Caltrans Training Module 7c

 How to Start a Cal-B/C Active Transportation AnalysisAbout This Module

This module will...

- Present a Quick-Start guide to Cal-B/C tools
- Walk through a three-step process to start an analysis in a Cal-B/C tool

1. Enter project information
2. Adjust model data with detailed information, if available
3. Review summary results

- Provide troubleshooting methods

Module 1
What is Benefit Cost Analysis?

Module 2

Overview of Cal-B/C Suite of Tools

Module 5 Understanding Cal-B/C Assumptions and Parameters

Module 3
Interpreting Cal-B/C Results

Module 4c

How Cal-B/C
Active
Transportation
Works
\star This module is covered in this presentation

Previous Modules..

- Module 1 provided a basic introduction on benefit-cost analysis (BCA) and a general overview of how to conduct a BCA
- Module 2 described the Cal-B/C suite of tools, discussed the types of projects that can be evaluated, and provided guidance on which tools to use for various project types
- Module 3 presented the Cal-B/C results page, detailed what each output measure means, and explained how they are calculated
- Module 4c presented an overview of how Cal-B/C AT works including a review of all worksheets and inputs
- It is strongly recommended to review Module 4c before starting Module 7c
- Module 5 highlighted the information in the Parameters worksheet and discussed key assumptions used by Cal-B/C
- Module 6c provided detailed information on how Cal-B/C AT calculates benefits

Step 1, Enter Project Information

Preview of Project Information Required by Project Type

	Section 1A Project and Site Characteristics	Section 1B Existing Segment Improvements and Trip Volume	Section 1C Intersection Improvements	Section 1D General User Characteristics (Default Values)	Section 1E New Facility Improvements and Trip Volume
Upgrade Existing Bike Facility	X	X		X	
New Bike Route Facility	X		X	X	X
Pedestrian Improvements	X	X		X	
Intersection Improvement	X		X		
Safety Improvement to Existing Facility	X				
Non-Infrastructure Program	X				

Preview of Project Information Required by Project Type

$\left.\begin{array}{|l|c|c|c|}\hline & & & \begin{array}{c}\text { Section 11 } \\ \text { Non-Infrastructure } \\ \text { Program } \\ \text { Characteristics }\end{array} \\ \text { Project Type } & \text { Xection 1F } \\ \text { Project Costs }\end{array} \quad \begin{array}{c}\text { Section 1G } \\ \text { Program Costs }\end{array}\right]$

Overview of Project Information Worksheet

- Two Primary Data Entry Areas:
- Infrastructure Project Data, Project Costs

Project Information - Data Requirements

- Project Data - Project description, type of project/program, location, project length, length of construction
- Infrastructure Details - Existing and proposed facility features and length, intersection improvements
- Trip Data - Cycling and Pedestrian volumes for Adults and Children
- Safety Data - How many accidents have occurred and what countermeasures will be implemented
- Project Costs - Capital and on-going operating expenses for the project

EA or PPNO only makes sense for Caltrans internal budgeting and programming

Project Information Worksheet (1a)


```
1D
    Cycling
```

 Trip Purpose
 Commuting Trip Pur
 Recreational Trip Pu
 Other Destinations T
 General Trip Characteris
 Overall Average Dist
 Children - SRTS - Di
 Pedestrian
Trip Purpose
Commuting Trip Pur
Recreational Trip Pu
General Trip Characterist
Overall Average Dist
Children - SRTS - Di
1 E

- Optional, input unique project identifiers including: Caltrans District, Project Name (w/ route number and postmiles), Expenditure Authorization (EA) number, Planning and Programming Number (PPNO)

1A) Project and Site Characteristics

Required for all projects

Type of Project

- Existing facility upgrade, new facility, or both
- Used to determine which benefits are calculated and how
- Project Information in Cal-B/C AT is generally separated for existing and new facilities

Total Project Length (miles)

- Existing facility length
- New facility length

1A) Project and Site Characteristics

Characteristics

Project Location

- Used to estimate emission benefits choosing parameters according to th region
Safe Route to School? (Y/N)
Programmatic Initiatives? (Y/N)
- Non-infrastructure components

