANGE ADAPTATION ASSESSMENTS |  |

| Priority | County <sup>48</sup> | Route | From Postmile / To Postmile | Carriageway <sup>49</sup> | Average Cross-Hazard<br>Prioritization Score <sup>50</sup> |
|----------|----------------------|-------|-----------------------------|---------------------------|------------------------------------------------------------|
| 1        | MON                  | 156   | 156 R0.339 / 156 R1.109     | Р                         | 59.84                                                      |
| 1        | SLO                  | 1     | 1 14.752 / 1 15.119         | S                         | 59.62                                                      |
| 1        | MON                  | 156   | 156 R0.342 / 156 R0.944     | S                         | 55.71                                                      |
| 1        | MON                  | 1     | 1 14.715 / 1 20.936         | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 2.82 / 1 13.699           | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 28.065 / 1 28.833         | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 51.175 / 1 52.409         | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 53.839 / 1 58.782         | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 63.071 / 1 63.071         | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 69.665 / 1 71.456         | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 71.74 / 1 73.143          | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 94.134 / 1 96.099         | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 96.36 / 1 97.562          | Р                         | 53.18                                                      |
| 1        | MON                  | 1     | 1 97.6 / 1 98.349           | Р                         | 53.18                                                      |
| 1        | SCR                  | 1     | 1 36.411 / 1 37.45          | Р                         | 53.18                                                      |
| 1        | SLO                  | 1     | 1 14.752 / 1 15.115         | Р                         | 53.18                                                      |
| 1        | SLO                  | 1     | 1 15.202 / 1 15.316         | Р                         | 53.18                                                      |
| 1        | SLO                  | 1     | 1 49.01 / 1 50.121          | Р                         | 53.18                                                      |
| 1        | SLO                  | 1     | 1 55.074 / 1 56.252         | Р                         | 53.18                                                      |
| 1        | SLO                  | 1     | 1 58.248 / 1 63.772         | Р                         | 53.18                                                      |
| 1        | SLO                  | 1     | 1 R65.218 / 1 R67.291       | Р                         | 53.18                                                      |
| 1        | SB                   | 166   | 166 64.421 / 166 73.008     | Р                         | 50.65                                                      |
| 1        | SB                   | 166   | 166 64.3 / 166 64.796       | S                         | 50.54                                                      |
| 1        | SB                   | 166   | 166 65.146 / 166 65.273     | S                         | 50.54                                                      |
| 1        | SB                   | 166   | 166 69.073 / 166 69.183     | S                         | 50.54                                                      |
| 1        | MON                  | 198   | 198 18.379 / 198 25.786     | Р                         | 50.47                                                      |
| 1        | VEN                  | 33    | 33 57.504 / 33 1.943        | Р                         | 50.47                                                      |
| 1        | SLO                  | 58    | 58 52.808 / KER 58 0.001    | Р                         | 50.44                                                      |
| 1        | SLO                  | 58    | 58 D1.351 / KER 58 2.7      | Р                         | 50.44                                                      |
| 1        | MON                  | 101   | 101 51.233 / 101 53.104     | S                         | 36.29                                                      |
| 1        | MON                  | 101   | 101 53.362 / 101 54.653     | S                         | 36.29                                                      |
| 1        | MON                  | 101   | 101 57.085 / 101 60.397     | S                         | 36.29                                                      |
| 1        | MON                  | 101   | 101 R7.955 / 101 R15.467    | S                         | 36.29                                                      |

<sup>&</sup>lt;sup>48</sup> MON = Monterey, SB = Santa Barbara, SBT = San Benito, SCR = Santa Cruz, SLO = San Luis Obispo

<sup>&</sup>lt;sup>50</sup> The average of the cross-hazard prioritization scores amongst all the abutting small segments on the same route sharing a common priority level that were aggregated to form the longer segments listed in this table.



<sup>&</sup>lt;sup>49</sup> Caltrans' alignment codes designate the carriageway on divided roadways: "P" always represents northbound or eastbound carriageways whereas "S" always represents southbound or westbound carriageways. Undivided roadways are always indicated with a "P".