Length of Construction Period

- Years needed to construct project

1B) Existing Segment Improvements and Trip Volume - Improvement

 Characteristics- Required for project improving existing facility
- Infrastructure projects are categorized as one of four bike facility classes
- Existing Facility Length (miles) by class
- Bike Paths
- Bike Lanes
- Bike Routes
- Separated bikeways and tracks
- Data check to ensure the data entry matches project length in Section 1A

1B) Existing Segment Improvements and Trip Volume - Improvement

 Characteristics
Pedestrian Improvements

- Yes = $1, \mathrm{No}=0$
- Identifies pedestrian improvement project components, which contribute to Journey Quality benefits
- Street lighting
- Curb level
- Crowding
- Pavement evenness
- Information Panels
- Benches
- Directional Signage

1B) Existing Segment Improvements and Trip Volume - Trip Data

Trip Data - Adults

- For Cycling and Pedestrian traffic
- Current Daily Trips
- Projected Annual Growth Rates
- in No Build and Build scenarios
- Daily Trips, post-construction
- Year 1 and Year 20, No Build and Build scenarios
- Calculated from above inputs
- Can be overwritten if better data is available

Trip Data - Children - SRTS

- Same inputs as above
- Only required for SRTS projects

1E) New Facility Improvements \& Trip Volume - Improvement Characteristics

- Required for new facility
- New Facility Length (miles) by class
- No Facility (based on entry in Section 1A)
- Bike Paths
- Bike Lanes
- Bike Route
- Separated Bikeways, Cycle Tracks
- Data check to ensure the data entry matches project length in Section 1A

1E) New Facility Improvements \& Trip Value - Improvement Characteristics

Pedestrian Improvements

- Yes = 1
- Identifies new pedestrian improvement components, which contribute to Journey Quality benefits:
- Street lighting
- Curb level
- Crowding
- Pavement evenness
- Information Panels
- Benches
- Directional Signage

1E) New Facility Improvements \& Trip Value - Improvement Characteristics

Trip Data - Adults

- For Cycling and Pedestrian traffic
- Current Daily Trips
- Projected Annual Growth Rates
- in No Build and Build scenarios
- Daily Trips, post-construction
- Year 1 and Year 20, No Build and Build scenarios
- Calculated from above inputs
- Can be overwritten if better data is available

Trip Data - Children - SRTS

- Same inputs as above
- Only required for SRTS projects

1C) Intersection Improvements - Reduced Delay Due to Intersection Improvements

Required for intersection or safety improvement
Number of Improved Intersections

- Improved intersections in the project area (if applicable to project)
Time Savings per Improved Intersection
- Expected savings in minutes per intersection due to improvements
Intersection improvements on SRTS? (Y/N)
- Yes = 1, No = 0

1C) Intersection Improvements - Accident Rate - Current Conditions

For Cyclists

Number of Years of Data

- Years of accident data to be entered

Total Accidents in Existing Conditions

- Same inputs as for bicyclists

NOTE: Current practice at Caltrans and CA agencies refers to vehicular incidents or "accidents" as "collisions" or "crashes." Current versions of Cal-B/C still refer to collisions/crashes as accidents.

Signalized Intersection
Pedestrian Countdown Signal Heads
Advance Stop Bar before Crosswalk
Install OverpassiUnderpass
Unsignalized Intersection
Raised MedianstRefuge Islands
Pedestrian Crossing (safety featurest markings only) Pedestrian Criassing (sarety featureslourb extensions)
Roadvass - relewant for pedestrian improvements. such as sidewalks
Sidewalk IP athway (to avoid walking along roadway)
Pedestrian Crossing (with enhanced safety features)
Pedestrian Crossing

1C) Intersection Improvements - Safety Countermeasures

- Yes = 1
- Identifies safety countermeasures at existing facilities that contribute to bicycle and pedestrian accident cost savings
- Signalized Intersection
- Unsignalized Intersection
- Roadways (pedestrian improvements only)
- Other Reduction Factor Countermeasures
- Used in accident cost savings in the Intersection Safety worksheet

1D) General User Characteristics (Based on Project Location)

Option to overwrite Cal-B/C model defaults for any project

- Default Parameters for:
- Distribution of Trip Purpose
- Distance traveled
- For Cyclists and Pedestrians
- No Build and Build scenarios
- Based on Project Location entry in Section 1A
- Characteristics of facility users are used in estimating facility benefits
- Can be overridden if better data is available
- Refer to Module 5 for default parameter sources

1F) Project Costs

Required for all infrastructure projects

- All project costs should be entered into five cost columns as needed
- Project costs should be entered as incremental rather than total costs
- Incremental costs are difference between No Build and Build scenarios
- Costs must be entered in thousands of dollars $(\$ 1,000)$
- Project costs must be entered in constant dollars, in same year as economic parameters used for benefit calculations (current year in Cal-B/C is 2016) - Modules 5 and 6 c will go into more details about year for current dollars

1F) Project Costs

- Up to eight (8) years of initial infrastructure project costs allowed
- Costs must be entered for each year to be consistent with "Length of Construction Period" entered in Section 1A
- Following construction, project opens and the 20 -year project operating period begins
- Year 1 (Base Year) described in previous slides represented by the "1" under the "Project Open" header \qquad

1F) Project Costs Direct Project Costs

Initial Costs

- Project support
- Right-of-way acquisition costs
- Construction costs
- Project should incur no initial project costs in or after the project opening year

Subsequent Costs

- Any costs incurred after the project is constructed and open
- Operating and Maintenance (O\&M) costs
- Rehabilitation costs
- Module 8 discusses project cost sources, including O\&M costs

1F) Project Costs - Total Costs

Total Costs

- Calculated automatically
- Include project cost in constant dollars and present value for each year
- Values are in total dollars and not in thousands of dollars like other columns

IF PROJECT COSTS AND REQUESTED FUNDS [enter in thousands of dollars) Col. no.								
Year	Construction Years	DIRECT PROJECT COSTS					total costs [in dollars)	
			thal Costs		SUBSEQUE	COSTS		
		Project Support	R1W	Construction	Maint.I Op.	Rehab.	Constant Dollars	$\begin{gathered} \text { Present } \\ \text { Value } \end{gathered}$
Infrastructure Program Costs								
1	1		\$500.0	\$2.000.0	<-- Must en	a cost	\$2.500.000	\$2.500,000
2	1			\$2.000.0			2.000.000	1.923 .077
3	0						0	0
4	0						0	0
5	0						0	0
6	0						0	0
7	0						0	0
8	0						0	0
Annual Infrastructure O\&M Costs								
1					\$5		\$5.000	\$4.623
2					\$5		5.000	4.445
3					- 85		5.000	4.274
4					- 85		5.000	4,100
5					- 85		5.000	3.952
6					- 85		5.000	3.800
7					- 85		5.000	3.653
8					- 85		5.000	3.513
9					- 85		5.000	3.378
10					- $\quad 85$		5.000	3.248
11					$\square \quad \$ 5$		5.000	3,123
12					- 85		5.000	3.003
13					85		5.000	2.887
14					- 85		5.000	2.776
15					- 85		5.000	2.670
16					- 85		5.000	2.567
17					85		5.000	2.468
18					45		5.000	2.373
19					45		5.000	2.282
20					45		5.000	2,194
Total	\$0, 8500			\$4,000	\$100	$\$ 0$	\$4,600,000	\$4,488,415
ATP REQUESTED FUNDS Project								
Total								

1G) Program Costs and
 \section*{Requested Funds}

Required for non-infrastructure projects

- Cal-B/C AT has an additional section for programmatic or non-infrastructure costs
- Same five cost columns are available to use to enter costs for projects with non-infrastructure improvements
- Must be entered in thousands of dollars $(\$ 1,000)$
- Must be entered in constant dollars, in same year as economic parameters
- Total costs in constant and present value dollars are still calculated
- ATP Requested Funds