| Priority | County <sup>48</sup> | Route | From Postmile / To Postmile | Carriageway <sup>49</sup> | Average Cross-Hazard<br>Prioritization Score <sup>50</sup> |
|----------|----------------------|-------|-----------------------------|---------------------------|------------------------------------------------------------|
| 1        | SB                   | 101   | 101 11.761 / 101 12.421     | S                         | 36.29                                                      |
| 1        | SB                   | 101   | 101 3.643 / 101 R5.3        | S                         | 36.29                                                      |
| 1        | SLO                  | 101   | 101 51.441 / 101 59.909     | S                         | 36.29                                                      |
| 1        | SLO                  | 101   | 101 63.74 / 101 67.282      | S                         | 36.29                                                      |
| 1        | MON                  | 101   | 101 51.225 / 101 53.105     | Р                         | 36.27                                                      |
| 1        | MON                  | 101   | 101 53.359 / 101 54.787     | Р                         | 36.27                                                      |
| 1        | MON                  | 101   | 101 57.079 / 101 60.399     | Р                         | 36.27                                                      |
| 1        | MON                  | 101   | 101 R8.168 / 101 R15.464    | Р                         | 36.27                                                      |
| 1        | SB                   | 101   | 101 12.014 / 101 12.136     | Р                         | 36.27                                                      |
| 1        | SB                   | 101   | 101 3.646 / 101 R5.297      | Р                         | 36.27                                                      |
| 1        | SLO                  | 101   | 101 51.456 / 101 59.909     | Р                         | 36.27                                                      |
| 1        | SLO                  | 101   | 101 63.738 / 101 67.241     | Р                         | 36.27                                                      |
| 1        | SLO                  | 46    | 46 29.761 / 46 40.883       | S                         | 34.74                                                      |
| 1        | SLO                  | 46    | 46 51.427 / 46 52.834       | S                         | 34.74                                                      |
| 1        | SLO                  | 46    | 46 29.761 / 46 40.623       | Р                         | 34.57                                                      |
| 1        | SLO                  | 46    | 46 50.852 / 46 55.106       | Р                         | 34.57                                                      |
| 2        | SLO                  | 41    | 41 43.85 / 41 47.971        | Р                         | 33.14                                                      |
| 2        | SLO                  | 46    | 46 55.106 / 46 58.303       | Р                         | 31.48                                                      |
| 2        | SLO                  | 46    | 46 R17.797 / 46 R21.969     | Р                         | 31.48                                                      |
| 2        | SB                   | 154   | 154 R11.38 / 154 16.947     | Р                         | 31.48                                                      |
| 2        | MON                  | 101   | 101 53.104 / 101 53.362     | S                         | 30.70                                                      |
| 2        | MON                  | 101   | 101 60.397 / 101 66.402     | S                         | 30.70                                                      |
| 2        | MON                  | 101   | 101 R15.467 / 101 R25.778   | S                         | 30.70                                                      |
| 2        | MON                  | 101   | 101 R25.809 / 101 R28.756   | S                         | 30.70                                                      |
| 2        | SB                   | 101   | 101 3.057 / 101 3.643       | S                         | 30.70                                                      |
| 2        | SB                   | 101   | 101 32.839 / 101 33.864     | S                         | 30.70                                                      |
| 2        | SB                   | 101   | 101 R8.273 / 101 8.876      | S                         | 30.70                                                      |
| 2        | SLO                  | 101   | 101 59.909 / 101 63.74      | S                         | 30.70                                                      |
| 2        | SLO                  | 101   | 101 67.282 / 101 R7.955     | S                         | 30.70                                                      |
| 2        | MON                  | 68    | 68 0 / 68 0.224             | Р                         | 30.60                                                      |
| 2        | SB                   | 166   | 166 59.861 / 166 64.421     | Р                         | 30.49                                                      |
| 2        | SLO                  | 166   | 166 73.008 / 166 74.718     | Р                         | 30.49                                                      |
| 2        | MON                  | 101   | 101 53.105 / 101 53.359     | Р                         | 30.47                                                      |
| 2        | MON                  | 101   | 101 60.399 / 101 66.398     | Р                         | 30.47                                                      |
| 2        | MON                  | 101   | 101 R15.464 / 101 R25.754   | Р                         | 30.47                                                      |
| 2        | MON                  | 101   | 101 R25.811 / 101 R28.761   | Р                         | 30.47                                                      |
| 2        | SB                   | 101   | 101 11.404 / 101 12.014     | Р                         | 30.47                                                      |
| 2        | SB                   | 101   | 101 3.059 / 101 3.646       | Р                         | 30.47                                                      |
| 2        | SLO                  | 101   | 101 59.909 / 101 63.738     | Р                         | 30.47                                                      |
| 2        | SLO                  | 101   | 101 67.241 / 101 R8.168     | Р                         | 30.47                                                      |





| Priority | County <sup>48</sup> | Route | From Postmile / To Postmile | Carriageway <sup>49</sup> | Average Cross-Hazard<br>Prioritization Score <sup>50</sup> |
|----------|----------------------|-------|-----------------------------|---------------------------|------------------------------------------------------------|
| 2        | MON                  | 25    | 250/251.119                 | Р                         | 30.32                                                      |
| 2        | SBT                  | 25    | T 25 13.973 / T 25 26.059   | Р                         | 30.32                                                      |
| 2        | SB/SLO               | 33    | 33 1.943 / 33 4.872         | Р                         | 30.31                                                      |
| 2        | MON                  | 198   | 198 9.157 / 198 18.379      | Р                         | 30.30                                                      |
| 2        | MON/SBT              | 146   | 146 1.999 / T 146 10.19     | Р                         | 30.25                                                      |
| 2        | SBT                  | 146   | T 146 12.71 / T 146 15.152  | Р                         | 30.25                                                      |
| 2        | SLO                  | 1     | 1 15.119 / 1 15.196         | S                         | 29.36                                                      |
| 2        | MON                  | 1     | 1 25.146 / 1 28.065         | Р                         | 29.21                                                      |
| 2        | MON                  | 1     | 1 28.833 / 1 30.724         | Р                         | 29.21                                                      |
| 2        | MON                  | 1     | 1 32.347 / 1 33.401         | Р                         | 29.21                                                      |
| 2        | MON                  | 1     | 1 39.087 / 1 39.724         | Р                         | 29.21                                                      |
| 2        | MON                  | 1     | 1 39.801 / 1 42.463         | Р                         | 29.21                                                      |
| 2        | MON                  | 1     | 1 48.737 / 1 50.631         | Р                         | 29.21                                                      |
| 2        | MON                  | 1     | 1 58.83 / 1 60.197          | Р                         | 29.21                                                      |
| 2        | MON                  | 1     | 1 62.434 / 1 63.071         | Р                         | 29.21                                                      |
| 2        | MON                  | 1     | 1 63.071 / 1 67.968         | Р                         | 29.21                                                      |
| 2        | MON                  | 1     | 1 T91.534 / 1 93.716        | Р                         | 29.21                                                      |
| 2        | SLO                  | 1     | 1 15.115 / 1 15.195         | Р                         | 29.21                                                      |
| 2        | SLO                  | 1     | 1 56.843 / 1 57.815         | Р                         | 29.21                                                      |
| 2        | SLO                  | 1     | 1 72.697 / 1 74.237         | Р                         | 29.21                                                      |
| 2        | SB                   | 217   | 217 0.881 / 217 2.028       | S                         | 27.22                                                      |
| 3        | SLO                  | 1     | 1 15.196 / 1 15.202         | S                         | 23.94                                                      |
| 3        | SB                   | 217   | 217 0.566 / 217 0.76        | Р                         | 20.21                                                      |
| 3        | SB                   | 217   | 217 1.001 / 217 2.24        | Р                         | 20.21                                                      |
| 3        | SLO                  | 46    | 46 40.623 / 46 50.852       | Р                         | 20.00                                                      |
| 3        | SLO                  | 46    | 46 58.303 / 46 60.849       | Р                         | 20.00                                                      |
| 3        | MON                  | 68    | 68 0.224 / 68 0.368         | Р                         | 19.23                                                      |
| 3        | SBT                  | 25    | T 25 56.08 / 25 0           | Р                         | 19.22                                                      |
| 3        | MON                  | 101   | 101 54.787 / 101 57.079     | Р                         | 18.85                                                      |
| 3        | MON                  | 101   | 101 R25.754 / 101 R25.811   | Р                         | 18.85                                                      |
| 3        | MON                  | 101   | 101 R28.761 / 101 51.225    | Р                         | 18.85                                                      |
| 3        | SB                   | 101   | 101 12.136 / 101 12.581     | Р                         | 18.85                                                      |
| 3        | SB                   | 101   | 101 32.836 / 101 33.516     | Р                         | 18.85                                                      |
| 3        | SLO                  | 101   | 101 46.871 / 101 51.456     | Р                         | 18.85                                                      |
| 3        | MON                  | 101   | 101 54.653 / 101 57.085     | S                         | 18.56                                                      |
| 3        | MON                  | 101   | 101 R25.778 / 101 R25.809   | S                         | 18.56                                                      |
| 3        | MON                  | 101   | 101 R28.756 / 101 51.233    | S                         | 18.56                                                      |
| 3        | SB                   | 101   | 101 38.779 / 101 44.838     | S                         | 18.56                                                      |
| 3        | SB                   | 101   | 101 8.876 / 101 9.086       | S                         | 18.56                                                      |
| 3        | SLO                  | 101   | 101 46.873 / 101 51.441     | S                         | 18.56                                                      |