- Enter costs requested for the Active Transportation Program
- Only used if the tool is being used for an ATP Information application

1H) Data Checks - Project Length, Daily Trips

- Checks for data consistency in all sections in 1a) Project Info
- Facility length: existing and new, in No Build and Build scenarios
- Facility users (trips per mile): existing and new, bicycles and pedestrians
- Safety measures on existing facilities
- Confirms that data is entered for the improvements identified

1H
DATA CHECKS - PROJECT LENGTH, DAILY TRIPS

Non-Infrastructure Program Information Worksheet (1b)

Required for non-infrastructure programs

- Data entry and scoring system for noninfrastructure initiatives and programs

Non-Infrastructure Program Information Worksheet (1b)

- Scoring framework is used to determine the initiative overall cost per score
- Four equally weighted criteria assess the effectiveness of the initiative
- Score is based on how non-active transportation users are impacted

Non-Infrastructure Program Information - Data Requirements

- Scale of Initiative - Number of people reached
- Program Details - target audience, promotional characteristics, type of messaging, and duration

EA or PPNO only makes sense for Caltrans internal budgeting and programming

1I) Non-Infrastructure Program Characteristics

- Optional, input unique project identifiers including: Caltrans District, Project Name (w/ route number and post miles), Expenditure Authorization (EA) number, Planning and Programming Number (PPNO)

Pro tip: Include Post Mile, Highway, or State Route Name in Project Name

1I) Non-Infrastructure Program Characteristics

- Programmatic Initiatives (based on selection in Section 1A)

Participants/Beneficiaries

- Number of People reached per year
- Percentage of Current Active Bicyclists that benefit (are reached by the program)
- Percentage of Current Active Pedestrians that benefit (are reached by the program)

1I) Non-Infrastructure Program Characteristics

Scoring Criteria

- 1) Target Audience
- Distribution in percentages by age group
- Gray cells are used in the calculation of the Indicator-Weighted Score, they are not intended to be overridden

1I) Non-Infrastructure Program Characteristics

Scoring Criteria

- 2) Characteristics Promotional Effort
- Effort Targets 5 e's or 5 p's
- Education, enforcement, encouragement, engineering, evaluation
- Preparation, promotion, programs, policy, physical projects
- Knowledgeable Staff/Educator
- Partnership/Volunteers
- Creates Community Ownership
- Part of Bigger Effort
- Mark '1' for all that apply

Project Information

1I) Non-Infrastructure Program Characteristics

Scoring Criteria

- 3) Type of Impact and Messaging
- Hands-on Outreach
- Overcome Barriers
- Eliminates Hazards/Threats
- Connected or Addresses Connectivity Challenges
- Creating Value in Using Active Transportation
- Mark ' 1 ' for all that apply

1I) Non-Infrastructure Program Characteristics

Scoring Criteria

- 4) Frequency of Outreach Effort
- One Day
- One Month
- One Year
- Multiple Years
- Continuous Effort
- Mark ' 1 ' for the option that applies (mutually exclusive options)

1I) Non-Infrastructure Program Characteristics

Scoring Criteria - Calculated fields

- Projected New Active Transportation Cyclists
- Number of potential new facility users
- Years of outreach
- Impact Scores
- Cost Effectiveness (for Cyclists)
- Total Discounted Cost
- Cost per Program Impact Score
- Projected New Active Transportation Pedestrians
- Number of potential new facility users
- Years of outreach