| Priority | County <sup>48</sup> | Route | From Postmile / To Postmile | Carriageway <sup>49</sup> | Average Cross-Hazard<br>Prioritization Score <sup>50</sup> |
|----------|----------------------|-------|-----------------------------|---------------------------|------------------------------------------------------------|
| 3        | SLO                  | 46    | 46 40.883 / 46 46.02        | S                         | 18.55                                                      |
| 3        | SLO                  | 46    | 46 50.852 / 46 51.427       | S                         | 18.55                                                      |
| 3        | MON                  | 1     | 1 13.699 / 1 14.715         | Р                         | 18.50                                                      |
| 3        | MON                  | 1     | 1 20.936 / 1 22.474         | Р                         | 18.50                                                      |
| 3        | MON                  | 1     | 1 34.88 / 1 35.46           | Р                         | 18.50                                                      |
| 3        | MON                  | 1     | 1 38.677 / 1 39.087         | Р                         | 18.50                                                      |
| 3        | MON                  | 1     | 1 50.631 / 1 51.175         | Р                         | 18.50                                                      |
| 3        | MON                  | 1     | 1 52.409 / 1 53.839         | Р                         | 18.50                                                      |
| 3        | MON                  | 1     | 1 68.962 / 1 69.129         | Р                         | 18.50                                                      |
| 3        | MON                  | 1     | 1 71.456 / 1 71.74          | Р                         | 18.50                                                      |
| 3        | MON                  | 1     | 1 93.716 / 1 94.134         | Р                         | 18.50                                                      |
| 3        | SLO                  | 1     | 1 13.211 / 1 13.402         | Р                         | 18.50                                                      |
| 3        | SLO                  | 1     | 1 15.195 / 1 15.202         | Р                         | 18.50                                                      |
| 3        | SB                   | 246   | 246 R33.822 / 246 R34.601   | Р                         | 16.25                                                      |
| 3        | SB                   | 154   | 154 R7.086 / 154 R11.38     | Р                         | 16.24                                                      |
| 3        | MON                  | 41    | 41 47.971 / 41 50.429       | Р                         | 16.02                                                      |
| 3        | MON                  | 41    | 41 R16.968 / 41 27.975      | Р                         | 16.02                                                      |
| 3        | MON                  | 41    | 41 R41.515 / 41 R42.172     | Р                         | 16.02                                                      |
| 3        | SB                   | 154   | 154 R8.103 / 154 R8.134     | S                         | 15.73                                                      |
| 3        | MON                  | 198   | 198 R0.102 / 198 1.092      | Р                         | 15.57                                                      |
| 3        | SLO                  | 33    | 33 4.872 / 33 4.945         | Р                         | 15.47                                                      |
| 3        | SLO                  | 166   | 166 R50.884 / 166 59.861    | Р                         | 15.34                                                      |
| 4        | SLO                  | 229   | 229 6.373 / 229 9.16        | Р                         | 15.25                                                      |
| 4        | SLO                  | 41    | 41 27.975 / 41 29.987       | Р                         | 15.25                                                      |
| 4        | SLO                  | 41    | 41 31.313 / 41 35.502       | Р                         | 15.25                                                      |
| 4        | SLO                  | 41    | 41 38.924 / 41 R41.515      | Р                         | 15.25                                                      |
| 4        | MON                  | 198   | 198 1.092 / 198 9.157       | Р                         | 15.18                                                      |
| 4        | MON                  | 198   | 198 R0 / 198 R0.102         | Р                         | 15.18                                                      |
| 4        | SCR                  | 17    | 17 5.454 / 17 5.871         | Р                         | 11.91                                                      |
| 4        | SCR                  | 17    | 17 5.455 / 17 6.81          | S                         | 11.91                                                      |
| 4        | MON                  | 25    | 25 1.119 / T 25 13.973      | Р                         | 11.24                                                      |
| 4        | SBT                  | 25    | T 25 26.059 / T 25 R31.223  | Р                         | 11.24                                                      |
| 4        | SBT                  | 25    | Т 25 48.152 / Т 25 49.546   | Р                         | 11.24                                                      |
| 4        | SBT                  | 25    | T 25 R52.401 / T 25 56.08   | Р                         | 11.24                                                      |
| 4        | MON                  | 1     | 1 22.474 / 1 24.167         | Р                         | 10.96                                                      |
| 4        | MON                  | 1     | 1 30.724 / 1 32.145         | Р                         | 10.96                                                      |
| 4        | MON                  | 1     | 1 35.46 / 1 37.738          | Р                         | 10.96                                                      |
| 4        | MON                  | 1     | 1 48.495 / 1 48.737         | Р                         | 10.96                                                      |
| 4        | MON                  | 1     | 1 60.459 / 1 61.987         | Р                         | 10.96                                                      |
| 4        | MON                  | 1     | 1 67.968 / 1 68.335         | P                         | 10.96                                                      |





| Priority | County <sup>48</sup> | Route | From Postmile / To Postmile   | Carriageway <sup>49</sup> | Average Cross-Hazard<br>Prioritization Score <sup>50</sup> |
|----------|----------------------|-------|-------------------------------|---------------------------|------------------------------------------------------------|
| 4        | MON                  | 1     | 1 69.129 / 1 69.665           | Р                         | 10.96                                                      |
| 4        | SLO                  | 1     | 1 13.402 / 1 14.096           | Р                         | 10.96                                                      |
| 4        | SLO                  | 1     | 1 14.248 / 1 14.752           | Р                         | 10.96                                                      |
| 4        | SLO                  | 1     | 1 15.316 / 1 15.351           | Р                         | 10.96                                                      |
| 4        | SLO                  | 1     | 1 32.551 / 1 32.82            | Р                         | 10.96                                                      |
| 4        | SLO                  | 1     | 1 34.26 / 1 34.713            | Р                         | 10.96                                                      |
| 4        | SLO                  | 1     | 1 52.642 / 1 53.219           | Р                         | 10.96                                                      |
| 4        | SLO                  | 1     | 1 54.753 / 1 55.074           | Р                         | 10.96                                                      |
| 4        | SLO                  | 1     | 1 56.252 / 1 56.843           | Р                         | 10.96                                                      |
| 4        | SLO                  | 1     | 1 57.815 / 1 58.248           | Р                         | 10.96                                                      |
| 4        | MON                  | 1     | 1 R88.841 / 1 R90.188         | S                         | 10.63                                                      |
| 4        | SLO                  | 1     | 1 32.55 / 1 32.824            | S                         | 10.63                                                      |
| 4        | SLO                  | 1     | 1 R36.167 / 1 R36.846         | S                         | 10.63                                                      |
| 4        | MON                  | 101   | 101 66.402 / 101 70.856       | S                         | 8.45                                                       |
| 4        | SB                   | 101   | 101 11.566 / 101 11.761       | S                         | 8.45                                                       |
| 4        | SB                   | 101   | 101 28.086 / 101 32.839       | S                         | 8.45                                                       |
| 4        | SB                   | 101   | 101 33.864 / 101 38.779       | S                         | 8.45                                                       |
| 4        | SB                   | 101   | 101 9.086 / 101 10.018        | S                         | 8.45                                                       |
| 4        | SB                   | 101   | 101 R0.114 / 101 R0.504       | S                         | 8.45                                                       |
| 4        | SB                   | 101   | 101 R5.3 / 101 R6.984         | S                         | 8.45                                                       |
| 4        | SLO                  | 101   | 101 37.847 / 101 46.873       | S                         | 8.45                                                       |
| 4        | MON                  | 101   | 101 66.398 / 101 70.858       | Р                         | 7.98                                                       |
| 4        | SB                   | 101   | 101 28.105 / 101 32.836       | Р                         | 7.98                                                       |
| 4        | SB                   | 101   | 101 33.516 / 101 R36.646      | Р                         | 7.98                                                       |
| 4        | SB                   | 101   | 101 38.776 / 101 44.839       | Р                         | 7.98                                                       |
| 4        | SB                   | 101   | 101 9.13 / 101 10.021         | Р                         | 7.98                                                       |
| 4        | SB                   | 101   | 101 R5.297 / 101 R7.137       | Р                         | 7.98                                                       |
| 4        | SB                   | 101   | 101 R8.273 / 101 9.011        | Р                         | 7.98                                                       |
| 4        | SLO                  | 101   | 101 37.863 / 101 46.871       | Р                         | 7.98                                                       |
| 4        | MON                  | 183   | 183 9.325 / 183 9.26          | Р                         | 6.61                                                       |
| 4        | MON                  | 183   | 183 R8.469 / 183 R7.651       | Р                         | 6.61                                                       |
| 4        | SCL                  | 152   | 152 R16.519 / 152 R16.577     | Р                         | 5.74                                                       |
| 4        | SCL                  | 152   | 152 R16.901 / 152 R16.941     | Р                         | 5.74                                                       |
| 4        | SCL                  | 152   | 152 R18.338 / 152 R18.342     | Р                         | 5.74                                                       |
| 4        | SCL                  | 152   | 152 R18.384 / 152 R18.46      | Р                         | 5.74                                                       |
| 4        | SCL                  | 152   | 152 R18.652 / 152 R18.752     | Р                         | 5.74                                                       |
| 4        | SBT                  | 156   | T 156 4.409 / T 156 R11.139   | Р                         | 5.65                                                       |
| 4        | SBT                  | 156   | T 156 R11.408 / T 156 R18.429 | Р                         | 5.65                                                       |
| 4        | SCR                  | 9     | 97.061/97.837                 | Р                         | 4.02                                                       |
| 4        | SCR                  | 9     | 9 8.065 / 9 8.495             | Р                         | 4.02                                                       |