- Impact Scores
- Cost Effectiveness (for Pedestrians)

```
- Total Discounted Cost
- Cost per Program Impact Score

\section*{Step 2, Adjust Model Data}

\section*{Model Inputs - Data Requirements}
- Travel Demand Data - Number of trips, users, and miles traveled by trip purpose by mode

\section*{2) Model Inputs, Sections}

Optional inputs to overwrite Cal-B/C model calculations

\section*{Cycling Volume Inputs}
- 2A) Existing Facility Segment
- 2B) New Facility Segment
- 2C) New Safe Routes To School
- 2D) Existing Safe Routes To School

Pedestrian Volume Inputs
- 2E) Existing Facility Segment
- 2F) New Facility Segment
- 2G) New Safe Routes To School
- 2H) Existing Safe Routes To School


\section*{2) Model Inputs, Volumes}

Same input form:

\section*{Cycling Volume Inputs}
- 2A) Existing Facility Segment
- 2B) New Facility Segment

Pedestrian Volume Inputs
- 2E) Existing Facility Segment
- 2F) New Facility Segment
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{2A ACTIVE TRANSPOR} & DAILY VOL & ME INP & - CYCLIN & G - Existing Facility Segment \\
\hline & Calculated by Model & Changed by User & Used for Proj. Eval. & Reason for Change \\
\hline \multicolumn{5}{|l|}{No Build - Cycling} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} \\
\hline Annual Trips - Commuting & 4,453 & & 4,453 & \\
\hline Annual Trips - Other Destinations & 42,864 & & 42,864 & \\
\hline Annual Trips - Recreational & 8,350 & & 8,350 & \\
\hline Users - Commuting & 6 & & 6 & \\
\hline Users - Other Destinations & 61 & & 61 & \\
\hline Users - Recreational & 12 & & 12 & \\
\hline Total Miles - Commuting & 15,729 & & 15,729 & \\
\hline Total Miles - Other Destinations & 151,391 & & 151,391 & \\
\hline Total Miles - Recreational & 29,492 & & 29,492 & \\
\hline \multicolumn{5}{|l|}{Year 20} \\
\hline Trips - Commuting & 4,921 & & 4,921 & \\
\hline Trips - Other Destinations & 47,360 & & 47,360 & \\
\hline Trips - Recreational & 9,226 & & 9,226 & \\
\hline Users - Commuting & 7 & & 7 & \\
\hline Users - Other Destinations & 67 & & 67 & \\
\hline Users - Recreational & 13 & & 13 & \\
\hline Total Miles - Commuting & 17,379 & & 17,379 & \\
\hline Total Miles - Other Destinations & 167,272 & & 167,272 & \\
\hline Total Miles - Recreational & 32,585 & & 32,585 & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Build - Cycling Year 1} \\
\hline Annual Trips - Commuting & 4,587 & & 4,587 & \\
\hline Annual Trips - Other Destinations & 44,153 & & 44,153 & \\
\hline Annual Trips - Recreational & 8,601 & & 8,601 & \\
\hline Users - Commuting & 7 & & 7 & \\
\hline Users - Other Destinations & 63 & & 63 & \\
\hline Users - Recreational & 12 & & 12 & \\
\hline Total Miles - Commuting & 16,202 & & 16,202 & \\
\hline Total Miles - Other Destinations & 155,944 & & 155,944 & \\
\hline Total Miles - Recreational & 30,379 & & 30,379 & \\
\hline \multicolumn{5}{|l|}{Year 20} \\
\hline Annual Trips - Commuting & 6,817 & & 6,817 & \\
\hline Annual Trips - Other Destinations & 65,609 & & 65,609 & \\
\hline Annual Trips - Recreational & 12,781 & & 12,781 & \\
\hline Users - Commuting & 10 & & 10 & \\
\hline Users - Other Destinations & 93 & & 93 & \\
\hline Users - Recreational & 18 & & 18 & \\
\hline Total Miles - Commuting & 24,075 & & 24,075 & \\
\hline Total Miles - Other Destinations & 231,725 & & 231,725 & \\
\hline Total Miles - Recreational & 45,141 & & 45,141 & \\
\hline
\end{tabular}

Model