## Caltrans Adaptation Priorities Report – District 5

| Priority | County <sup>48</sup> | Route | From Postmile / To Postmile   | Carriageway <sup>49</sup> | Average Cross-Hazard<br>Prioritization Score <sup>50</sup> |
|----------|----------------------|-------|-------------------------------|---------------------------|------------------------------------------------------------|
| 5        | SBT                  | 156   | T 156 R11.139 / T 156 R11.408 | Р                         | 2.75                                                       |
| 5        | SBT                  | 25    | T 25 49.546 / T 25 R52.401    | S                         | 2.30                                                       |
| 5        | SCR                  | 9     | 9 7.837 / 9 8.065             | Р                         | 1.56                                                       |
| 5        | SCR                  | 9     | 9 8.495 / 9 13.03             | Р                         | 1.56                                                       |
| 5        | SBT                  | 25    | T 25 46.567 / T 25 48.152     | Р                         | 1.31                                                       |
| 5        | SBT                  | 25    | T 25 49.546 / T 25 R52.401    | Р                         | 1.31                                                       |
| 5        | SBT                  | 25    | T 25 R31.223 / T 25 35.086    | Р                         | 1.31                                                       |
| 5        | SB                   | 154   | 154 R5.923 / 154 R7.086       | Р                         | 1.21                                                       |
| 5        | SLO                  | 41    | 41 11.513 / 41 R16.968        | Р                         | 1.20                                                       |
| 5        | SLO                  | 41    | 41 29.987 / 41 31.313         | Р                         | 1.20                                                       |
| 5        | SLO                  | 41    | 41 35.502 / 41 38.924         | Р                         | 1.20                                                       |
| 5        | SLO                  | 41    | 41 14.105 / 41 15.803         | S                         | 1.20                                                       |
| 5        | SLO                  | 41    | 41 15.96 / 41 R16.104         | S                         | 1.20                                                       |
| 5        | SB                   | 246   | 246 30.28 / 246 R33.822       | Р                         | 0.91                                                       |
| 5        | SCR                  | 9     | 9 9.62 / 9 9.435              | S                         | 0.66                                                       |
| 5        | MON                  | 1     | 1 33.868 / 1 34.389           | Р                         | 0.62                                                       |
| 5        | SLO                  | 1     | 1 63.772 / 1 R65.218          | Р                         | 0.62                                                       |
| 5        | SLO                  | 1     | 1 R36.17 / 1 36.91            | Р                         | 0.62                                                       |
| 5        | SLO                  | 1     | 1 R67.291 / 1 70.126          | Р                         | 0.62                                                       |
| 5        | SB                   | 246   | 246 31.599 / 246 32.109       | S                         | 0.54                                                       |
| 5        | SB                   | 246   | 246 33.31 / 246 R33.511       | S                         | 0.54                                                       |
| 5        | SLO                  | 46    | 46 R12.065 / 46 R17.797       | Р                         | 0.50                                                       |
| 5        | SLO                  | 1     | 1 34.262 / 1 R34.925          | S                         | 0.41                                                       |
| 5        | SCR                  | 236   | 236 0.092 / 236 0.181         | Р                         | 0.20                                                       |
| 5        | SB /SLO              | 166   | 166 R34.53 / 166 R50.884      | Р                         | 0.18                                                       |
| 5        | SLO                  | 58    | 58 45.2 / 58 52.808           | Р                         | 0.01                                                       |



This page intentionally left blank.