Inputs

\section*{2) Model Inputs, Volumes}
- Adjust calculated values if more in-depth data are available
- Number of trips, users, and miles traveled by trip purpose
- Estimated based on data entered in Project Information worksheet
- Both Year 1 and Year 20 estimates
- No Build and Build scenarios
- Considers commuting, recreation and other destinations for purpose of travel

\section*{Safe Routes To School, Sections}

Same input form:
Pedestrian Daily Volume Inputs
- 2C) New Safe Routes To School
- 2D) Existing Safe Routes To School

Cycling Volume Inputs
- 2G) New Safe Routes To School
- 2 H\()\) Existing Safe Routes To School


\section*{Safe Routes To School, Volumes}
- Allows you to change data for the new and existing facility in the green columns
- Trips
- Users
- Total miles
- Both Year 1 and Year 20 estimates
- No Build and Build scenarios


\section*{Step 3, Review Summary Results}

\section*{Review Model Results}

Review BCA metrics
- Life-Cycle Costs: present values of all net project costs
- Life-Cycle Benefits: sum of the monetized benefits for the project in present value
- Net Present Value = Life-Cycle Benefits - Life-Cycle Costs
- Benefit/Cost Ratio = Life-Cycle Benefits/Life-Cycle Costs
- Rate of Return on Investment: Discount rate at which benefits and costs are equal
- Payback Period: number of years it takes for the net benefits to equal the initial construction costs

Adjust which benefits are included in the analysis based
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\begin{tabular}{l}
INVESTMENT ANALYSIS \\
SUMMARY RESULTS
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Life-Cycle Costs (mil. \$)
\[
\$ 4.5
\]} & \multicolumn{2}{|l|}{} & Total Over 20 Years & \begin{tabular}{l}
Average \\
Annual
\end{tabular} \\
\hline Life-Cycle Benefits (mil. \$) & \$5.3 & \multicolumn{2}{|l|}{Journey Quality} & \$1.4 & \$0.1 \\
\hline Net Present Value (mil. \$) & \$0.8 & \multicolumn{2}{|l|}{Additional Delay Savings} & \$0.0 & \$0.0 \\
\hline \multirow[b]{2}{*}{Benefit / Cost Ratio:} & & \multicolumn{2}{|l|}{Additional Safety Benefits} & \$1.8 & \$0.1 \\
\hline & 1.2 & \multicolumn{2}{|l|}{Health Benefits} & \$2.1 & \$0.1 \\
\hline \multirow[b]{2}{*}{Rate of Return on Investment:} & & \multicolumn{2}{|l|}{Emission Cost Savings} & \$0.0 & \$0.0 \\
\hline & 5.6\% & \multicolumn{2}{|l|}{TOTAL BENEFITS} & \$5.3 & \$0.3 \\
\hline \multicolumn{2}{|l|}{Payback Period: 13 years} & \multicolumn{4}{|l|}{\begin{tabular}{l}
SRTS-SPECIFIC BENEFITS (mil. \$) \\
Journey Quality
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{NON-INFRASTRUCTURE IMPLEMENTATION COST} & \multicolumn{2}{|l|}{Additional Delay Savings} & \$0.0 & \$0.0 \\
\hline Per Bike Program Impact Score & \$4 & \multicolumn{2}{|l|}{Additional Safety Benefits} & \$0.0 & \$0.0 \\
\hline \multicolumn{2}{|l|}{Per Ped Program Impact Score \(\quad\) \$4} & \multicolumn{2}{|l|}{TOTAL SRTS BENEFITS} & \$0.1 & \$0.0 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{9}{*}{Factors that Differentiate Benefits and Performance Measures}} & \multicolumn{2}{|c|}{Tons} & \multicolumn{2}{|l|}{Value (mil. \$)} \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
EMISSIONS REDUCTION \\
CO Emissions Saved
\end{tabular}} & Total Over 20 Years & Total Over 20 Years & Average Annual \\
\hline & & & 0 & \$0.0 & \$0.0 \\
\hline & & \(\mathrm{CO}_{2}\) Emissions Saved & 112 & \$0.0 & \$0.0 \\
\hline & & NOx Emissions Saved & 0 & \$0.0 & \$0.0 \\
\hline & & PM \({ }_{10}\) Emissions Saved & 0 & \$0.0 & \$0.0 \\
\hline & & PM \({ }_{2.5}\) Emissions Saved & 0 & & \\
\hline & & SOx Emissions Saved & 0 & \$0.0 & \$0.0 \\
\hline & & VOC Emissions Saved & 0 & \$0.0 & \$0.0 \\
\hline
\end{tabular} on the purpose

\section*{Review Model Results (cont.)}

Non-Infrastructure Program
- Cost per Bike Program Impact Score
- Cost per Ped Program Impact Score

\section*{Itemized Benefits}

\section*{SRTS-Specific Benefits}
- Included in Itemized Benefits
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
INVESTMENT ANALYSIS \\
SUMMARY RESULTS
\end{tabular}} \\
\hline Life-Cycle Costs (mil. \$) & \$4.5 & ITEMIZED BENEFITS (mil. \$) & Total Over 20 Years & \begin{tabular}{l}
Average \\
Annual
\end{tabular} \\
\hline Life-Cycle Benefits (mil. \$) & \$5.3 & Journey Quality & \$1.4 & \$0.1 \\
\hline Net Present Value (mil. \$) & \$0.8 & Additional Delay Savings & \$0.0 & \$0.0 \\
\hline & & Additional Safety Benefits & \$1.8 & \$0.1 \\
\hline Benefit / Cost Ratio: & 1.2 & Health Benefits & \$2.1 & \$0.1 \\
\hline & & Emission Cost Savings & \$0.0 & \$0.0 \\
\hline Rate of Return on Investment: & 5.6\% & TOTAL BENEFITS & \$5.3 & \$0.3 \\
\hline Payback Period: & 13 years & SRTS-SPECIFIC BENEFITS (m & & \\
\hline & & Journey Quality & \$0.0 & \$0.0 \\
\hline NON-INFRASTRUCTURE IMPLEME & ION COS & Additional Delay Savings & \$0.0 & \$0.0 \\
\hline Per Bike Program Impact Score & \$4 & Additional Safety Benefits & \$0.0 & \$0.0 \\
\hline Per Ped Program Impact Score & \$4 & TOTAL SRTS BENEFITS & \$0.1 & \$0.0 \\
\hline
\end{tabular}

\section*{Factors that Differentiate Benefits} and Performance Measures

\section*{Safe Route to School} Intersection Improvements on SRT Programmatic Initiatives Yes Yes Recreational Benefits 1 (enter 1 for Yes, 0 for No)

\section*{Review Model Results (cont.)}

\section*{Review Emissions Reduction}
- A positive value implies a reduction in emissions

Do the results correspond with your expectation?
- The \(B / C\) ratio is 1.2 , which is \(>1\). Is this reasonable?

Do the monetized benefits correspond with the project components and expected impacts?

Module 3 provides more details on how to interpret Cal-B/C results


\section*{Troubleshooting Issues with Cal-B/C Results}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Issue } & \multicolumn{1}{c|}{ Potential Reason } \\
\hline \begin{tabular}{ll} 
My \(\mathrm{B} / \mathrm{C}\) ratio is way too \\
low/high?
\end{tabular} & \begin{tabular}{l} 
Project Costs not entered in thousands of dollars. If actual project costs entered, then \(\mathrm{B} / \mathrm{C}\) ratios will \\
be close to 0.001 ; If costs entered in millions of dollars, then \(\mathrm{B} / \mathrm{C}\) ratios will be on the order of \(1000 / 1\) \\
\\
\end{tabular} \\
& Bicycle/pedestrian forecast demand and/or safety benefits could be too low to offset project cost \\
\hline
\end{tabular}

\section*{Conclusion}

\section*{In this module, you learned...}
- A three-step process to start an analysis in the Cal-B/C AT tool
- How to interpret results
- How to troubleshoot problems
- Identified other modules to review

\section*{What's Next?}
- Module 8c
- Where to find data for your project
- Module 9c
- Example of an analysis in the Cal-B/C AT tool
- Module 10
- Additional information and data sources for BCA in \(\mathrm{Cal-B/C}\) tools```

